Search Immortality Topics:

Page 11234..1020..»

The Ethics of the Future: Human Genetic Engineering and Human Immortality Medicine is Coming in 19 years!!

Posted: March 31, 2015 at 12:46 pm

The Ethics of the Future: Genetic Engineering and Immortality Medicine

2015 is Going to Be a Fascinating Year for Longevity Science

By Professor Mark

How do you feel about the potential for great advances in Human Longevity Science that have been occurring in recent years? Do you feel excited about the prospect of living a much longer life, or are you indifferent? Are you nervous about the prospects of what this sort of tinkering with genetics and human nature might bring?

Is the potential for a vastly expanded lifespan going to be something that everyone can enjoy, or will it be an advantage simply for those that can afford it? If you could live 100 years longer, would you want to? Would you care if the opportunity were afforded to you as an individual? Would such a huge opportunity lead to a new and beautiful life on earth, or would earth somehow take these momentous advantages and turn the world on its head?

My Beliefs Regarding Advanced Genetic Engineering

Many years ago, when I was an undergraduate at Penn State, our professor posited similar questions in our Genetics Class, which played a major role in affecting my beliefs toward the subject of hyper-longevity and Genetic Engineering. The class was large, with more than 100 students, and my professor asked the class what their opinions were regarding the use of genetic manipulation and engineering to alter human life.

Surprisingly, the class was completely silent. In response to this silence, the professor called up two students to debate the subject. One of my classmates volunteered to voice his opposition to genetic engineering, and I chose to volunteer, providing an argument in favor of it.

My opponent voiced his opinion to the class that genetic engineering for this purpose would be ethically wrong because it is not in man’s best interest to play God. Most of our classmates seemed to agree, nodding subtly in agreement.

Personal Aesthetic: Choosing to Be Different

I felt as though I was standing upon a grand crossroads of history. As I looked around the class, it felt as though all of my classmates, for all of their cliquish differences, were being incredibly closed-minded, like they just accepted what they had been told all their lives and were afraid to think for themselves.

After the professor gauged the response of the students, I had my opportunity to argue in favor of this advanced human genetic engineering. I glanced around the class, and felt my argument come together cleanly in my mind. I saw white girls with bleached hair stretching down their backs, more than a few of which had fake breasts. I saw black girls with expensive weaves and complex and expensive hairstyles.

There were white students mimicking their hip hop and rap idols, and I even saw a young Asian student that had very obviously dyed her hair red. In my class I saw a great commingling of different styles. People both attempting to exemplify American standards of beauty and those taking on the aspects of other cultures, adopting them as their own.

As I looked around at all of this, recognizing the great diversity in my class, I had a strong feeling that there was not one person in the class that didn’t have at least one thing they wanted to alter about the characteristics they were born with. I continued thinking to myself, that these students probably wanted to be different in a variety of different ways: some wanted to be smarter, some taller. Some girls wish they had larger breasts, and some guys wanted larger penises. Others probably wish that they didn’t have to go through the trouble to put in contacts and hair dyes to look like the person they wish they were. For myself, I would have given anything just to be a few inches taller.

A Call for Genetic Freedom

After standing quietly for a moment, with all of these thoughts running through my at head a rapid place, I spoke from my position, in the back of the class, and suddenly stated loudly: Genetic Freedom!

I felt that just those two words spoke for themselves, but my professor threw a dejected glance in my direction, and I could detect her shaking her head almost imperceptibly. Her silence was a sign that she needed more. After the brief silence, I continued. I argued to the class that the individual should have full control to alter his DNA as he sees fit, so long as it doesn’t negatively impact society or the rights of anyone else.

She seemed thoroughly unhappy with the argument, and the class began to chatter loudly, nearly in unison. After the short spate of controlled chaos, the class continued with liveliness and energy, but I felt that others in the class largely shunned me as a result of the fervent beliefs I expressed in regard to what legitimately amounted to the potential future of the human race.

Will People Be Able to Resist Genetic Alteration?

I still laugh to myself to this day about how my belief met such incredulity in the face of so many. In the future, once science makes it possible to make such powerful changes to humanity at the genetic level, I am confident that these same students, if given the actual opportunity to improve themselves through futuristic genetic methods, would absolutely jump at the chance with no second thought.

It wouldn’t be Playing God. It wouldn’t be unethical. It would simply be the new reality. In fact, once the time comes to pass when Genetic Alteration becomes a reality, the exact same people today that seek out plastic surgery and cosmetic surgery will clamor for these procedures as soon as they become available. In the end, I believe I made a B in the course, which is regretful, because I’ve always remained highly interested in genetics.

The Future of Humanity: The Organic and the Engineered

Another of my professors at Penn State, himself with a doctorate in genetics, explained an interesting aspect of human evolution, one which I had never thought of before. He explained that the many races that make up humanity as a whole developed their differences as a result of dispersing far from one another, and slowly adapting to their new environments over time.

After they migrated, geography, distance, and other factors kept them from interacting heavily with one another, which caused their minor adaptations to become more pronounced. In the same way that they developed their own habits and cultures, their aesthetic and physical makeup also changed. Some grew taller, others grew paler, and each individual culture became maximally resistant to the diseases which were prominent in their area.

Even though these physical and genetic changes were significant, any healthy woman on earth could still mate with any other healthy man, no matter how different he looked or acted. What he said that truly sparked my mind was that if the different races of human beings stayed geographically isolated from one another for longer period of time, eventually the different races could have changed enough to where they could no longer produce children with one another.

Could Genetically Engineered Humans Evolve Beyond Humanity?

This can also apply to the future of genetic engineering. The modern world is so interconnected that geography has no impact on the ability of humans to breed with one another, but genetic enhancement may lead to a point at which a human born today would not be able to mate with an individual that was the result of generations of genetically altered parents.

As Genetic Engineering becomes more advanced, humans may change enough at the genetic level to prevent interbreeding between lineages which have undergone these advancements and those that chose not to. This change would of course be gradual, first reducing the ability to conceive before denying that ability altogether. At this point, it would take genetic engineering just to create a viable child for two disparate humans. Interestingly enough, it may even come to pass that different species of humans evolve from such endeavors, as distinct from one another as they are from humans themselves.

The beginning of this story could begin sometime in the next hundred years, as scientists and medical specialists develop the ability to safely and effectively alter DNA to meet the specifications of the individual.

The Future is Coming: the Great Human Divergence and the Neo-Sapient

The people that choose to reject Genetic Modification and Advanced Longevity Treatments in the near future will create an interesting binary world. This could be the beginning of a grand human experiment. This could be the focal point of a genetic divergence so strong that it literally fragments the human race, creating a new class of post-humans that have advanced to a point where they qualify as their own unique species.

I think back to the genetics course I mentioned earlier. I remember the absolute ocean of diversity that was contained within the 100-student course, and I was able to visualize a future in which Genetic Modification leads to even greater diversity, and a uniqueness that has never existed in the history of the human race. It made me think of the diversity of the universe, and the unlimited options for diversity that it represents. As someone with an affinity for astronomy, I find it utterly inconceivable that planet earth is home to the only lifeforms in the universe.

Of course, along with my great optimism, I do recognize that there are risks and unknowns related to the future of Genetic Modification. There is even the potential that the science behind Genetic Modification could be used for Genetic Warfare. There is certainly the potential that the same science that creates a new humanity could be used to destroy large swathes of it. I can imagine an apocalypse that is not nuclear and grandiose, but genetic and nanoscopic.

Post-Humanism and the Search For Other Worlds

In the end, will humans be able to develop interplanetary travel and colonization in order to insure itself against such potential apocalyptic scenarios? It’s a subject that I am particularly concerned with, and is the core reason why I support NASA and the United States Space Program. As the world moves faster and the dangers become greater, it is imperative that we are able to save humanity even in the case of a state of mutually assured destruction.

If there truly is a Genetic Revolution on the horizon, it is vitally important that we use all of the resources we have available in order to make our dreams of space colonization a reality. Imagine a future so spectacular: A future where a multitude of post-human species advance outward from earth in order to colonize space like a rainbow across the galaxy.

This journey will be arduous and epic, as earthlings spread across the cosmos in order to find new viable homes and potentially interact with other life forms.

What Would Aliens Be Like?

Can you imagine how literally otherworldly that would be? If we found advanced aliens, would they have unlocked the key to eternity? Would we have done the same? There is no doubt that the first time that we make contact with an extraterrestrial species, they will come from worlds and cultures which are absolutely unimaginable in the face of everything that we have experienced.

I may have delved a bit into the realm of science fiction, but the future of humanity in the face of Genetic Modification has the potential to be every bit as exciting and otherworldly as the potential future that I just described. It instills a tremendous sense of fear, awe, and most importantly, unlimited potential.

Do You Think That You Could Handle Immortality?

If you ask the average person out on the street about the potential future afforded by Genetic Engineering, Advanced Longevity, and Immortality medicine, you’ll likely get a number of different responses, some positive, some negative, others simply incredulous. If you surveyed 100 people, I believe that you would find that the majority would ultimately reject the idea of immortality.

Some people think that eternity would take the excitement out of life. Others fear that they would eventually just become a broken shell of their former selves as their bodies physically decline in spite of science’s ability to prevent death. For many, the concept of eternity is just as fearsome as the concept of death itself. It’s not all that different from the way that people feel about retirement these days. They are frustrated because they have to work so hard all through the healthiest part of their lives only to be too frail and broken down by the time they retire to enjoy it.

Longevity Medicine and the Future

That’s why Longevity Medicine is so important. We want our retirement years to last as long as possible, and we want to be able to enjoy them. Maybe one day, we will be retired as long in our lives as we are at work, or longer! That’s what the approach to immortality will be like!

There are a growing number of people that are optimistic about a lengthy future. They understand that even with regard to a concept like immortality, life is the sum of individual experience. Some will take advantage of a life bordering on immortality, while others would simply choose to be boring. People that live lives full of happiness and vitality shouldn’t be deprived the opportunity to extend that joy, simply because there are others who wouldn’t appreciate it!

The arguments stemming from the subject of Human Immortality continue to become both more interesting and more complex, both for those that long for such a fate, and those that oppose the concept. No matter how you feel about the idea of Advanced Longevity, there is no doubt that such opportunities to live lives we now consider unimaginable will eventually come to pass.

As long as human beings are able to engage in scientific advancement without destroying ourselves or sending ourselves back to the stone age, such opportunities will present themselves to the human race in the near future.

Gene Therapy and Stem Cell Therapy: The First Steps to Hyperlongevity

The seeds of these future endeavors are being planted today, in the fields of gene therapy, genetic medicine, and stem cell therapy. This is also the core concept behind medical treatments which seek to optimize hormone production in the body in order to alleviate the medical conditions associated with hormone imbalance and aging.

Hormone Replacement Therapy: Streamline Your Body for the Future!

Treatments such as Testosterone Replacement Therapy, Sermorelin Acetate Therapy, and Bio-Identical Human Growth Hormone Replacement Therapy seek to correct common hormonal imbalances that occur as a result of the aging process. There is even a strong argument that these hormone imbalances are actually the root cause of many symptoms of aging, including frailty, osteoporosis, and cognitive decline.

There are many Health, Wellness, and Longevity Physicians that believe that these forms of Hormone Replacement Therapy are some of the must effective means to prolong a healthy and active life when used in combination with a healthy and conscientious lifestyle. These medical treatments are the best way to decrease your mortality risk so that you are more likely to experience the next great advancement in Anti-Aging Medicine.

If you feel that your quality of life has been on the decline as a result of changes in your body and mind resulting from the aging process, I strongly encourage you to get your hormone levels checked, because there is a significant chance that you may be suffering from a reversible form of hormone deficiency.

The Future of Human Genetic Engineering

This is truly an exciting time to be alive. We are quickly approaching the point at which scientific breakthroughs in health science will continue to occur at an ever-increasing pace, with groundbreaking new health advances occurring on a regular basis. The following years will be incredibly interesting, because there are a multitude of clinical trials regarding the promise and potential effectiveness of both gene therapy and stem cell therapy.

By 2012, these studies, and other similar studies, were already displaying high levels of potential to both treat and protect both animals and humans from disease. Beyond Hormone Optimization and Genetic Therapy, the next stage of advancement will most likely be in the field of nanomedicine. Beyond nanomedicine is femtomedicine.

At this stage of scientific inquiry, this is as far as even the most forward-thinking physician or philosopher could imagine, but there is no doubt as we create new medical treatments and expend our knowledge of medical science, new opportunities for advancement will be conceptualized that could be even more life-altering and fantastic than those that we just mentioned.

When you consider the future of medicine and longevity, you realize that human beings as they are now aren’t simply the end result of millions of years of evolution, but also a gateway to the next state of terrestrial life, a transitional state between what was and what will be, an opportunity to experience even greater consciousness and enlightenment by conquering time, itself.

What is the Idea Behind Human Immortality?

When we discuss the idea of human immortality, it doesn’t just mean allowing a human being to live forever, human immortality represents the idea that it will be possible, with future biomedical and genetic enhancements, for human beings to experience a practical immortality in which one is able to live as they were in the prime of their life, for all of their life.

It seems just as you master your body and your mind in the late twenties and early thirties, your body and mind start to enter a slow and unstoppable decline. What if you could preserve that period of physical and psychological perfection forever? It is during this period that the average person reaches his or her functional peak as an individual, with regard to strength, cognitive ability, immunity, and overall health.

How Much Better Would Life Be if You Lived to 200?

Think about how different and exciting that life would be if you could have the body and mind of a 29 year old for 120 years. There are a number of people that think that humans should not have this opportunity, but it sounds much better than spending the whole sum of those years in slow and steady decline.

How Much Better Would Life Be if You Could Live Indefinitely?

Immortalists subscribe to the belief that individuals that truly enjoy life and are creative or passionate enough to find interesting or fulfilling things to do would be able to easily take advantage of a significantly lengthened lifespan. I do understand how such a long life would feel to someone that lacks passion or imagination, however. I can imagine two hundred years of absolutely drudgery. If one does not have the propensity to invest or save to create wealth, I can imagine two hundred years of hard work with nothing to show for it.

With luck, a more automated world would allow us to enjoy our lives while actually working less. Imagine a world of eco-friendly machines could do the work of one hundred men. This could be a wonderful world of leisure for all, but it could also lead to a world where machines are used as a method of control and domination, like in Frank Herbert’s dystopian novel Dune.

The Temptation of Human Immortality

Whether the opportunity for Human Immortality comes in twenty years or two hundred years, there will be those that seek out the opportunity for such a life, and there will be those that choose to reject the opportunity for immortality.

The central question that Immortalists posit is a simple one: Why would anyone actually want to die or grow old? When you think of it that way, it sounds absolutely silly. Who would ever want to do such things? But in reality, it seems as though most human beings are resigned to such a fate.

Who Really Wants to Grow Old?

More than simply growing old, who wants to lose their lust for life or their libido? Who wants to experience their own body slowly deteriorate as they are beaten down by illness and disease? Human Immortalists are those that are willing to fight against what is perceived as inevitable by society at large. They believe that those that have resigned themselves to decay and death are simply not willing to imagine a post-human age where they could evolve beyond the inevitability of death.

It seems that many humans think of Human Immortalists as harbingers of doom which are going to bring about a new genocide. They believe that Immortalists are going against the will of God by altering the Human Genetic Code in an attempt to foster extreme lifespans, improved aesthetic, and vastly improved health outcomes.

The Great Schism of Humanity

There is a strong chance that a rift will develop between those that choose genetic alteration and those that choose to forgo such opportunities. In the end, it is likely that humanity will rift into two distinct groups. Over time, greater and greater numbers will opt for Genetic Modification, and those that opt out of such procedures may potentially lose footing in society as a result of their choice.

If modification indeed has the ability to create such disparity, genetically modified humans will spread their genes with one another, and their offspring may have greater potential for both prosperity and intellect, which will create a socioeconomic rift between GM Humans and Unmodified Humans.

Will Post-Humans be able to act ethically under these circumstances? Will Unmodified Humans be able to accept a place in the world where they are unequivocally inferior to their GM counterparts? This new world will be different and exciting, and it’s up to us to create a civil world where we can act in the best interest of all.

What Other Strange Opportunities May Become Available in the Future?

On top of our ability to vastly extend and improve our long-term health, the future will also provide us with enhanced opportunities with regard to personal aesthetic. We will not only be able to cure conditions such as psoriasis which plague millions in the world today, but many may choose to move beyond mere optimization and may choose to fully customize their appearance. Perhaps one may choose not to have olive or alabaster skin as many in society desire today, but go for a different color all together.

What if someone chose to color their skin orange, green, or blue? What if they wanted to be leopard print or covered in zebra stripes? This may appear otherworldly and unnatural to our minds, but when presented with an entire array of customization, what would be so strange about doing something like that to stand out? How different would it be to dying your hair blue or rainbow, if there were no dangers in undergoing such a change?

But, given enough time and scientific innovation, skin color and other basic augmentations like genetic breast and penis enlargement will be just another evolution in the concept of general aesthetic. The potential for more extreme changes would eventually become possible. What if humans wanted to take on the characteristics of animals? What if someone wanted the ears or tail of a cat, for example? There would even be the potential to do even more drastic things that we can barely imagine today.

Genetically Engineered Pets

These genetic advancements won’t occur in a human vacuum. They will also apply to animals as well. Today people are paying top dollar for basic genetically modified hypo-allergenic dogs, and glow-in-the-dark mammals have even been developed in laboratories.

In the future, it is likely that scientists will come up with scientific modifications which significantly enhance both the aesthetic and intelligence of animals. It’s even likely that animals will experience the benefits of genetic engineering more quickly than humans, as this future will largely be facilitated by means of animal testing.

The Post-Human Era Starts with Basic Genetic Engineering and Ends with Post-Humanism, Hyperlongevity, and Potential Immortality

You may not be able to tell, but we are already in the midst of the first phase of the Post-Human era. The beginning of this era was marked by the first time that egg and sperm from two different individuals was combined and implanted into an adoptive mother. It was such a grand event in retrospect, but the passing into this new era was not met with massive celebrations, but simply with concerns over the ethics of the new future.

Post-Humanity will have a litany of moral conundrums to unravel, some that we can imagine, and others that are unfathomable to us today. The state of the mortal mind is simply not equipped to handle the moral and ethical quandaries that the genetically modified mind will face. What if there are other lifeforms just like us in other parts of the galaxy, that have also learned to take control of their very existence on the cellular level? What if the number of unique alien civilizations in the universe is unlimited? What if we as earthlings are just one form of intelligent life among a countless litany of others?

The Current State of Genetic Modification and Gene Therapy

Today, scientists, researchers, and physicians are taking the first step into this future, with the quickly growing field of genetic therapy. We are on the cusp of doing some truly amazing things, like genetically altering viruses in order to protect humans from genetic disorders and conditions. At first, these initial treatments have been risky, reserved for those in most dire need, but as medical science becomes more well-versed in these therapeutic advancements, they will become safer and more widely available to the general public. Could you imagine reducing your risk of cancer by 80% just with a single injection? That may be the future for you.

The Current State of Organ Regeneration and Stem Cell Therapy

Another aspect of genetic therapy has to do with the advancing field of Stem Cell Therapy. There are new, state of the art treatments available which utilize stem cells in order to improve the health of the heart. Patients that have experienced heart attack or heart disease can be treated with stem cells which have the ability to develop into new and healthy muscle tissue.

Similar techniques have also been used in order to regenerate other parts of the body or parts of individual organs. In one famous case, scientists biomanufactured a windpipe for a patient with the patient’s own cells. They were able to do this by taking the stem cells and allowing them to grow in culture before pouring them over a scaffold in the shape of a windpipe. Just by providing the cells with the nutrients to grow, they were able to recreate a human windpipe in the laboratory just in a matter of days.

Because the windpipe was created from the patient’s own cells, the body did not reject the windpipe when it was surgically implanted into the body. This is one of the first successful cases where a patient’s life was changed through the scientific advancements of genetic organ replacement.

Stem Cell Therapy Will Be Available in the Near Future: Hormone Replacement Therapy is Here Today!

Stem Cell Therapy is exciting and will become increasingly common and popular over the next century in the United States. Today, there are a few places where Stem Cell Therapy is available internationally, especially in Asia, but they have yet to be medically certified, and there are still a number of pertinent risks involved. In the Western World, Stem Cell Treatments are currently going through clinical trials. Although the results are mixed, continual progress is being made.

There are many scientists that believe that Stem Cell Research will lead to a new future in medicine, but policies enacted during the presidency of George W. Bush have set the United States behind by at least a decade, and other nations in Europe and Asia are currently taking advantage of their head start, and may one day eclipse us in these new and futuristic medical therapies.

In just a few short years, genetic testing will become affordable enough that it will become a common and recommended part of prenatal care as well as regular checkups throughout the lifespan. Over time, more and more Genetic Disorders will be able to be effectively treated with Gene Therapy, and with every breakthrough, people will be that much more likely to live a longer and healthier life.

Once the clinical science is sound, it won’t even be a difficult ordeal for the patient. It would simply be like going to visit the pharmacist, or making a call to a specialist pharmacy. After receiving the medication, one will be able to administer the medication on his or her own and without the frequent oversight of a medical professional.

Not long after these Genetic Treatments are made available to the public, Stem Cell Therapies will quickly become more and more advanced as well. There are even companies that have expressed a desire to take your stem cells and develop them in a laboratory environment. The goal of this treatment would be to take your own stem cells and foster the healthiest cells to multiply. After these cultures are developed, they would be mailed back to you in order for you to inject them to alleviate health conditions and other symptoms related to the aging process.

Beyond Genetic Engineering and Stem Cell Therapies, will come new forms of medical treatment that we are just beginning to research today, but will surely flourish in the coming decades: nanomedicine and femtomedicine.

Nanoscience and the Healthcare of the Future

These are tiny, genetically engineered cellular machines that will be able to improve your health by altering the functions of your body in a positive manner. They will be able to repair and alter particular forms of cells so that they function optimally, even after a period of long life in which you would expect to see physiological breakdown. It is even believed that these treatments can also preserve and repair the brain itself! Isn’t that exciting?

There are countless people in the world that have a litany of big dreams, more than they could ever hope to accomplish in a single lifetime in some cases. They have these long checklists of things they want to do in their life, a whole wide world they want to explore. Some have an unquenchable thirst for knowledge, and want to read thousands of books or learn dozens of languages in their life.

There are countless more people that have spent their early lives living on the edge, and suffer from issues such as alcohol dependency or drug addiction which have harmed their bodies and their brains. With these forms of genetic and nanomedicine, it will be possible to repair the bodies and minds of these individuals, allowing them to make a fresh start. It is possible that addiction itself may become a historical curiosity as a result of these medical advances.

What Would Do If You Had 200 More Years to Live?

  • Would you learn to play multiple musical instruments?

  • Would you research for decades in order to write the perfect novel?

  • Would you visit every country on earth?

The number of dreams that humans have yearned for is nearly infinite, and most never live to achieve all of their dreams, if they achieve any of their dreams at all. If you are still alive in the near future, around 2032, you will be able to take full advantage of what Longevity Medicine and Anti-Aging Therapy have to offer!

Some time in the future, we will finally overcome the condition of aging. We will be able to prevent all illness and be able to live in perpetuity, as long as we don’t succumb to an accident or similar fate. This is the extreme vision of Immortality Medicine.

The First Immortals Could be Alive Today!

By the time we make it to the 22nd century, there will already be individuals that have taken the road to Hyperlongevity, and there will likely be millions of humans that have taken part in this great leap forward into Post-Humanism. They will not only be healthier, but smarter too, with further advances in Genetic Science that allow us to amplify the capacity of our brains.

As people continue to develop down this evolutionary road, will we even consider them humans anymore? They will represent a new version of humanity, and they will likely use a new term to define themselves, whether that be Neohuman or some other clever word or phrase.

I believe that this advance into Neohumanism will also lead to a new era in space travel and human colonization. With these extensive lifespans, many Neohumans will inevitably turn their eyes to the stars in a desire to find new worlds and discover new lands and extraterrestrial lifeforms. Brave Neohumans from all over the planet will take to interplanetary space vessels in order to colonize and experience new worlds and lands that are beyond the scope of human imagination.

Can I Live to Experience This New Era of Humanity?

All of the things we’ve discussed may seem incredibly exciting to you, but we understand that these innovations are going to come in the near future. If you want to take part in this grand human experiment, it’s important that you live long enough to seize these innovations as they come! There are steps you can take now to alleviate the negative symptoms of the aging process and increase your odds of experiencing the new, human revolution.

My suggestions will not ensure that you will live for the next twenty years or longer, but they will potentially drastically decrease your mortality risk so that you are able to seek out this new and exciting future that we have laid before you.

Today, the door to Neo-Humanism, Hyperlongevity, and even Human Immortality is slightly open, and there are many alive today that will experience these magnificent and life-altering advances.

Will You Take Advantage of the Advances of Hyper-Longevity and Anti-Aging Medicine? Are You Willing to Commit to a Longer and more Youthful Life?

It’s quite plain to see that we are at the crest of an event horizon, beyond which it will truly be possible to lengthen lifespans indefinitely. The most important thing is to breach that horizon. By taking steps to increase health and lifespan now, you allow yourself the opportunity to take care of further, greater medical enhancements down the road.

The most modern advances available today are in the form of Recombinant Hormone Replacement Therapies. By optimizing your hormone balance, you increase the odds that you will live long enough to experience the new, up-and-coming breakthroughs of the mid-21st century.

If you live just a few more years, new genetic medical treatments will become available which will significantly increase your lifespan. While you are enjoying the benefit of genetic medicine, researchers and medical scientists will advance and perfect Genetic Therapy and Stem Cell Therapy, allowing you to live even longer!

There are a number of Stem Cell and Gene Therapies going through clinical trials as you read this, which show great promise in preventing or treating serious illnesses which severely inhibit lifespan today. As the medical community becomes more adept at using these new tools for the purpose of treatment, they will begin to utilize these treatments as forms of Positive Medicine.

They will be able to treat patients before they even get sick in order to optimize their health and greatly improve lifespans as a result, because the incidence of illness will decline significantly. In addition, these same treatments will be able to streamline existing physiological processes, keeping the body physiologically stronger and more youthful. They will be able to tailor these treatments uniquely to the individual in order to give the best care to each individual patient.

Stay on the Cutting Edge of Longevity Medicine to Perpetually Extend the Human Lifespan

With each of these breakthroughs and treatments, we will come one step closer to Immortality. Eventually, scientists and researchers will crack the code of human life, and finally figure out how to allow us to truly live indefinitely. It may take 100 years or it may take 500 years to achieve true Immortality, but each life-extending advance will allow people to survive until the next great advance. Hyper-Longevity will eventually become a universal reality, barring accident, war, or any other form of life-ending catastrophe.

You may feel that this is a science fiction world that I am describing, but it very well may be possible for you to experience this all for yourself. It is estimated that at some point between 2032 and 2052 we will have perfected medical practices which allow us to live significantly longer lives than we do today. Those that are optimistic feel that we are just twenty years away from this era, while those that are more cautious suggest that fifty years would be a more reasonable estimate.

Twenty to fifty years may not seem like that long in scientific study, but in terms of your own life, it is a significant period of time. Are you willing to make the sacrifices now in order to experience Hyperlongevity in the near future?

Eight Ways to Extend Your Lifespan

There are a lot of steps that you can take in your life today in order to significantly increase the odds that you survive to experience this new and amazing future. If you follow the suggestions below, conscientiously, you will maximize your potential to extend your life until further longevity advances develop in the coming decades.

These eight factors have been shown to be most important when determining the length of an individual’s lifespan:

  • Nutrition

  • Exercise

  • Environment

  • Social Circles

  • Vice

  • Climate

  • Calorie-Restricted Diet

  • Hormone Replacement Therapy

The Diet of the 21st Century: Caloric Restriction and Fasting for a Longer Life

A recent article in Newsmax Health explained that the future of longevity isn’t fad dieting or strenuous exercise, but a Calorie-Restricted diet which manages metabolism and ensures a long and healthy life.

Over the last century, there have been more than twenty thousand studies regarding caloric restriction in animal species from around the globe. All of these studies have unequivocally shown that restricting the calories in an animal’s diet has the ability to significantly increase the lifespan, and the same appears to apply to human beings..

This may sound like a starvation diet at first, but conscientiously and significantly restricting calories in the human diet is a powerful means to a longer life. Of course, most people consume at least 1500 calories per day and some consume several thousand! But, it appears that the sweet spot for human longevity is quite a bit lower than that 1500 calorie threshold.

For those that are struggling with Caloric Restriction, especially those that are currently overweight, HCG Injections can help relieve the feeling of hunger associated with the initial phase of the diet in order to acclimate to their new dietary lifestyle more effectively.

At first it may seem counter-intuitive, that too much of the Bread of Life can actually shorten the lifespan, but that absolutely seems to be the case. A diet that provides high levels of nutrients through the consumption of a small number of calories is the number one way to increase human longevity effectively. Intermittent Fasting and Caloric Restriction slow down aging and also reduce the incidence of a wide variety of illnesses that plague so many in America today.

The Modern Media and the Culture of Food in the West

In the United States, as well as other countries in the West including the United Kingdom, children were raised in a reality in which starvation was one of the greatest evils of the 19th and 20th century. The various forms of media available all showed the terrible fates of so many who were denied the food needed to live. Nowhere is this imagery more vivid in Western Civilization than in the footage captured after the end of World War II as the true horrors of the Holocaust were revealed to the world at large.

During the Cold War we also experienced further evidence of the horrors of famine as communist Russia and China struggled with providing their populations with proper nutrition, leading countless to die of starvation over many decades. Today, on modern television, there are advertisements for charities throughout Africa and Asia which show the plight of the starving in these third world nations.

I do not mean to discount the real and significant struggles that those that came before us experienced in the not so distant past, but it had a powerful impact on food culture in the West, particularly the idea that it is better to eat too much than too little. In our elementary education and beyond, we are confronted with story after story of mass famine, and it seems that part of the way that we culturally appreciate our current abundance is by partaking in it.

This appreciation for our abundance has led directly to a culture of overeating that borders on obsession. In the West, we simply love our food too much, and the expansion of cuisine in the West has allowed anyone to get whatever they want, when they want it, whether they go to the grocery store, the pizza parlor, or the Chinese buffet.

A Culture of Overeating Develops into a Culture of Force Feeding

Throughout the twentieth century, we have always been taught that we need to eat every last bite on our plates. Often times, we were also strongly encouraged, if not forced, to go back for a second portion. In addition to this, the proliferation of soda drinks has led directly to a significant increase in the empty calories that the average American consumes.

As the twentieth century barreled on, parents on average had less time to cook and prepare meals at home, which led to the greater proliferation of both fast food and microwavable dinners, loaded with sugars, salts, and carbohydrates which increased our caloric consumption even more!

During this age, restaurants like Burger King and McDonald’s became the captains of the fast food industry, generating billions of dollars in profit funneling cheap calories into the mouths of men, women, and children all across the country.

Because of all these pressures to overeat, the longevity gains that people in the West experienced as a result of modernization all began to slip away, the combination of unhealthy eating and an increasingly sedentary lifestyle is threatening today’s generation with the prospect of living shorter lives than their parents on average!

The United States would be stronger in every way, if it could foster greater consciousness about the importance of eating smarter to eat longer. If we all just made the proactive decision to engage in a lifestyle of at least mild caloric restriction, it would both decrease the price of health care and allow the citizens of this nation to live longer, happier, and healthier lives.

Do You Dream of a Healthier, Happier Life? Contact the Conscious Evolution Institute Today!

If you are a man or woman over the age of thirty and currently live in the United States, the Conscious Evolution Institute can help you improve your health and longevity. We provide Doctor-Monitored Bio-Identical Hormone Replacement Therapy to patients all across the United States.

With just a simple phone call, we can arrange for you to meet with one of our affiliate physicians in order to set you on the road to a new you. We offer a variety of Hormone Replacement options, including Testosterone Replacement Therapy, Human Growth Hormone Injections, Sermorelin Acetate Injections, and HCG Injection Therapy for Weight Loss.

We also provide nutrition and lifestyle counseling in order to help you maximize the results of your treatment by choosing foods, supplements, and exercises that will get your body running on all cylinders!

If you feel that you may be a candidate for Hormone Replacement Therapy, don’t hesitate, call us today, and one of our friendly specialists will walk you through the process and answer any and all questions that you may have.

For more information on Ten Ways To Live Ten Years Longer check out

Recommendation and review posted by Guinevere Smith

Stem Cell Injection Therapy in New York City

Posted: August 30, 2015 at 1:47 am

In many cases of spinal or joint tissue damage, even drastic surgical procedures are not enough to repair the injury and return the body to its previous state. Stem cell injection therapy is a revolutionary technique using non-controversial Adult (non-embryonic) stem cells to regenerate damaged tissue and help the body recover naturally within weeks. Dr. Damon Noto is one of the few doctors in the New York City area performing this revolutionary procedure.

Stem cells are the cells in the body from which all specialized kinds of cells such as cartilage cells, skin cells, or bone cells are derived from. Under the right conditions, the right stem cells can develop into any kind of cell that the body needs. When a person has a significant joint or spinal injury, introducing stem cells to the injured area allows the cells to form into the exact type of cells that the body needs to regenerate damaged tissue and restore function.

Stem cell injection into the knee (New York City) is a therapy that utilizes adult stem cells, which are harvested from the patient’s own body in one easy procedure. Our stem cell treatments do not use controversial embryonic stem cells derived from human fetal embryonic tissue.

Your first appointment is for an evaluation where we will determine the best way to obtain the stem cells from your body. The second office visit is for extracting the stem cells, and then doing the actual injection. Dr. Noto will inject concentrated stem cells into the joint or spinal injury either using mild sedation or local anesthesia. The total procedure time usually is under 2 hours, and you will be fully awake and able to walk out of the office when finished. You will not need to stay overnight or even visit a hospital, as the treatment is performed conveniently in our office or near by surgical center. We serve New Jersey, New York City, Long Island and the surrounding areas.

The procedure involves minimal discomfort, and recovery time is minimal. Many patients begin to notice results within six to eight weeks after only one treatment. Some patients will require two to three treatments to see full results, but New York stem cell therapy can help both athletes and non-athletes return to their pre-injury condition with a minimally invasive procedure.

Back to Treatments and Services

Minimally Invasive Disc Surgery

Regenerative Medicine

Dr. Noto interviewed on Channel 12.


777 Terrace Avenue, 4th Floor Hasbrouck Heights, NJ 07604 Phone: 201.288.PAIN (7246)

Read more:
Stem Cell Injection Therapy in New York City

Recommendation and review posted by Guinevere Smith

Stem Cell Therapy New Jersey (NJ), New York City (NYC) and …

Posted: August 30, 2015 at 1:47 am

Stem Cell Therapy is an alternative and modern approach to conventional medicine in the areas of anti-aging, orthopedic and degenerative disease, sports injuries, pain in the knees, shoulders, elbows, and back or spinal injuries.

Research has found that adult stem cells have the ability to renew and differentiate into various types of cells, making stem cell therapy the new frontier in helping the body to heal itself.

More here:
Stem Cell Therapy New Jersey (NJ), New York City (NYC) and …

Recommendation and review posted by Guinevere Smith

Nervous system – Wikipedia, the free encyclopedia

Posted: August 30, 2015 at 1:46 am

The nervous system is the part of an animal’s body that coordinates its voluntary and involuntary actions and transmits signals to and from different parts of its body. Nervous tissue first arose in wormlike organisms about 550 to 600 million years ago. In vertebrate species it consists of two main parts, the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS contains the brain and spinal cord. The PNS consists mainly of nerves, which are enclosed bundles of the long fibers or axons, that connect the CNS to every other part of the body. Nerves that transmit signals from the brain are called motor or efferent nerves, while those nerves that transmit information from the body to the CNS are called sensory or afferent. Most nerves serve both functions and are called mixed nerves. The PNS is divided into a) somatic and b) autonomic nervous system, and c) the enteric nervous system. Somatic nerves mediate voluntary movement. The autonomic nervous system is further subdivided into the sympathetic and the parasympathetic nervous systems. The sympathetic nervous system is activated in cases of emergencies to mobilize energy, while the parasympathetic nervous system is activated when organisms are in a relaxed state. The enteric nervous system functions to control the gastrointestinal system. Both autonomic and enteric nervous systems function involuntarily. Nerves that exit from the cranium are called cranial nerves while those exiting from the spinal cord are called spinal nerves.

At the cellular level, the nervous system is defined by the presence of a special type of cell, called the neuron, also known as a “nerve cell”. Neurons have special structures that allow them to send signals rapidly and precisely to other cells. They send these signals in the form of electrochemical waves traveling along thin fibers called axons, which cause chemicals called neurotransmitters to be released at junctions called synapses. A cell that receives a synaptic signal from a neuron may be excited, inhibited, or otherwise modulated. The connections between neurons can form neural circuits and also neural networks that generate an organism’s perception of the world and determine its behavior. Along with neurons, the nervous system contains other specialized cells called glial cells (or simply glia), which provide structural and metabolic support.

Nervous systems are found in most multicellular animals, but vary greatly in complexity.[1] The only multicellular animals that have no nervous system at all are sponges, placozoans, and mesozoans, which have very simple body plans. The nervous systems of the radially symmetric organisms ctenophores (comb jellies) and cnidarians (which include anemones, hydras, corals and jellyfish) consist of a diffuse nerve net. All other animal species, with the exception of a few types of worm, have a nervous system containing a brain, a central cord (or two cords running in parallel), and nerves radiating from the brain and central cord. The size of the nervous system ranges from a few hundred cells in the simplest worms, to around 100 billion cells in humans.

The central nervous system functions to send signals from one cell to others, or from one part of the body to others and to receive feedback. Malfunction of the nervous system can occur as a result of genetic defects, physical damage due to trauma or toxicity, infection or simply of ageing. The medical specialty of neurology studies disorders of the nervous system and looks for interventions that can prevent or treat them. In the peripheral nervous system, the most common problem is the failure of nerve conduction, which can be due to different causes including diabetic neuropathy and demyelinating disorders such as multiple sclerosis and amyotrophic lateral sclerosis.

Neuroscience is the field of science that focuses on the study of the nervous system.

The nervous system derives its name from nerves, which are cylindrical bundles of fibers (the axons of neurons), that emanate from the brain and spinal cord, and branch repeatedly to innervate every part of the body.[2] Nerves are large enough to have been recognized by the ancient Egyptians, Greeks, and Romans,[3] but their internal structure was not understood until it became possible to examine them using a microscope.[4] “It is difficult to believe that until approximately year 1900 it was not known that neurons are the basic units of the brain (Santiago Ramn y Cajal|). Equally surprising is the fact that the concept of chemical transmission in the brain was not known until around 1930 (Henry Hallett Dale ) and (Otto Loewi ). We began to understand the basic electrical phenomenon that neurons use in order to communicate among themselves, the action potential, in the decade of 1950 (Alan Lloyd Hodgkin, Huxley Andrew Huxley and John Eccles). It was in the decade of 1960 that we became aware of how basic neuronal networks code stimuli and thus basic concepts are possible (David H. Hubel, and Torsten Wiesel). The molecular revolution swept across US universities in the decade of 1980. It was in the decade of 1990 that molecular mechanisms of behavioral phenomena became widely known (Eric Richard Kandel).”[5] A microscopic examination shows that nerves consist primarily of axons, along with different membranes that wrap around them and segregate them into fascicles. The neurons that give rise to nerves do not lie entirely within the nerves themselvestheir cell bodies reside within the brain, spinal cord, or peripheral ganglia.[2]

All animals more advanced than sponges have nervous systems. However, even sponges, unicellular animals, and non-animals such as slime molds have cell-to-cell signalling mechanisms that are precursors to those of neurons.[6] In radially symmetric animals such as the jellyfish and hydra, the nervous system consists of a nerve net, a diffuse network of isolated cells.[7] In bilaterian animals, which make up the great majority of existing species, the nervous system has a common structure that originated early in the Ediacaran period, over 550 million years ago.[8]

The nervous system contains two main categories or types of cells: neurons and glial cells.

The nervous system is defined by the presence of a special type of cellthe neuron (sometimes called “neurone” or “nerve cell”).[2] Neurons can be distinguished from other cells in a number of ways, but their most fundamental property is that they communicate with other cells via synapses, which are membrane-to-membrane junctions containing molecular machinery that allows rapid transmission of signals, either electrical or chemical.[2] Many types of neuron possess an axon, a protoplasmic protrusion that can extend to distant parts of the body and make thousands of synaptic contacts.[9] Axons frequently travel through the body in bundles called nerves.

Even in the nervous system of a single species such as humans, hundreds of different types of neurons exist, with a wide variety of morphologies and functions.[9] These include sensory neurons that transmute physical stimuli such as light and sound into neural signals, and motor neurons that transmute neural signals into activation of muscles or glands; however in many species the great majority of neurons participate in the formation of centralized structures (the brain and ganglia) and they receive all of their input from other neurons and send their output to other neurons.[2]

Glial cells (named from the Greek for “glue”) are non-neuronal cells that provide support and nutrition, maintain homeostasis, form myelin, and participate in signal transmission in the nervous system.[10] In the human brain, it is estimated that the total number of glia roughly equals the number of neurons, although the proportions vary in different brain areas.[11] Among the most important functions of glial cells are to support neurons and hold them in place; to supply nutrients to neurons; to insulate neurons electrically; to destroy pathogens and remove dead neurons; and to provide guidance cues directing the axons of neurons to their targets.[10] A very important type of glial cell (oligodendrocytes in the central nervous system, and Schwann cells in the peripheral nervous system) generates layers of a fatty substance called myelin that wraps around axons and provides electrical insulation which allows them to transmit action potentials much more rapidly and efficiently.

The nervous system of vertebrates (including humans) is divided into the central nervous system (CNS) and the peripheral nervous system (PNS).[12]

The (CNS) is the major division, and consists of the brain and the spinal cord.[12] The spinal canal contains the spinal cord, while the cranial cavity contains the brain. The CNS is enclosed and protected by the meninges, a three-layered system of membranes, including a tough, leathery outer layer called the dura mater. The brain is also protected by the skull, and the spinal cord by the vertebrae.

The peripheral nervous system (PNS) is a collective term for the nervous system structures that do not lie within the CNS.[13] The large majority of the axon bundles called nerves are considered to belong to the PNS, even when the cell bodies of the neurons to which they belong reside within the brain or spinal cord. The PNS is divided into somatic and visceral parts. The somatic part consists of the nerves that innervate the skin, joints, and muscles. The cell bodies of somatic sensory neurons lie in dorsal root ganglia of the spinal cord. The visceral part, also known as the autonomic nervous system, contains neurons that innervate the internal organs, blood vessels, and glands. The autonomic nervous system itself consists of two parts: the sympathetic nervous system and the parasympathetic nervous system. Some authors also include sensory neurons whose cell bodies lie in the periphery (for senses such as hearing) as part of the PNS; others, however, omit them.[14]

The vertebrate nervous system can also be divided into areas called grey matter (“gray matter” in American spelling) and white matter.[15] Grey matter (which is only grey in preserved tissue, and is better described as pink or light brown in living tissue) contains a high proportion of cell bodies of neurons. White matter is composed mainly of myelinated axons, and takes its color from the myelin. White matter includes all of the nerves, and much of the interior of the brain and spinal cord. Grey matter is found in clusters of neurons in the brain and spinal cord, and in cortical layers that line their surfaces. There is an anatomical convention that a cluster of neurons in the brain or spinal cord is called a nucleus, whereas a cluster of neurons in the periphery is called a ganglion.[16] There are, however, a few exceptions to this rule, notably including the part of the forebrain called the basal ganglia.[17]

Sponges have no cells connected to each other by synaptic junctions, that is, no neurons, and therefore no nervous system. They do, however, have homologs of many genes that play key roles in synaptic function. Recent studies have shown that sponge cells express a group of proteins that cluster together to form a structure resembling a postsynaptic density (the signal-receiving part of a synapse).[6] However, the function of this structure is currently unclear. Although sponge cells do not show synaptic transmission, they do communicate with each other via calcium waves and other impulses, which mediate some simple actions such as whole-body contraction.[18]

Jellyfish, comb jellies, and related animals have diffuse nerve nets rather than a central nervous system. In most jellyfish the nerve net is spread more or less evenly across the body; in comb jellies it is concentrated near the mouth. The nerve nets consist of sensory neurons, which pick up chemical, tactile, and visual signals; motor neurons, which can activate contractions of the body wall; and intermediate neurons, which detect patterns of activity in the sensory neurons and, in response, send signals to groups of motor neurons. In some cases groups of intermediate neurons are clustered into discrete ganglia.[7]

The development of the nervous system in radiata is relatively unstructured. Unlike bilaterians, radiata only have two primordial cell layers, endoderm and ectoderm. Neurons are generated from a special set of ectodermal precursor cells, which also serve as precursors for every other ectodermal cell type.[19]

The vast majority of existing animals are bilaterians, meaning animals with left and right sides that are approximate mirror images of each other. All bilateria are thought to have descended from a common wormlike ancestor that appeared in the Ediacaran period, 550600 million years ago.[8] The fundamental bilaterian body form is a tube with a hollow gut cavity running from mouth to anus, and a nerve cord with an enlargement (a “ganglion”) for each body segment, with an especially large ganglion at the front, called the “brain”.

Even mammals, including humans, show the segmented bilaterian body plan at the level of the nervous system. The spinal cord contains a series of segmental ganglia, each giving rise to motor and sensory nerves that innervate a portion of the body surface and underlying musculature. On the limbs, the layout of the innervation pattern is complex, but on the trunk it gives rise to a series of narrow bands. The top three segments belong to the brain, giving rise to the forebrain, midbrain, and hindbrain.[20]

Bilaterians can be divided, based on events that occur very early in embryonic development, into two groups (superphyla) called protostomes and deuterostomes.[21] Deuterostomes include vertebrates as well as echinoderms, hemichordates (mainly acorn worms), and Xenoturbellidans.[22] Protostomes, the more diverse group, include arthropods, molluscs, and numerous types of worms. There is a basic difference between the two groups in the placement of the nervous system within the body: protostomes possess a nerve cord on the ventral (usually bottom) side of the body, whereas in deuterostomes the nerve cord is on the dorsal (usually top) side. In fact, numerous aspects of the body are inverted between the two groups, including the expression patterns of several genes that show dorsal-to-ventral gradients. Most anatomists now consider that the bodies of protostomes and deuterostomes are “flipped over” with respect to each other, a hypothesis that was first proposed by Geoffroy Saint-Hilaire for insects in comparison to vertebrates. Thus insects, for example, have nerve cords that run along the ventral midline of the body, while all vertebrates have spinal cords that run along the dorsal midline.[23]

Worms are the simplest bilaterian animals, and reveal the basic structure of the bilaterian nervous system in the most straightforward way. As an example, earthworms have dual nerve cords running along the length of the body and merging at the tail and the mouth. These nerve cords are connected by transverse nerves like the rungs of a ladder. These transverse nerves help coordinate the two sides of the animal. Two ganglia at the head end function similar to a simple brain. Photoreceptors on the animal’s eyespots provide sensory information on light and dark.[24]

The nervous system of one very small roundworm, the nematode Caenorhabditis elegans, has been completely mapped out in a connectome including its synapses. Every neuron and its cellular lineage has been recorded and most, if not all, of the neural connections are known. In this species, the nervous system is sexually dimorphic; the nervous systems of the two sexes, males and female hermaphrodites, have different numbers of neurons and groups of neurons that perform sex-specific functions. In C. elegans, males have exactly 383 neurons, while hermaphrodites have exactly 302 neurons.[25]

Arthropods, such as insects and crustaceans, have a nervous system made up of a series of ganglia, connected by a ventral nerve cord made up of two parallel connectives running along the length of the belly.[26] Typically, each body segment has one ganglion on each side, though some ganglia are fused to form the brain and other large ganglia. The head segment contains the brain, also known as the supraesophageal ganglion. In the insect nervous system, the brain is anatomically divided into the protocerebrum, deutocerebrum, and tritocerebrum. Immediately behind the brain is the subesophageal ganglion, which is composed of three pairs of fused ganglia. It controls the mouthparts, the salivary glands and certain muscles. Many arthropods have well-developed sensory organs, including compound eyes for vision and antennae for olfaction and pheromone sensation. The sensory information from these organs is processed by the brain.

In insects, many neurons have cell bodies that are positioned at the edge of the brain and are electrically passivethe cell bodies serve only to provide metabolic support and do not participate in signalling. A protoplasmic fiber runs from the cell body and branches profusely, with some parts transmitting signals and other parts receiving signals. Thus, most parts of the insect brain have passive cell bodies arranged around the periphery, while the neural signal processing takes place in a tangle of protoplasmic fibers called neuropil, in the interior.[27]

A neuron is called identified if it has properties that distinguish it from every other neuron in the same animalproperties such as location, neurotransmitter, gene expression pattern, and connectivityand if every individual organism belonging to the same species has one and only one neuron with the same set of properties.[28] In vertebrate nervous systems very few neurons are “identified” in this sensein humans, there are believed to be nonebut in simpler nervous systems, some or all neurons may be thus unique. In the roundworm C. elegans, whose nervous system is the most thoroughly described of any animal’s, every neuron in the body is uniquely identifiable, with the same location and the same connections in every individual worm. One notable consequence of this fact is that the form of the C. elegans nervous system is completely specified by the genome, with no experience-dependent plasticity.[25]

The brains of many molluscs and insects also contain substantial numbers of identified neurons.[28] In vertebrates, the best known identified neurons are the gigantic Mauthner cells of fish.[29] Every fish has two Mauthner cells, located in the bottom part of the brainstem, one on the left side and one on the right. Each Mauthner cell has an axon that crosses over, innervating neurons at the same brain level and then travelling down through the spinal cord, making numerous connections as it goes. The synapses generated by a Mauthner cell are so powerful that a single action potential gives rise to a major behavioral response: within milliseconds the fish curves its body into a C-shape, then straightens, thereby propelling itself rapidly forward. Functionally this is a fast escape response, triggered most easily by a strong sound wave or pressure wave impinging on the lateral line organ of the fish. Mauthner cells are not the only identified neurons in fishthere are about 20 more types, including pairs of “Mauthner cell analogs” in each spinal segmental nucleus. Although a Mauthner cell is capable of bringing about an escape response individually, in the context of ordinary behavior other types of cells usually contribute to shaping the amplitude and direction of the response.

Mauthner cells have been described as command neurons. A command neuron is a special type of identified neuron, defined as a neuron that is capable of driving a specific behavior individually.[30] Such neurons appear most commonly in the fast escape systems of various speciesthe squid giant axon and squid giant synapse, used for pioneering experiments in neurophysiology because of their enormous size, both participate in the fast escape circuit of the squid. The concept of a command neuron has, however, become controversial, because of studies showing that some neurons that initially appeared to fit the description were really only capable of evoking a response in a limited set of circumstances.[31]

At the most basic level, the function of the nervous system is to send signals from one cell to others, or from one part of the body to others. There are multiple ways that a cell can send signals to other cells. One is by releasing chemicals called hormones into the internal circulation, so that they can diffuse to distant sites. In contrast to this “broadcast” mode of signaling, the nervous system provides “point-to-point” signalsneurons project their axons to specific target areas and make synaptic connections with specific target cells.[32] Thus, neural signaling is capable of a much higher level of specificity than hormonal signaling. It is also much faster: the fastest nerve signals travel at speeds that exceed 100 meters per second.

At a more integrative level, the primary function of the nervous system is to control the body.[2] It does this by extracting information from the environment using sensory receptors, sending signals that encode this information into the central nervous system, processing the information to determine an appropriate response, and sending output signals to muscles or glands to activate the response. The evolution of a complex nervous system has made it possible for various animal species to have advanced perception abilities such as vision, complex social interactions, rapid coordination of organ systems, and integrated processing of concurrent signals. In humans, the sophistication of the nervous system makes it possible to have language, abstract representation of concepts, transmission of culture, and many other features of human society that would not exist without the human brain.

Most neurons send signals via their axons, although some types are capable of dendrite-to-dendrite communication. (In fact, the types of neurons called amacrine cells have no axons, and communicate only via their dendrites.) Neural signals propagate along an axon in the form of electrochemical waves called action potentials, which produce cell-to-cell signals at points where axon terminals make synaptic contact with other cells.[33]

Synapses may be electrical or chemical. Electrical synapses make direct electrical connections between neurons,[34] but chemical synapses are much more common, and much more diverse in function.[35] At a chemical synapse, the cell that sends signals is called presynaptic, and the cell that receives signals is called postsynaptic. Both the presynaptic and postsynaptic areas are full of molecular machinery that carries out the signalling process. The presynaptic area contains large numbers of tiny spherical vessels called synaptic vesicles, packed with neurotransmitter chemicals.[33] When the presynaptic terminal is electrically stimulated, an array of molecules embedded in the membrane are activated, and cause the contents of the vesicles to be released into the narrow space between the presynaptic and postsynaptic membranes, called the synaptic cleft. The neurotransmitter then binds to receptors embedded in the postsynaptic membrane, causing them to enter an activated state.[35] Depending on the type of receptor, the resulting effect on the postsynaptic cell may be excitatory, inhibitory, or modulatory in more complex ways. For example, release of the neurotransmitter acetylcholine at a synaptic contact between a motor neuron and a muscle cell induces rapid contraction of the muscle cell.[36] The entire synaptic transmission process takes only a fraction of a millisecond, although the effects on the postsynaptic cell may last much longer (even indefinitely, in cases where the synaptic signal leads to the formation of a memory trace).[9]

There are literally hundreds of different types of synapses. In fact, there are over a hundred known neurotransmitters, and many of them have multiple types of receptors.[37] Many synapses use more than one neurotransmittera common arrangement is for a synapse to use one fast-acting small-molecule neurotransmitter such as glutamate or GABA, along with one or more peptide neurotransmitters that play slower-acting modulatory roles. Molecular neuroscientists generally divide receptors into two broad groups: chemically gated ion channels and second messenger systems. When a chemically gated ion channel is activated, it forms a passage that allow specific types of ion to flow across the membrane. Depending on the type of ion, the effect on the target cell may be excitatory or inhibitory. When a second messenger system is activated, it starts a cascade of molecular interactions inside the target cell, which may ultimately produce a wide variety of complex effects, such as increasing or decreasing the sensitivity of the cell to stimuli, or even altering gene transcription.

According to a rule called Dale’s principle, which has only a few known exceptions, a neuron releases the same neurotransmitters at all of its synapses.[38] This does not mean, though, that a neuron exerts the same effect on all of its targets, because the effect of a synapse depends not on the neurotransmitter, but on the receptors that it activates.[35] Because different targets can (and frequently do) use different types of receptors, it is possible for a neuron to have excitatory effects on one set of target cells, inhibitory effects on others, and complex modulatory effects on others still. Nevertheless, it happens that the two most widely used neurotransmitters, glutamate and GABA, each have largely consistent effects. Glutamate has several widely occurring types of receptors, but all of them are excitatory or modulatory. Similarly, GABA has several widely occurring receptor types, but all of them are inhibitory.[39] Because of this consistency, glutamatergic cells are frequently referred to as “excitatory neurons”, and GABAergic cells as “inhibitory neurons”. Strictly speaking this is an abuse of terminologyit is the receptors that are excitatory and inhibitory, not the neuronsbut it is commonly seen even in scholarly publications.

One very important subset of synapses are capable of forming memory traces by means of long-lasting activity-dependent changes in synaptic strength.[40] The best-known form of neural memory is a process called long-term potentiation (abbreviated LTP), which operates at synapses that use the neurotransmitter glutamate acting on a special type of receptor known as the NMDA receptor.[41] The NMDA receptor has an “associative” property: if the two cells involved in the synapse are both activated at approximately the same time, a channel opens that permits calcium to flow into the target cell.[42] The calcium entry initiates a second messenger cascade that ultimately leads to an increase in the number of glutamate receptors in the target cell, thereby increasing the effective strength of the synapse. This change in strength can last for weeks or longer. Since the discovery of LTP in 1973, many other types of synaptic memory traces have been found, involving increases or decreases in synaptic strength that are induced by varying conditions, and last for variable periods of time.[41] The reward system, that reinforces desired behaviour for example, depends on a variant form of LTP that is conditioned on an extra input coming from a reward-signalling pathway that uses dopamine as neurotransmitter.[43] All these forms of synaptic modifiability, taken collectively, give rise to neural plasticity, that is, to a capability for the nervous system to adapt itself to variations in the environment.

The basic neuronal function of sending signals to other cells includes a capability for neurons to exchange signals with each other. Networks formed by interconnected groups of neurons are capable of a wide variety of functions, including feature detection, pattern generation and timing,[44] and there are seen to be countless types of information processing possible. Warren McCulloch and Walter Pitts showed in 1943 that even artificial neural networks formed from a greatly simplified mathematical abstraction of a neuron are capable of universal computation.[45]

Historically, for many years the predominant view of the function of the nervous system was as a stimulus-response associator.[46] In this conception, neural processing begins with stimuli that activate sensory neurons, producing signals that propagate through chains of connections in the spinal cord and brain, giving rise eventually to activation of motor neurons and thereby to muscle contraction, i.e., to overt responses. Descartes believed that all of the behaviors of animals, and most of the behaviors of humans, could be explained in terms of stimulus-response circuits, although he also believed that higher cognitive functions such as language were not capable of being explained mechanistically.[47]Charles Sherrington, in his influential 1906 book The Integrative Action of the Nervous System,[46] developed the concept of stimulus-response mechanisms in much more detail, and Behaviorism, the school of thought that dominated Psychology through the middle of the 20th century, attempted to explain every aspect of human behavior in stimulus-response terms.[48]

However, experimental studies of electrophysiology, beginning in the early 20th century and reaching high productivity by the 1940s, showed that the nervous system contains many mechanisms for generating patterns of activity intrinsically, without requiring an external stimulus.[49] Neurons were found to be capable of producing regular sequences of action potentials, or sequences of bursts, even in complete isolation.[50] When intrinsically active neurons are connected to each other in complex circuits, the possibilities for generating intricate temporal patterns become far more extensive.[44] A modern conception views the function of the nervous system partly in terms of stimulus-response chains, and partly in terms of intrinsically generated activity patternsboth types of activity interact with each other to generate the full repertoire of behavior.[51]

The simplest type of neural circuit is a reflex arc, which begins with a sensory input and ends with a motor output, passing through a sequence of neurons connected in series.[52] This can be shown in the “withdrawal reflex” causing a hand to jerk back after a hot stove is touched. The circuit begins with sensory receptors in the skin that are activated by harmful levels of heat: a special type of molecular structure embedded in the membrane causes heat to change the electrical field across the membrane. If the change in electrical potential is large enough to pass the given threshold, it evokes an action potential, which is transmitted along the axon of the receptor cell, into the spinal cord. There the axon makes excitatory synaptic contacts with other cells, some of which project (send axonal output) to the same region of the spinal cord, others projecting into the brain. One target is a set of spinal interneurons that project to motor neurons controlling the arm muscles. The interneurons excite the motor neurons, and if the excitation is strong enough, some of the motor neurons generate action potentials, which travel down their axons to the point where they make excitatory synaptic contacts with muscle cells. The excitatory signals induce contraction of the muscle cells, which causes the joint angles in the arm to change, pulling the arm away.

In reality, this straightforward schema is subject to numerous complications.[52] Although for the simplest reflexes there are short neural paths from sensory neuron to motor neuron, there are also other nearby neurons that participate in the circuit and modulate the response. Furthermore, there are projections from the brain to the spinal cord that are capable of enhancing or inhibiting the reflex.

Although the simplest reflexes may be mediated by circuits lying entirely within the spinal cord, more complex responses rely on signal processing in the brain.[53] For example, when an object in the periphery of the visual field moves, and a person looks toward it many stages of signal processing are initiated. The initial sensory response, in the retina of the eye, and the final motor response, in the oculomotor nuclei of the brain stem, are not all that different from those in a simple reflex, but the intermediate stages are completely different. Instead of a one or two step chain of processing, the visual signals pass through perhaps a dozen stages of integration, involving the thalamus, cerebral cortex, basal ganglia, superior colliculus, cerebellum, and several brainstem nuclei. These areas perform signal-processing functions that include feature detection, perceptual analysis, memory recall, decision-making, and motor planning.[54]

Feature detection is the ability to extract biologically relevant information from combinations of sensory signals.[55] In the visual system, for example, sensory receptors in the retina of the eye are only individually capable of detecting “points of light” in the outside world.[56] Second-level visual neurons receive input from groups of primary receptors, higher-level neurons receive input from groups of second-level neurons, and so on, forming a hierarchy of processing stages. At each stage, important information is extracted from the signal ensemble and unimportant information is discarded. By the end of the process, input signals representing “points of light” have been transformed into a neural representation of objects in the surrounding world and their properties. The most sophisticated sensory processing occurs inside the brain, but complex feature extraction also takes place in the spinal cord and in peripheral sensory organs such as the retina.

Although stimulus-response mechanisms are the easiest to understand, the nervous system is also capable of controlling the body in ways that do not require an external stimulus, by means of internally generated rhythms of activity. Because of the variety of voltage-sensitive ion channels that can be embedded in the membrane of a neuron, many types of neurons are capable, even in isolation, of generating rhythmic sequences of action potentials, or rhythmic alternations between high-rate bursting and quiescence. When neurons that are intrinsically rhythmic are connected to each other by excitatory or inhibitory synapses, the resulting networks are capable of a wide variety of dynamical behaviors, including attractor dynamics, periodicity, and even chaos. A network of neurons that uses its internal structure to generate temporally structured output, without requiring a corresponding temporally structured stimulus, is called a central pattern generator.

Internal pattern generation operates on a wide range of time scales, from milliseconds to hours or longer. One of the most important types of temporal pattern is circadian rhythmicitythat is, rhythmicity with a period of approximately 24 hours. All animals that have been studied show circadian fluctuations in neural activity, which control circadian alternations in behavior such as the sleep-wake cycle. Experimental studies dating from the 1990s have shown that circadian rhythms are generated by a “genetic clock” consisting of a special set of genes whose expression level rises and falls over the course of the day. Animals as diverse as insects and vertebrates share a similar genetic clock system. The circadian clock is influenced by light but continues to operate even when light levels are held constant and no other external time-of-day cues are available. The clock genes are expressed in many parts of the nervous system as well as many peripheral organs, but in mammals all of these “tissue clocks” are kept in synchrony by signals that emanate from a master timekeeper in a tiny part of the brain called the suprachiasmatic nucleus.

A mirror neuron is a neuron that fires both when an animal acts and when the animal observes the same action performed by another.[57][58][59] Thus, the neuron “mirrors” the behavior of the other, as though the observer were itself acting. Such neurons have been directly observed in primate species.[60] Birds have been shown to have imitative resonance behaviors and neurological evidence suggests the presence of some form of mirroring system.[60][61] In humans, brain activity consistent with that of mirror neurons has been found in the premotor cortex, the supplementary motor area, the primary somatosensory cortex and the inferior parietal cortex.[62] The function of the mirror system is a subject of much speculation. Many researchers in cognitive neuroscience and cognitive psychology consider that this system provides the physiological mechanism for the perception/action coupling (see the common coding theory).[59] They argue that mirror neurons may be important for understanding the actions of other people, and for learning new skills by imitation. Some researchers also speculate that mirror systems may simulate observed actions, and thus contribute to theory of mind skills,[63][64] while others relate mirror neurons to language abilities.[65] However, to date, no widely accepted neural or computational models have been put forward to describe how mirror neuron activity supports cognitive functions such as imitation.[66] There are neuroscientists who caution that the claims being made for the role of mirror neurons are not supported by adequate research.[67][68]

In vertebrates, landmarks of embryonic neural development include the birth and differentiation of neurons from stem cell precursors, the migration of immature neurons from their birthplaces in the embryo to their final positions, outgrowth of axons from neurons and guidance of the motile growth cone through the embryo towards postsynaptic partners, the generation of synapses between these axons and their postsynaptic partners, and finally the lifelong changes in synapses which are thought to underlie learning and memory.[69]

All bilaterian animals at an early stage of development form a gastrula, which is polarized, with one end called the animal pole and the other the vegetal pole. The gastrula has the shape of a disk with three layers of cells, an inner layer called the endoderm, which gives rise to the lining of most internal organs, a middle layer called the mesoderm, which gives rise to the bones and muscles, and an outer layer called the ectoderm, which gives rise to the skin and nervous system.[70]

In vertebrates, the first sign of the nervous system is the appearance of a thin strip of cells along the center of the back, called the neural plate. The inner portion of the neural plate (along the midline) is destined to become the central nervous system (CNS), the outer portion the peripheral nervous system (PNS). As development proceeds, a fold called the neural groove appears along the midline. This fold deepens, and then closes up at the top. At this point the future CNS appears as a cylindrical structure called the neural tube, whereas the future PNS appears as two strips of tissue called the neural crest, running lengthwise above the neural tube. The sequence of stages from neural plate to neural tube and neural crest is known as neurulation.

In the early 20th century, a set of famous experiments by Hans Spemann and Hilde Mangold showed that the formation of nervous tissue is “induced” by signals from a group of mesodermal cells called the organizer region.[69] For decades, though, the nature of the induction process defeated every attempt to figure it out, until finally it was resolved by genetic approaches in the 1990s. Induction of neural tissue requires inhibition of the gene for a so-called bone morphogenetic protein, or BMP. Specifically the protein BMP4 appears to be involved. Two proteins called Noggin and Chordin, both secreted by the mesoderm, are capable of inhibiting BMP4 and thereby inducing ectoderm to turn into neural tissue. It appears that a similar molecular mechanism is involved for widely disparate types of animals, including arthropods as well as vertebrates. In some animals, however, another type of molecule called Fibroblast Growth Factor or FGF may also play an important role in induction.

Induction of neural tissues causes formation of neural precursor cells, called neuroblasts.[71] In drosophila, neuroblasts divide asymmetrically, so that one product is a “ganglion mother cell” (GMC), and the other is a neuroblast. A GMC divides once, to give rise to either a pair of neurons or a pair of glial cells. In all, a neuroblast is capable of generating an indefinite number of neurons or glia.

As shown in a 2008 study, one factor common to all bilateral organisms (including humans) is a family of secreted signaling molecules called neurotrophins which regulate the growth and survival of neurons.[72] Zhu et al. identified DNT1, the first neurotrophin found in flies. DNT1 shares structural similarity with all known neurotrophins and is a key factor in the fate of neurons in Drosophila. Because neurotrophins have now been identified in both vertebrate and invertebrates, this evidence suggests that neurotrophins were present in an ancestor common to bilateral organisms and may represent a common mechanism for nervous system formation.

The central nervous system is protected by major physical and chemical barriers. Physically, the brain and spinal cord are surrounded by tough meningeal membranes, and enclosed in the bones of the skull and spinal vertebrae, which combine to form a strong physical shield. Chemically, the brain and spinal cord are isolated by the so-called bloodbrain barrier, which prevents most types of chemicals from moving from the bloodstream into the interior of the CNS. These protections make the CNS less susceptible in many ways than the PNS; the flip side, however, is that damage to the CNS tends to have more serious consequences.

Although nerves tend to lie deep under the skin except in a few places such as the ulnar nerve near the elbow joint, they are still relatively exposed to physical damage, which can cause pain, loss of sensation, or loss of muscle control. Damage to nerves can also be caused by swelling or bruises at places where a nerve passes through a tight bony channel, as happens in carpal tunnel syndrome. If a nerve is completely transected, it will often regenerate, but for long nerves this process may take months to complete. In addition to physical damage, peripheral neuropathy may be caused by many other medical problems, including genetic conditions, metabolic conditions such as diabetes, inflammatory conditions such as GuillainBarr syndrome, vitamin deficiency, infectious diseases such as leprosy or shingles, or poisoning by toxins such as heavy metals. Many cases have no cause that can be identified, and are referred to as idiopathic. It is also possible for nerves to lose function temporarily, resulting in numbness as stiffnesscommon causes include mechanical pressure, a drop in temperature, or chemical interactions with local anesthetic drugs such as lidocaine.

Physical damage to the spinal cord may result in loss of sensation or movement. If an injury to the spine produces nothing worse than swelling, the symptoms may be transient, but if nerve fibers in the spine are actually destroyed, the loss of function is usually permanent. Experimental studies have shown that spinal nerve fibers attempt to regrow in the same way as nerve fibers, but in the spinal cord, tissue destruction usually produces scar tissue that cannot be penetrated by the regrowing nerves.

Go here to read the rest:
Nervous system – Wikipedia, the free encyclopedia

Recommendation and review posted by Guinevere Smith

More Info | Norris Medical Library | USC

Posted: August 30, 2015 at 1:46 am

Search for USC Health Sciences eJournal, eBook or database titles.

eJournal A-Z | eBook A-Z | Database A-Z

Search the USC Health Sciences Libraries catalog (HELIX) for print & electronic books, journals & databases

Other USC Catalogs | Worldwide Catalog

Search for information on the Norris Library website

See the original post:
More Info | Norris Medical Library | USC

Recommendation and review posted by Guinevere Smith

Journal of Gene Medicine – Gene Therapy Net

Posted: August 30, 2015 at 1:44 am

The Journal of Gene Medicine publishes high quality original articles and reviews on the science of gene transfer and its applications in gene and cell therapy. Key areas of interest are the design and production of vectors, delivery and targeting, gene expression and regulation, preclinical studies including animal models, developmental aspects and clinical trials. The editors particularly welcome articles dealing with the methodological aspects of gene transfer in vivo, notably in the context of human studies. Papers presenting research into the mechanisms underlying gene transfer; the application and refinement of new technologies such as RNAi, stem cells and allied approaches such as DNA vaccines; or addressing more fundamental biological issues which could lead to more effective gene transfer are also encouraged.

Login or create an account to view the latest articles in Journal of Gene Medicine.

Read the rest here:
Journal of Gene Medicine – Gene Therapy Net

Recommendation and review posted by Guinevere Smith

Futurism –

Posted: August 30, 2015 at 1:44 am

Futurism is an early 20th-century artistic movement that centered in Italy and emphasized the dynamism, speed, energy, and power of a machine, as well as the vitality, change, and restlessness of modern life in general. The most significant results of this movement were in visual arts and poetry.

However, the evolution of style and subject of Futurism was rather slow. It took almost two years to develop Giovani Segantinis Divisionism technique, a Futurism technique which uses colors and breaking lights into a field of stippled stripes and dots.2 It also took some time before the artistic concepts of Futurism were applied to architecture, furniture, literature, film, music, and a range of other art forms.


Excerpt from:
Futurism –

Recommendation and review posted by Guinevere Smith

Page 11234..1020..»