Search Immortality Topics:

Page 11234..1020..»

2016 Reminder Healthy Living Can Add Up To 14 Years to Your Life

Posted: February 2, 2016 at 5:25 am

Recommendation and review posted by Guinevere Smith

Technocalpyse Part 1, 2, 3

Posted: January 24, 2016 at 7:16 am

Recommendation and review posted by Guinevere Smith

The Ethics of the Future: Human Genetic Engineering and Human Immortality Medicine is Coming in 19 years!!

Posted: January 1, 2015 at 12:46 pm

The Ethics of the Future: Genetic Engineering and Immortality Medicine

2015 is Going to Be a Fascinating Year for Longevity Science

By Professor Mark

How do you feel about the potential for great advances in Human Longevity Science that have been occurring in recent years? Do you feel excited about the prospect of living a much longer life, or are you indifferent? Are you nervous about the prospects of what this sort of tinkering with genetics and human nature might bring?

Is the potential for a vastly expanded lifespan going to be something that everyone can enjoy, or will it be an advantage simply for those that can afford it? If you could live 100 years longer, would you want to? Would you care if the opportunity were afforded to you as an individual? Would such a huge opportunity lead to a new and beautiful life on earth, or would earth somehow take these momentous advantages and turn the world on its head?

My Beliefs Regarding Advanced Genetic Engineering

Many years ago, when I was an undergraduate at Penn State, our professor posited similar questions in our Genetics Class, which played a major role in affecting my beliefs toward the subject of hyper-longevity and Genetic Engineering. The class was large, with more than 100 students, and my professor asked the class what their opinions were regarding the use of genetic manipulation and engineering to alter human life.

Surprisingly, the class was completely silent. In response to this silence, the professor called up two students to debate the subject. One of my classmates volunteered to voice his opposition to genetic engineering, and I chose to volunteer, providing an argument in favor of it.

My opponent voiced his opinion to the class that genetic engineering for this purpose would be ethically wrong because it is not in man’s best interest to play God. Most of our classmates seemed to agree, nodding subtly in agreement.

Personal Aesthetic: Choosing to Be Different

I felt as though I was standing upon a grand crossroads of history. As I looked around the class, it felt as though all of my classmates, for all of their cliquish differences, were being incredibly closed-minded, like they just accepted what they had been told all their lives and were afraid to think for themselves.

After the professor gauged the response of the students, I had my opportunity to argue in favor of this advanced human genetic engineering. I glanced around the class, and felt my argument come together cleanly in my mind. I saw white girls with bleached hair stretching down their backs, more than a few of which had fake breasts. I saw black girls with expensive weaves and complex and expensive hairstyles.

There were white students mimicking their hip hop and rap idols, and I even saw a young Asian student that had very obviously dyed her hair red. In my class I saw a great commingling of different styles. People both attempting to exemplify American standards of beauty and those taking on the aspects of other cultures, adopting them as their own.

As I looked around at all of this, recognizing the great diversity in my class, I had a strong feeling that there was not one person in the class that didn’t have at least one thing they wanted to alter about the characteristics they were born with. I continued thinking to myself, that these students probably wanted to be different in a variety of different ways: some wanted to be smarter, some taller. Some girls wish they had larger breasts, and some guys wanted larger penises. Others probably wish that they didn’t have to go through the trouble to put in contacts and hair dyes to look like the person they wish they were. For myself, I would have given anything just to be a few inches taller.

A Call for Genetic Freedom

After standing quietly for a moment, with all of these thoughts running through my at head a rapid place, I spoke from my position, in the back of the class, and suddenly stated loudly: Genetic Freedom!

I felt that just those two words spoke for themselves, but my professor threw a dejected glance in my direction, and I could detect her shaking her head almost imperceptibly. Her silence was a sign that she needed more. After the brief silence, I continued. I argued to the class that the individual should have full control to alter his DNA as he sees fit, so long as it doesn’t negatively impact society or the rights of anyone else.

She seemed thoroughly unhappy with the argument, and the class began to chatter loudly, nearly in unison. After the short spate of controlled chaos, the class continued with liveliness and energy, but I felt that others in the class largely shunned me as a result of the fervent beliefs I expressed in regard to what legitimately amounted to the potential future of the human race.

Will People Be Able to Resist Genetic Alteration?

I still laugh to myself to this day about how my belief met such incredulity in the face of so many. In the future, once science makes it possible to make such powerful changes to humanity at the genetic level, I am confident that these same students, if given the actual opportunity to improve themselves through futuristic genetic methods, would absolutely jump at the chance with no second thought.

It wouldn’t be Playing God. It wouldn’t be unethical. It would simply be the new reality. In fact, once the time comes to pass when Genetic Alteration becomes a reality, the exact same people today that seek out plastic surgery and cosmetic surgery will clamor for these procedures as soon as they become available. In the end, I believe I made a B in the course, which is regretful, because I’ve always remained highly interested in genetics.

The Future of Humanity: The Organic and the Engineered

Another of my professors at Penn State, himself with a doctorate in genetics, explained an interesting aspect of human evolution, one which I had never thought of before. He explained that the many races that make up humanity as a whole developed their differences as a result of dispersing far from one another, and slowly adapting to their new environments over time.

After they migrated, geography, distance, and other factors kept them from interacting heavily with one another, which caused their minor adaptations to become more pronounced. In the same way that they developed their own habits and cultures, their aesthetic and physical makeup also changed. Some grew taller, others grew paler, and each individual culture became maximally resistant to the diseases which were prominent in their area.

Even though these physical and genetic changes were significant, any healthy woman on earth could still mate with any other healthy man, no matter how different he looked or acted. What he said that truly sparked my mind was that if the different races of human beings stayed geographically isolated from one another for longer period of time, eventually the different races could have changed enough to where they could no longer produce children with one another.

Could Genetically Engineered Humans Evolve Beyond Humanity?

This can also apply to the future of genetic engineering. The modern world is so interconnected that geography has no impact on the ability of humans to breed with one another, but genetic enhancement may lead to a point at which a human born today would not be able to mate with an individual that was the result of generations of genetically altered parents.

As Genetic Engineering becomes more advanced, humans may change enough at the genetic level to prevent interbreeding between lineages which have undergone these advancements and those that chose not to. This change would of course be gradual, first reducing the ability to conceive before denying that ability altogether. At this point, it would take genetic engineering just to create a viable child for two disparate humans. Interestingly enough, it may even come to pass that different species of humans evolve from such endeavors, as distinct from one another as they are from humans themselves.

The beginning of this story could begin sometime in the next hundred years, as scientists and medical specialists develop the ability to safely and effectively alter DNA to meet the specifications of the individual.

The Future is Coming: the Great Human Divergence and the Neo-Sapient

The people that choose to reject Genetic Modification and Advanced Longevity Treatments in the near future will create an interesting binary world. This could be the beginning of a grand human experiment. This could be the focal point of a genetic divergence so strong that it literally fragments the human race, creating a new class of post-humans that have advanced to a point where they qualify as their own unique species.

I think back to the genetics course I mentioned earlier. I remember the absolute ocean of diversity that was contained within the 100-student course, and I was able to visualize a future in which Genetic Modification leads to even greater diversity, and a uniqueness that has never existed in the history of the human race. It made me think of the diversity of the universe, and the unlimited options for diversity that it represents. As someone with an affinity for astronomy, I find it utterly inconceivable that planet earth is home to the only lifeforms in the universe.

Of course, along with my great optimism, I do recognize that there are risks and unknowns related to the future of Genetic Modification. There is even the potential that the science behind Genetic Modification could be used for Genetic Warfare. There is certainly the potential that the same science that creates a new humanity could be used to destroy large swathes of it. I can imagine an apocalypse that is not nuclear and grandiose, but genetic and nanoscopic.

Post-Humanism and the Search For Other Worlds

In the end, will humans be able to develop interplanetary travel and colonization in order to insure itself against such potential apocalyptic scenarios? It’s a subject that I am particularly concerned with, and is the core reason why I support NASA and the United States Space Program. As the world moves faster and the dangers become greater, it is imperative that we are able to save humanity even in the case of a state of mutually assured destruction.

If there truly is a Genetic Revolution on the horizon, it is vitally important that we use all of the resources we have available in order to make our dreams of space colonization a reality. Imagine a future so spectacular: A future where a multitude of post-human species advance outward from earth in order to colonize space like a rainbow across the galaxy.

This journey will be arduous and epic, as earthlings spread across the cosmos in order to find new viable homes and potentially interact with other life forms.

What Would Aliens Be Like?

Can you imagine how literally otherworldly that would be? If we found advanced aliens, would they have unlocked the key to eternity? Would we have done the same? There is no doubt that the first time that we make contact with an extraterrestrial species, they will come from worlds and cultures which are absolutely unimaginable in the face of everything that we have experienced.

I may have delved a bit into the realm of science fiction, but the future of humanity in the face of Genetic Modification has the potential to be every bit as exciting and otherworldly as the potential future that I just described. It instills a tremendous sense of fear, awe, and most importantly, unlimited potential.

Do You Think That You Could Handle Immortality?

If you ask the average person out on the street about the potential future afforded by Genetic Engineering, Advanced Longevity, and Immortality medicine, you’ll likely get a number of different responses, some positive, some negative, others simply incredulous. If you surveyed 100 people, I believe that you would find that the majority would ultimately reject the idea of immortality.

Some people think that eternity would take the excitement out of life. Others fear that they would eventually just become a broken shell of their former selves as their bodies physically decline in spite of science’s ability to prevent death. For many, the concept of eternity is just as fearsome as the concept of death itself. It’s not all that different from the way that people feel about retirement these days. They are frustrated because they have to work so hard all through the healthiest part of their lives only to be too frail and broken down by the time they retire to enjoy it.

Longevity Medicine and the Future

That’s why Longevity Medicine is so important. We want our retirement years to last as long as possible, and we want to be able to enjoy them. Maybe one day, we will be retired as long in our lives as we are at work, or longer! That’s what the approach to immortality will be like!

There are a growing number of people that are optimistic about a lengthy future. They understand that even with regard to a concept like immortality, life is the sum of individual experience. Some will take advantage of a life bordering on immortality, while others would simply choose to be boring. People that live lives full of happiness and vitality shouldn’t be deprived the opportunity to extend that joy, simply because there are others who wouldn’t appreciate it!

The arguments stemming from the subject of Human Immortality continue to become both more interesting and more complex, both for those that long for such a fate, and those that oppose the concept. No matter how you feel about the idea of Advanced Longevity, there is no doubt that such opportunities to live lives we now consider unimaginable will eventually come to pass.

As long as human beings are able to engage in scientific advancement without destroying ourselves or sending ourselves back to the stone age, such opportunities will present themselves to the human race in the near future.

Gene Therapy and Stem Cell Therapy: The First Steps to Hyperlongevity

The seeds of these future endeavors are being planted today, in the fields of gene therapy, genetic medicine, and stem cell therapy. This is also the core concept behind medical treatments which seek to optimize hormone production in the body in order to alleviate the medical conditions associated with hormone imbalance and aging.

Hormone Replacement Therapy: Streamline Your Body for the Future!

Treatments such as Testosterone Replacement Therapy, Sermorelin Acetate Therapy, and Bio-Identical Human Growth Hormone Replacement Therapy seek to correct common hormonal imbalances that occur as a result of the aging process. There is even a strong argument that these hormone imbalances are actually the root cause of many symptoms of aging, including frailty, osteoporosis, and cognitive decline.

There are many Health, Wellness, and Longevity Physicians that believe that these forms of Hormone Replacement Therapy are some of the must effective means to prolong a healthy and active life when used in combination with a healthy and conscientious lifestyle. These medical treatments are the best way to decrease your mortality risk so that you are more likely to experience the next great advancement in Anti-Aging Medicine.

If you feel that your quality of life has been on the decline as a result of changes in your body and mind resulting from the aging process, I strongly encourage you to get your hormone levels checked, because there is a significant chance that you may be suffering from a reversible form of hormone deficiency.

The Future of Human Genetic Engineering

This is truly an exciting time to be alive. We are quickly approaching the point at which scientific breakthroughs in health science will continue to occur at an ever-increasing pace, with groundbreaking new health advances occurring on a regular basis. The following years will be incredibly interesting, because there are a multitude of clinical trials regarding the promise and potential effectiveness of both gene therapy and stem cell therapy.

By 2012, these studies, and other similar studies, were already displaying high levels of potential to both treat and protect both animals and humans from disease. Beyond Hormone Optimization and Genetic Therapy, the next stage of advancement will most likely be in the field of nanomedicine. Beyond nanomedicine is femtomedicine.

At this stage of scientific inquiry, this is as far as even the most forward-thinking physician or philosopher could imagine, but there is no doubt as we create new medical treatments and expend our knowledge of medical science, new opportunities for advancement will be conceptualized that could be even more life-altering and fantastic than those that we just mentioned.

When you consider the future of medicine and longevity, you realize that human beings as they are now aren’t simply the end result of millions of years of evolution, but also a gateway to the next state of terrestrial life, a transitional state between what was and what will be, an opportunity to experience even greater consciousness and enlightenment by conquering time, itself.

What is the Idea Behind Human Immortality?

When we discuss the idea of human immortality, it doesn’t just mean allowing a human being to live forever, human immortality represents the idea that it will be possible, with future biomedical and genetic enhancements, for human beings to experience a practical immortality in which one is able to live as they were in the prime of their life, for all of their life.

It seems just as you master your body and your mind in the late twenties and early thirties, your body and mind start to enter a slow and unstoppable decline. What if you could preserve that period of physical and psychological perfection forever? It is during this period that the average person reaches his or her functional peak as an individual, with regard to strength, cognitive ability, immunity, and overall health.

How Much Better Would Life Be if You Lived to 200?

Think about how different and exciting that life would be if you could have the body and mind of a 29 year old for 120 years. There are a number of people that think that humans should not have this opportunity, but it sounds much better than spending the whole sum of those years in slow and steady decline.

How Much Better Would Life Be if You Could Live Indefinitely?

Immortalists subscribe to the belief that individuals that truly enjoy life and are creative or passionate enough to find interesting or fulfilling things to do would be able to easily take advantage of a significantly lengthened lifespan. I do understand how such a long life would feel to someone that lacks passion or imagination, however. I can imagine two hundred years of absolutely drudgery. If one does not have the propensity to invest or save to create wealth, I can imagine two hundred years of hard work with nothing to show for it.

With luck, a more automated world would allow us to enjoy our lives while actually working less. Imagine a world of eco-friendly machines could do the work of one hundred men. This could be a wonderful world of leisure for all, but it could also lead to a world where machines are used as a method of control and domination, like in Frank Herbert’s dystopian novel Dune.

The Temptation of Human Immortality

Whether the opportunity for Human Immortality comes in twenty years or two hundred years, there will be those that seek out the opportunity for such a life, and there will be those that choose to reject the opportunity for immortality.

The central question that Immortalists posit is a simple one: Why would anyone actually want to die or grow old? When you think of it that way, it sounds absolutely silly. Who would ever want to do such things? But in reality, it seems as though most human beings are resigned to such a fate.

Who Really Wants to Grow Old?

More than simply growing old, who wants to lose their lust for life or their libido? Who wants to experience their own body slowly deteriorate as they are beaten down by illness and disease? Human Immortalists are those that are willing to fight against what is perceived as inevitable by society at large. They believe that those that have resigned themselves to decay and death are simply not willing to imagine a post-human age where they could evolve beyond the inevitability of death.

It seems that many humans think of Human Immortalists as harbingers of doom which are going to bring about a new genocide. They believe that Immortalists are going against the will of God by altering the Human Genetic Code in an attempt to foster extreme lifespans, improved aesthetic, and vastly improved health outcomes.

The Great Schism of Humanity

There is a strong chance that a rift will develop between those that choose genetic alteration and those that choose to forgo such opportunities. In the end, it is likely that humanity will rift into two distinct groups. Over time, greater and greater numbers will opt for Genetic Modification, and those that opt out of such procedures may potentially lose footing in society as a result of their choice.

If modification indeed has the ability to create such disparity, genetically modified humans will spread their genes with one another, and their offspring may have greater potential for both prosperity and intellect, which will create a socioeconomic rift between GM Humans and Unmodified Humans.

Will Post-Humans be able to act ethically under these circumstances? Will Unmodified Humans be able to accept a place in the world where they are unequivocally inferior to their GM counterparts? This new world will be different and exciting, and it’s up to us to create a civil world where we can act in the best interest of all.

What Other Strange Opportunities May Become Available in the Future?

On top of our ability to vastly extend and improve our long-term health, the future will also provide us with enhanced opportunities with regard to personal aesthetic. We will not only be able to cure conditions such as psoriasis which plague millions in the world today, but many may choose to move beyond mere optimization and may choose to fully customize their appearance. Perhaps one may choose not to have olive or alabaster skin as many in society desire today, but go for a different color all together.

What if someone chose to color their skin orange, green, or blue? What if they wanted to be leopard print or covered in zebra stripes? This may appear otherworldly and unnatural to our minds, but when presented with an entire array of customization, what would be so strange about doing something like that to stand out? How different would it be to dying your hair blue or rainbow, if there were no dangers in undergoing such a change?

But, given enough time and scientific innovation, skin color and other basic augmentations like genetic breast and penis enlargement will be just another evolution in the concept of general aesthetic. The potential for more extreme changes would eventually become possible. What if humans wanted to take on the characteristics of animals? What if someone wanted the ears or tail of a cat, for example? There would even be the potential to do even more drastic things that we can barely imagine today.

Genetically Engineered Pets

These genetic advancements won’t occur in a human vacuum. They will also apply to animals as well. Today people are paying top dollar for basic genetically modified hypo-allergenic dogs, and glow-in-the-dark mammals have even been developed in laboratories.

In the future, it is likely that scientists will come up with scientific modifications which significantly enhance both the aesthetic and intelligence of animals. It’s even likely that animals will experience the benefits of genetic engineering more quickly than humans, as this future will largely be facilitated by means of animal testing.

The Post-Human Era Starts with Basic Genetic Engineering and Ends with Post-Humanism, Hyperlongevity, and Potential Immortality

You may not be able to tell, but we are already in the midst of the first phase of the Post-Human era. The beginning of this era was marked by the first time that egg and sperm from two different individuals was combined and implanted into an adoptive mother. It was such a grand event in retrospect, but the passing into this new era was not met with massive celebrations, but simply with concerns over the ethics of the new future.

Post-Humanity will have a litany of moral conundrums to unravel, some that we can imagine, and others that are unfathomable to us today. The state of the mortal mind is simply not equipped to handle the moral and ethical quandaries that the genetically modified mind will face. What if there are other lifeforms just like us in other parts of the galaxy, that have also learned to take control of their very existence on the cellular level? What if the number of unique alien civilizations in the universe is unlimited? What if we as earthlings are just one form of intelligent life among a countless litany of others?

The Current State of Genetic Modification and Gene Therapy

Today, scientists, researchers, and physicians are taking the first step into this future, with the quickly growing field of genetic therapy. We are on the cusp of doing some truly amazing things, like genetically altering viruses in order to protect humans from genetic disorders and conditions. At first, these initial treatments have been risky, reserved for those in most dire need, but as medical science becomes more well-versed in these therapeutic advancements, they will become safer and more widely available to the general public. Could you imagine reducing your risk of cancer by 80% just with a single injection? That may be the future for you.

The Current State of Organ Regeneration and Stem Cell Therapy

Another aspect of genetic therapy has to do with the advancing field of Stem Cell Therapy. There are new, state of the art treatments available which utilize stem cells in order to improve the health of the heart. Patients that have experienced heart attack or heart disease can be treated with stem cells which have the ability to develop into new and healthy muscle tissue.

Similar techniques have also been used in order to regenerate other parts of the body or parts of individual organs. In one famous case, scientists biomanufactured a windpipe for a patient with the patient’s own cells. They were able to do this by taking the stem cells and allowing them to grow in culture before pouring them over a scaffold in the shape of a windpipe. Just by providing the cells with the nutrients to grow, they were able to recreate a human windpipe in the laboratory just in a matter of days.

Because the windpipe was created from the patient’s own cells, the body did not reject the windpipe when it was surgically implanted into the body. This is one of the first successful cases where a patient’s life was changed through the scientific advancements of genetic organ replacement.

Stem Cell Therapy Will Be Available in the Near Future: Hormone Replacement Therapy is Here Today!

Stem Cell Therapy is exciting and will become increasingly common and popular over the next century in the United States. Today, there are a few places where Stem Cell Therapy is available internationally, especially in Asia, but they have yet to be medically certified, and there are still a number of pertinent risks involved. In the Western World, Stem Cell Treatments are currently going through clinical trials. Although the results are mixed, continual progress is being made.

There are many scientists that believe that Stem Cell Research will lead to a new future in medicine, but policies enacted during the presidency of George W. Bush have set the United States behind by at least a decade, and other nations in Europe and Asia are currently taking advantage of their head start, and may one day eclipse us in these new and futuristic medical therapies.

In just a few short years, genetic testing will become affordable enough that it will become a common and recommended part of prenatal care as well as regular checkups throughout the lifespan. Over time, more and more Genetic Disorders will be able to be effectively treated with Gene Therapy, and with every breakthrough, people will be that much more likely to live a longer and healthier life.

Once the clinical science is sound, it won’t even be a difficult ordeal for the patient. It would simply be like going to visit the pharmacist, or making a call to a specialist pharmacy. After receiving the medication, one will be able to administer the medication on his or her own and without the frequent oversight of a medical professional.

Not long after these Genetic Treatments are made available to the public, Stem Cell Therapies will quickly become more and more advanced as well. There are even companies that have expressed a desire to take your stem cells and develop them in a laboratory environment. The goal of this treatment would be to take your own stem cells and foster the healthiest cells to multiply. After these cultures are developed, they would be mailed back to you in order for you to inject them to alleviate health conditions and other symptoms related to the aging process.

Beyond Genetic Engineering and Stem Cell Therapies, will come new forms of medical treatment that we are just beginning to research today, but will surely flourish in the coming decades: nanomedicine and femtomedicine.

Nanoscience and the Healthcare of the Future

These are tiny, genetically engineered cellular machines that will be able to improve your health by altering the functions of your body in a positive manner. They will be able to repair and alter particular forms of cells so that they function optimally, even after a period of long life in which you would expect to see physiological breakdown. It is even believed that these treatments can also preserve and repair the brain itself! Isn’t that exciting?

There are countless people in the world that have a litany of big dreams, more than they could ever hope to accomplish in a single lifetime in some cases. They have these long checklists of things they want to do in their life, a whole wide world they want to explore. Some have an unquenchable thirst for knowledge, and want to read thousands of books or learn dozens of languages in their life.

There are countless more people that have spent their early lives living on the edge, and suffer from issues such as alcohol dependency or drug addiction which have harmed their bodies and their brains. With these forms of genetic and nanomedicine, it will be possible to repair the bodies and minds of these individuals, allowing them to make a fresh start. It is possible that addiction itself may become a historical curiosity as a result of these medical advances.

What Would Do If You Had 200 More Years to Live?

  • Would you learn to play multiple musical instruments?

  • Would you research for decades in order to write the perfect novel?

  • Would you visit every country on earth?

The number of dreams that humans have yearned for is nearly infinite, and most never live to achieve all of their dreams, if they achieve any of their dreams at all. If you are still alive in the near future, around 2032, you will be able to take full advantage of what Longevity Medicine and Anti-Aging Therapy have to offer!

Some time in the future, we will finally overcome the condition of aging. We will be able to prevent all illness and be able to live in perpetuity, as long as we don’t succumb to an accident or similar fate. This is the extreme vision of Immortality Medicine.

The First Immortals Could be Alive Today!

By the time we make it to the 22nd century, there will already be individuals that have taken the road to Hyperlongevity, and there will likely be millions of humans that have taken part in this great leap forward into Post-Humanism. They will not only be healthier, but smarter too, with further advances in Genetic Science that allow us to amplify the capacity of our brains.

As people continue to develop down this evolutionary road, will we even consider them humans anymore? They will represent a new version of humanity, and they will likely use a new term to define themselves, whether that be Neohuman or some other clever word or phrase.

I believe that this advance into Neohumanism will also lead to a new era in space travel and human colonization. With these extensive lifespans, many Neohumans will inevitably turn their eyes to the stars in a desire to find new worlds and discover new lands and extraterrestrial lifeforms. Brave Neohumans from all over the planet will take to interplanetary space vessels in order to colonize and experience new worlds and lands that are beyond the scope of human imagination.

Can I Live to Experience This New Era of Humanity?

All of the things we’ve discussed may seem incredibly exciting to you, but we understand that these innovations are going to come in the near future. If you want to take part in this grand human experiment, it’s important that you live long enough to seize these innovations as they come! There are steps you can take now to alleviate the negative symptoms of the aging process and increase your odds of experiencing the new, human revolution.

My suggestions will not ensure that you will live for the next twenty years or longer, but they will potentially drastically decrease your mortality risk so that you are able to seek out this new and exciting future that we have laid before you.

Today, the door to Neo-Humanism, Hyperlongevity, and even Human Immortality is slightly open, and there are many alive today that will experience these magnificent and life-altering advances.

Will You Take Advantage of the Advances of Hyper-Longevity and Anti-Aging Medicine? Are You Willing to Commit to a Longer and more Youthful Life?

It’s quite plain to see that we are at the crest of an event horizon, beyond which it will truly be possible to lengthen lifespans indefinitely. The most important thing is to breach that horizon. By taking steps to increase health and lifespan now, you allow yourself the opportunity to take care of further, greater medical enhancements down the road.

The most modern advances available today are in the form of Recombinant Hormone Replacement Therapies. By optimizing your hormone balance, you increase the odds that you will live long enough to experience the new, up-and-coming breakthroughs of the mid-21st century.

If you live just a few more years, new genetic medical treatments will become available which will significantly increase your lifespan. While you are enjoying the benefit of genetic medicine, researchers and medical scientists will advance and perfect Genetic Therapy and Stem Cell Therapy, allowing you to live even longer!

There are a number of Stem Cell and Gene Therapies going through clinical trials as you read this, which show great promise in preventing or treating serious illnesses which severely inhibit lifespan today. As the medical community becomes more adept at using these new tools for the purpose of treatment, they will begin to utilize these treatments as forms of Positive Medicine.

They will be able to treat patients before they even get sick in order to optimize their health and greatly improve lifespans as a result, because the incidence of illness will decline significantly. In addition, these same treatments will be able to streamline existing physiological processes, keeping the body physiologically stronger and more youthful. They will be able to tailor these treatments uniquely to the individual in order to give the best care to each individual patient.

Stay on the Cutting Edge of Longevity Medicine to Perpetually Extend the Human Lifespan

With each of these breakthroughs and treatments, we will come one step closer to Immortality. Eventually, scientists and researchers will crack the code of human life, and finally figure out how to allow us to truly live indefinitely. It may take 100 years or it may take 500 years to achieve true Immortality, but each life-extending advance will allow people to survive until the next great advance. Hyper-Longevity will eventually become a universal reality, barring accident, war, or any other form of life-ending catastrophe.

You may feel that this is a science fiction world that I am describing, but it very well may be possible for you to experience this all for yourself. It is estimated that at some point between 2032 and 2052 we will have perfected medical practices which allow us to live significantly longer lives than we do today. Those that are optimistic feel that we are just twenty years away from this era, while those that are more cautious suggest that fifty years would be a more reasonable estimate.

Twenty to fifty years may not seem like that long in scientific study, but in terms of your own life, it is a significant period of time. Are you willing to make the sacrifices now in order to experience Hyperlongevity in the near future?

Eight Ways to Extend Your Lifespan

There are a lot of steps that you can take in your life today in order to significantly increase the odds that you survive to experience this new and amazing future. If you follow the suggestions below, conscientiously, you will maximize your potential to extend your life until further longevity advances develop in the coming decades.

These eight factors have been shown to be most important when determining the length of an individual’s lifespan:

  • Nutrition

  • Exercise

  • Environment

  • Social Circles

  • Vice

  • Climate

  • Calorie-Restricted Diet

  • Hormone Replacement Therapy

The Diet of the 21st Century: Caloric Restriction and Fasting for a Longer Life

A recent article in Newsmax Health explained that the future of longevity isn’t fad dieting or strenuous exercise, but a Calorie-Restricted diet which manages metabolism and ensures a long and healthy life.

Over the last century, there have been more than twenty thousand studies regarding caloric restriction in animal species from around the globe. All of these studies have unequivocally shown that restricting the calories in an animal’s diet has the ability to significantly increase the lifespan, and the same appears to apply to human beings..

This may sound like a starvation diet at first, but conscientiously and significantly restricting calories in the human diet is a powerful means to a longer life. Of course, most people consume at least 1500 calories per day and some consume several thousand! But, it appears that the sweet spot for human longevity is quite a bit lower than that 1500 calorie threshold.

For those that are struggling with Caloric Restriction, especially those that are currently overweight, HCG Injections can help relieve the feeling of hunger associated with the initial phase of the diet in order to acclimate to their new dietary lifestyle more effectively.

At first it may seem counter-intuitive, that too much of the Bread of Life can actually shorten the lifespan, but that absolutely seems to be the case. A diet that provides high levels of nutrients through the consumption of a small number of calories is the number one way to increase human longevity effectively. Intermittent Fasting and Caloric Restriction slow down aging and also reduce the incidence of a wide variety of illnesses that plague so many in America today.

The Modern Media and the Culture of Food in the West

In the United States, as well as other countries in the West including the United Kingdom, children were raised in a reality in which starvation was one of the greatest evils of the 19th and 20th century. The various forms of media available all showed the terrible fates of so many who were denied the food needed to live. Nowhere is this imagery more vivid in Western Civilization than in the footage captured after the end of World War II as the true horrors of the Holocaust were revealed to the world at large.

During the Cold War we also experienced further evidence of the horrors of famine as communist Russia and China struggled with providing their populations with proper nutrition, leading countless to die of starvation over many decades. Today, on modern television, there are advertisements for charities throughout Africa and Asia which show the plight of the starving in these third world nations.

I do not mean to discount the real and significant struggles that those that came before us experienced in the not so distant past, but it had a powerful impact on food culture in the West, particularly the idea that it is better to eat too much than too little. In our elementary education and beyond, we are confronted with story after story of mass famine, and it seems that part of the way that we culturally appreciate our current abundance is by partaking in it.

This appreciation for our abundance has led directly to a culture of overeating that borders on obsession. In the West, we simply love our food too much, and the expansion of cuisine in the West has allowed anyone to get whatever they want, when they want it, whether they go to the grocery store, the pizza parlor, or the Chinese buffet.

A Culture of Overeating Develops into a Culture of Force Feeding

Throughout the twentieth century, we have always been taught that we need to eat every last bite on our plates. Often times, we were also strongly encouraged, if not forced, to go back for a second portion. In addition to this, the proliferation of soda drinks has led directly to a significant increase in the empty calories that the average American consumes.

As the twentieth century barreled on, parents on average had less time to cook and prepare meals at home, which led to the greater proliferation of both fast food and microwavable dinners, loaded with sugars, salts, and carbohydrates which increased our caloric consumption even more!

During this age, restaurants like Burger King and McDonald’s became the captains of the fast food industry, generating billions of dollars in profit funneling cheap calories into the mouths of men, women, and children all across the country.

Because of all these pressures to overeat, the longevity gains that people in the West experienced as a result of modernization all began to slip away, the combination of unhealthy eating and an increasingly sedentary lifestyle is threatening today’s generation with the prospect of living shorter lives than their parents on average!

The United States would be stronger in every way, if it could foster greater consciousness about the importance of eating smarter to eat longer. If we all just made the proactive decision to engage in a lifestyle of at least mild caloric restriction, it would both decrease the price of health care and allow the citizens of this nation to live longer, happier, and healthier lives.

Do You Dream of a Healthier, Happier Life? Contact the Conscious Evolution Institute Today!

If you are a man or woman over the age of thirty and currently live in the United States, the Conscious Evolution Institute can help you improve your health and longevity. We provide Doctor-Monitored Bio-Identical Hormone Replacement Therapy to patients all across the United States.

With just a simple phone call, we can arrange for you to meet with one of our affiliate physicians in order to set you on the road to a new you. We offer a variety of Hormone Replacement options, including Testosterone Replacement Therapy, Human Growth Hormone Injections, Sermorelin Acetate Injections, and HCG Injection Therapy for Weight Loss.

We also provide nutrition and lifestyle counseling in order to help you maximize the results of your treatment by choosing foods, supplements, and exercises that will get your body running on all cylinders!

If you feel that you may be a candidate for Hormone Replacement Therapy, don’t hesitate, call us today, and one of our friendly specialists will walk you through the process and answer any and all questions that you may have.

For more information on Ten Ways To Live Ten Years Longer check out

Recommendation and review posted by Guinevere Smith

Author pays 50 a month towards plan to have head cut off and brain cryogenically frozen after death –

Posted: February 20, 2017 at 5:44 am

An author is paying 50 a month towards a plan to have his head cut off and his brain cryogenically frozen after his death.

DJ MacLennan is handing over the cash to the Alcor Institute in Arizona, USA – in the hope that he can one day be brought back to life.

The Daily Record reports that when he dies, the writer wants a team of volunteers to fill his body with anti-freezing liquid before plunging it into ice water.

DJ’s body will then be wrapped in polyethylene, submerged in alcohol and lowered into ice before being shipped to Arizona.

It’s at this point that his head will be removed and frozen in liquid nitrogen and put into storage.

The full-body procedure costs 75,000 but DJ, who is from Skye, has opted for the 40,000 brain freeze instead.

He said: We dont waste organs any more, so why do we waste brains?

“Why do we plant people in the ground to rot?

“Shouldnt we consider dealing with dead bodies in a different way? Cryonics is potentially exponential technology.

When people see the price come down therell come a point when they see a benefit.

“The cost will be finite and the benefits will potentially be infinite.

In a recent article, he wrote: You are your brain, so thats the important part to store.

A society capable of reviving a person from a cryo-preserved state is going to be capable of creating an appropriate body or uploading the brains unique connectome to a computational substrate.

Cryogenics hit the headlines in November when a 14-year-old girl who died of cancer had her remains put into a deep freeze.

The procedure was carried out after she won a landmark court case in her final days.

The girls parents had disagreed over whether her wish to be frozen should be followed so she asked a High Court judge to intervene.

In a heartbreaking letter to the court, she wrote: I dont want to die but I know I am going to

“I want to live longer I want to have this chance.

See the article here:
Author pays 50 a month towards plan to have head cut off and brain cryogenically frozen after death –

Recommendation and review posted by Guinevere Smith

The Art of Chemistry – Parade

Posted: February 20, 2017 at 5:44 am

Magazine ByMarilyn vos Savant Parade More by Marilyn

Say a college student named John is a fine artist but finds chemistry fascinating too. Which of the following statements is more likely to be true? (1) As an adult, John is a chemistry professor; or (2) as an adult, John is a chemistry professor and enjoys doing art as a hobby.

Eike Freidank, Schortens, Germany

What do you think, readers? The answer appears below.

Marilyns 50 Silliest Questions of All Time

The first statement is more likely. Why? Because its broader. It indicates only Johns profession, so just one condition must be met. (John could do anything as a hobby or have no hobbies at all.) The second statement contains two conditions to be satisfied.

See the original post here:
The Art of Chemistry – Parade

Recommendation and review posted by Guinevere Smith

‘Mike and Mike’ chemistry was real – Altoona Mirror

Posted: February 20, 2017 at 5:44 am

News, and even new rumors, out of ESPN has been almost nonexistent as the supposed breakup of ESPN Radios longtime morning drive program, Mike & Mike, nears its apparent end.

Sports Illustrated first reported the program might end, but no timetable has been specified since that initial report weeks ago.

Still, the report seems logical, and its probably just a matter of the all-sports network finding the right timing.

Maybe it will happen around the Final Four, or maybe it will be in the somewhat slower summer months when a replacement program makes its debut.

Whenever it happens, whats next for Mike Greenberg might be a New York City-based morning program that airs on ESPN, perhaps a rebranded SportsCenter in the way the network turned its late-night show into a vehicle for Scott Van Pelt and, more recently, its approach to the 6 p.m. SportsCenter featuring Jemele Hill and Michael Smith.

Whats next for Mike Golic might be another morning partner on radio or some combination of partners.

Greenberg, who recently earned a big contract from ESPN, has seemingly sparked any potential changes to the show.

The most recent was an ill-fated move to the Big Apple a couple of years ago. That was to include an additional host, with the show possibly emanating from Times Square. It never happened.

For more than a decade and half, Mike and Mike has been the flag bearer for ESPN. The odd-couple chemistry of the two hosts might be a bit contrived at times, but it works. Still, with demographics changing, ESPN has been trying to find ways to broaden the shows audience even while the hosts age a bit.

The show is rarely intentionally controversial and never mean spirited. For the most part, its good talk radio.

ESPN often uses Mike and Mike to test out talent, too. A good performance by guests in that safe environment can often lead to bigger opportunities.

Heres the thing, though: Mike and Mike might be better as a sum than in individual pieces.

Greenbergs anti-germ sensibilities and lack of athletic experience, despite his journalism chops, still need a personality to play against. He has that in spades with self-deprecating Golic, the former NFL veteran who invariably puts his college career at Notre Dame front and center as well.

Together, theyre fun and informative. Separately, they might be nearly as good.

No matter what happens, they will be missed if the breakup occurs. From a program some thought might not last more than a few months, Mike and Mike has grown and earned a spot in the sports media landscape. The hosts and the show have earned respect throughout the industry.

For example, when Rich Russo, the Penn State alum who directed the Super Bowl for Fox Sports a pretty heady job was told his name was mentioned on Mike and Mike before the big game he sounded genuinely thrilled.

Mike and Mike is not take-a-side talk just for kicks. Its not a schtick, and that might be the biggest reason it will be a loss if the show ends. Its heart is in the fact that its genuine a rare find in sports-talk related programming anymore.

Pirates plans

With spring training underway, Pirates fans can pencil in Feb. 26 for the seasons first radio broadcast a 1:05 p.m. start in Sarasota, Florida, against the Orioles.

The Pirates first televised spring training game will be March 6, a home game in Bradenton against the Yankees.

Sampsell comments on TV and radio for the Mirror. He can be reached at

Not long ago, I was praising Penn State basketball coach Pat Chambers, believing signs he was turning this program …

A dozen security guards handcuffing and dragging out a legendary player from courtside seats in the middle of a …

Having lived through the complete history of professional football, I can say that although they retain some rules …

Name: Randy Wilson Age: 26 Residence: Tyrone High school: Tyrone College: Penn State Altoona My favorite …

We are nearing the end of the game, and time is running out. In the clamor and uproar of the modern sports …

Patriots have advantage with added motivation A neat story in the NFL has emerged on Chris Hogan, a former Penn …

Go here to read the rest:
‘Mike and Mike’ chemistry was real – Altoona Mirror

Recommendation and review posted by Guinevere Smith

Chemistry research lab at SUNY-ESF works to lessen the harsh side effects of chemotherapy – The Daily Orange

Posted: February 20, 2017 at 5:44 am

Courtesy of Christopher Nomura

Nomura and his team have worked for years to develop a safer way to deliver chemotherapy.

Christopher Nomura, the vice president of research at the State University of New York College of Environmental Science and Forestry, is making strides to eliminate chemotherapys harsh side effects.

Most chemotherapeutic drugs induce nausea and hair loss because they attack a persons cells indiscriminately, killing healthy cells as well as cancerous ones. Up until recently, there has never been a delivery system capable of targeting specific types of cancer cells.

That problem is the basis of Nomura and SUNY-ESF postdoctoral fellow Ata Pintos work. They found that by feeding certain fatty acids to a strand of E. coli, the bacteria would produce polymer molecules with azide groups linking to specific cell receptors. When strapped with chemotherapy drugs, these molecules effectively trick cancerous cells into ingesting the medication, destroying them from the inside, rather than systemically as they pass through the body.

Only cancer cells are killed in this new process, not healthy ones.

If we could more specifically target a cancer cell, our hope is that we could reduce some of the dosages (of chemotherapy drugs) and still have the killing efficacy of the drug if its delivered more specifically to its target, Nomura said.

The hope of Nomuras lab is that the precision of this newfound technique what the team refers to as a Trojan horse maneuver will ease the discomfort of cancer treatment. The SUNY Technology Accelerator Fund with a grant helped finance the research for this new Trojan horse method.

Nomura said their new approach first involves modifying the drug-carrying particles to a size small enough to be ingested through leaks in the tumors blood vessels, but large enough to withstand being flushed away by the kidneys.

In this case, Nomuras lab engineered nanoparticles that are about 70 nanometers in diameter. The nanoparticles are then imbedded with azide groups that allow them to target cancer cell receptors. Thats where click chemistry comes into play.

This process, which was developed by Pinto, who is part of Nomuras team, places azide groups onto the ends of fatty acids that are then fed to the E. coli and ultimately replicated in the resulting polymers.

The idea is that the polymer is so flexible in what we can do to it that were given an example of how simple the process of producing these Trojan horses has become with our process, Pinto said.

Once an azide group is present in the polymer, it can be modified to target specific cancer cells. Pinto said click chemistry is innovative and markedly more efficient than techniques used elsewhere.

The process done by other labs is lengthier, Pinto said. Its much more prevalent in the literature because, generally speaking, this work has been done by engineers and not biosynthetic chemists like us.

Nomura and Pinto started their own company last year called Alba Solutions because Nomura said the team was excited that their work could be used as a commercial product.

The lab at ESF has a partnership with Juntao Luo at SUNY-Upstate Medical University to catalyze the polymers for different types of cancers.

We want to test whether (the teams) nanoparticle by itself is toxic or not. That is kind of a safety issue, Lou said.

Luo added that he wants to test the drug loading of the nanoparticle to see whether it is effective with acute cells compared to other types of cancer treatment drugs that are already being sold on the market.

Nomura said he hopes that the polymer delivery system will reopen the doors for highly effective chemotherapy drugs that were too toxic for traditional cancer targeting methods, but may be well utilized with a directed delivery system.

Published on February 19, 2017 at 7:01 pm

Contact Mary:

See the original post:
Chemistry research lab at SUNY-ESF works to lessen the harsh side effects of chemotherapy – The Daily Orange

Recommendation and review posted by Guinevere Smith

Students frustrated trying to get into UW’s strict engineering program – The Seattle Times

Posted: February 20, 2017 at 5:43 am

It gets harder every year to get into some of the University of Washingtons most in-demand majors, creating a cutthroat system of competition at the flagship university.

By the end of his freshman year at the University of Washington, Jack Kussick believed there was no point in even applying to get into the UWs bioengineering program.

Kussick had sailed through Seattles Roosevelt High with top grades. When he entered the UW, the Seattle native was thinking about a career designing cutting-edge rehabilitation tools that could help wounded veterans get back on their feet, or athletes devastated by injury return to their sports.

But college required an entirely different type of studying. As a freshman, Kussick stumbled in a few classes before he figured out a system that worked for him.

By then, he believed, it was already too late.

In order to be competitive for bioengineering, a counselor told him, hed need to begin making As in nearly every class. Even then, his chances of being admitted were slim.

At a time when students are encouraged to go into careers in science and technology, as well as business, its becoming harder and harder to do so in some majors at the states largest flagship university.

Of the roughly 2,000 students in each class who say they want to major in one of the engineering disciplines, fewer than half will get in. And for the business administration major at the Foster School of Business, the admission rate is 40 percent.

Some faculty say thats created a cutthroat system that forces students to compete against one another at a time when they should be learning how to work together.

In high-demand majors, the university is having to select from a group of students who are amazing, and bright, and capable, and could do well, said Patricia Kramer, an anthropology professor who heads a faculty committee trying to solve the problem.

This isnt weeding out students who are not good, she added.

The pressure to build a perfect transcript also means students sacrifice many other experiences that make up the fabric of a good college experience, said Brian Fabien, the associate dean of academic affairs for the College of Engineering.

Theyre not participating in student organizations, in clubs theyre not doing the things wed like them to do, Fabien said. This is not a good environment for learning.

Theres no easy solution. But the UW will be asking more questions about a students area of interest on its freshman and transfer admissions applications. At some point, that information might be used to decide who becomes a Husky, and who does not.

On the third floor of Loew Hall one day last week, a half-dozen pre-engineering students waited in line for appointments with academic counselors to fine-tune their schedules, or ask for advice. Most were upbeat about their chances of being accepted into engineerings disciplines mechanical, civil and computer engineering, to name a few.

But the reality is that fewer than half will be admitted, Fabien said. Students get several chances to apply, but in the meantime they are in limbo about their major, and some wont know for certain until their third year, which is actually pretty cruel, he said.

Taylor Ishida, a sophomore who wants to major in bioengineering, stays in the library studying until 10 or 11 p.m. every night. Its definitely stressful, knowing the level of competition, she said.

Ishida, who grew up in Oregon, says her academic record is strong, but shes an anxious test-taker, and often wakes up at night worrying about how she did on her last exam. If she doesnt get into the program, shell transfer to another university.

Allen Putich, a first-quarter transfer student who earned his associate degree from Skagit Valley College, knows its hard to get into his intended major, computer science; he spent an entire week studying for his first midterm. He thinks his chances are good, but hes got a backup plan: electrical engineering.

Khanh Le, a sophomore, has been turned down once already trying to get into either industrial or civil engineering, and says shes under a lot of pressure now to get in. Le, who graduated from Mariner High School in Everett, said if she doesnt get in on her second attempt, she may take a year off or transfer elsewhere.

No major is more competitive than computer science only about a third of the students who apply get in. For those students, some help is on the way; the UW has gotten millions from private industry and the state Legislature to construct a new computer science building, which will allow it to double the number of students it can handle in the coming years.

Students who cant get into engineering often choose math, chemistry or physics and that puts stress on those majors, too, Fabien said. Those who dont get into the Foster School, for example, often choose economics as a backup. That major is no shoo-in, either it only admits about two-thirds of applicants.

Engineers are trained to be collaborative, so they can solve problems together. But the hypercompetitive environment at the UW means students are in a race to beat one another. Its exactly the opposite of the skills theyll need in the workplace, Fabien said.

Why cant the UW simply eliminate majors that are falling out of favor, and use the money to hire more engineering professors?

Its not that easy.

Engineers need to learn on expensive and space-consuming equipment, Fabien said. For example, mechanical engineers at the UW work with machining equipment similar to whats used in a Boeing facility.

The engineering college also needs students who can write, and have an understanding of history, political science and the humanities not just good grades in math and science. You cant be a good engineer if you cant communicate, he said.

Kramer said the slowness with which the university builds up, or cuts back, on majors is an important check on chasing the latest fad.

Ten years ago, for example, the university resisted pressure to reduce instruction in Eastern European languages. Now, because of unrest in Ukraine, an understanding of those languages and cultures is in demand, she said.

Before the university starts considering a students area of academic interest in deciding who is admitted, all three campuses would have to approve that change. Kramer expects there will be changes in the way the university makes its choice on offering admission to out-of-state and international students.

For in-state students, in contrast, she thinks the changes will be minor.

Our obligation to Washington state students is really different from the universitys commitment to out-of-state and international students, she said.

But she emphasized that no decisions have been made yet, and that the intent is not to decrease overall chances of admission into the UW for any student, but rather to give students the best chances of being able to gain entry into, and to complete, majors in the field of their interest.

For transfer students, an applicants intended major already has a bearing on whether he or she is admitted. A transfer student who selects only one major on the application, and is not admitted into that major, also is not admitted into the university, she said.

Meanwhile, the College of Engineering has proposed a system in which about 50 percent of engineering-major prospects would be directly admitted to the college at the same time they are admitted to the UW as freshmen or transfer students, although they would still need to apply for their specific major. No decision has been made, but Fabien noted that its a practice already in use at most other major engineering schools. And last year, the UW Student Senate passed a resolution calling for that change.

The trouble with direct admission, Kramer said, is that it can deprive students of the chance to explore different subjects, or pursue careers they might never have heard of in high school.

That can be especially hard on those who come from rural or low-income schools students who may have never met an engineer, or explored a great science lab, she said.

Computer science professor Ed Lazowska said theres no right way to handle the overcrowded-majors issue.

Elite private universities allow students to choose any major they want, Lazowska said, but getting admitted to those universities in the first place is like winning the lottery.

On the other hand, some major public universities give students a relatively free choice of their major, but use weed-out courses extremely difficult prerequisites to reduce the number of students going into certain majors, he said.

Meanwhile, just up the road in Everett, Washington State Universitys new North Puget Sound campus is adding more slots in electrical, mechanical and software engineering. The mechanical engineering program, which can accommodate 40 new students each year, had twice that number of applicants this January.

Kussick, the UW student who thought he would never get into bioengineering, solved his dilemma by transferring to Oregon State University at the start of his sophomore year. He is making As in all his classes Im doing better than Ive ever done at school and was admitted to the pre-bioengineering program. His interests have expanded into robotics, and hes also thinking about medical school or earning a Ph.D.

Kussick is 250 miles from home, and because hes an out-of-state-student, his familys paying about $13,000 more a year in tuition and living expenses than they did while he was at the UW.

But hes happy with his decision to move to Corvallis. Im loving it down here, he said.

View original post here:
Students frustrated trying to get into UW’s strict engineering program – The Seattle Times

Recommendation and review posted by Fredricko

Framework for building bio-bots – Next Big Future

Posted: February 20, 2017 at 5:43 am

For the past several years, researchers at the University of Illinois at Urbana-Champaign have been developing a class of walking “bio-bots” powered by muscle cells and controlled with electrical and optical pulses. Now, Bioengineering Professor Rashid Bashirs research group is sharing the recipe for the current generation of bio-bots. Their how-to paper is the cover article in Nature Protocols.

The protocol teaches every step of building a bio-bot, from 3D printing the skeleton to tissue engineering the skeletal muscle actuator, including manufacturers and part numbers for every single thing we use in the lab, explained Ritu Raman, now a postdoctoral fellow in the Department of Bioengineering and first author of the paper

This protocol is essentially intended to be a one-stop reference for any scientist around the world who wants to replicate the results we showed in our PNAS 2016 and PNAS 2014 papers, and give them a framework for building their own bio-bots for a variety of applications, Raman said.

Nature Protocols – A modular approach to the design, fabrication, and characterization of muscle-powered biological machines

As stated in the paper, “Biological machines consisting of cells and biomaterials have the potential to dynamically sense, process, respond, and adapt to environmental signals in real time.” This can result in exciting possibilities where these “systems could one day demonstrate complex behaviors including self-assembly, self-organization, self-healing, and adaptation of composition and functionality to best suit their environment.” Bashir’s group has been a pioneer in designing and building bio-bots, less than a centimeter in size, made of flexible 3D printed hydrogels and living cells. In 2012, the group demonstrated bio-bots that could “walk” on their own, powered by beating heart cells from rats. However, heart cells constantly contract, denying researchers control over the bot’s motion.

The purpose of the paper was to provide the detailed recipes and protocols so that others can easily duplicate the work and help to further permeate the idea of ‘building with biology–so that other researchers and educators can have the tools and the knowledge to build these bio-hybrid systems and attempt to address challenges in health, medicine, and environment that we face as a society, stated Rashid Bashir, a Grainger Distinguished Chair in Engineering and head of the Department of Bioengineering.

The 3D printing revolution has given us the tools required to build with biology in this way. Raman said. We re-designed the 3D-printed injection mold to produce skeletal muscle rings that could be manually transferred to any of a wide variety of bio-bot skeletons. These rings were shown to produce passive and active tension forces similar to those generated by muscle strips.

“Using optogenetics techniques, we worked with collaborators at MIT to genetically engineer a light-responsive skeletal muscle cell line that could be stimulated to contract by pulses of 470-nm blue light,” Raman added. “The resultant optogenetic muscle rings were coupled to multi-legged bio-bot skeletons with symmetric geometric designs. Localized stimulation of contraction, rendered possible by the greater spatiotemporal control of light stimuli over electrical stimuli, was used to drive directional locomotion and 2D rotational steering.


Biological machines consisting of cells and biomaterials have the potential to dynamically sense, process, respond, and adapt to environmental signals in real time. As a first step toward the realization of such machines, which will require biological actuators that can generate force and perform mechanical work, we have developed a method of manufacturing modular skeletal muscle actuators that can generate up to 1.7 mN (3.2 kPa) of passive tension force and 300 N (0.56 kPa) of active tension force in response to external stimulation. Such millimeter-scale biological actuators can be coupled to a wide variety of 3D-printed skeletons to power complex output behaviors such as controllable locomotion. This article provides a comprehensive protocol for forward engineering of biological actuators and 3D-printed skeletons for any design application. 3D printing of the injection molds and skeletons requires 3 hours, seeding the muscle actuators takes 2 hours, and differentiating the muscle takes 7 days.

Continue reading here:
Framework for building bio-bots – Next Big Future

Recommendation and review posted by Guinevere Smith

Page 11234..1020..»