Search Immortality Topics:

Page 11234..1020..»

Category Archives: Genetic Therapy

Hopkins team invents non-viral system for getting gene therapy into cells – FierceBiotech

One of the most popular methods for inserting therapeutic genes into cells to treat disease is to transport them using a virus that has been stripped of its infectious properties. But those noninfectious viruses can still sometimes touch off dangerous immune responses.

A team from Johns Hopkins Medicine is proposing an alternative method for transporting large therapies into cellsincluding genes and even the gene-editing system CRISPR. Its a nano-container made of a polymer that biodegrades once its inside the cell, unleashing the therapy. The researchers described the invention in the journal Science Advances.

The team, led by biomedical engineer Jordan Green, Ph.D., was inspired by viruses, which have many properties that make them ideal transport vehicles. They have both negative and positive charges, for example, which allows them to get close to cells. So Green and his colleagues developed a polymer containing four molecules with both positive and negative charges. They used it to make a container that interacts with the cell membrane and is eventually engulfed by it.

How ICON, Lotus, and Bioforum are Improving Study Efficiency with a Modern EDC

CROs are often at the forefront of adopting new technologies to make clinical trials more efficient. Hear how ICON, Lotus Clinical Research, and Bioforum are speeding database builds and automating reporting tasks for data management.

RELATED: Could a grape-based compound improve gene therapy efficiency?

The Hopkins researchers performed four experiments to prove the nanocontainers would travel into cells and deliver complex therapies once inside. First, they packaged a small protein into the polymer material and mixed it with mouse kidney cells in a lab dish. Using fluorescent tags, they confirmed that the protein made it into the cells. Then they repeated the experiment with a much larger medicinehuman immunoglobulinand observed that 90% of the kidney cells received the treatment.

From there, they made the payload even bulkier, packaging the nanocontainers with the gene-editing system CRISPR. With the help of fluorescent signals, they were able to confirm that CRISPR went to work once inside the cells, disabling a gene 77% of the time.

"That's pretty effective considering, with other gene-editing systems, you might get the correct gene-cutting result less than 10 percent of the time," said graduate student Yuan Rui in a statement.

Finally, the Hopkins researchers injected CRISPR components into mouse models of brain cancer using the polymer nanocontainers. Again they saw evidence that successful gene editing had occurred.

Developing improved methods for gene therapy is a priority in the field. In October, for example, scientists at Scripps Research described a way to use a small molecule called caraphenol A to lower levels of interferon-induced transmembrane (IFITM) proteins, which could, in turn, allow viral vectors to pass more easily into cells. And earlier this year, an Italian team described a method for including the protein CD47 in lentiviral vectors to improve the transferring of therapeutic genes into liver cells.

The next step for Hopkins researchers Rui and Green is to improve the stability of the nanocontainers so they can be injected into the bloodstream. They hope to be able to target them to cells that have certain genetic markers, they reported.

Hopkins team invents non-viral system for getting gene therapy into cells - FierceBiotech

Posted in Genetic Therapy | Comments Off on Hopkins team invents non-viral system for getting gene therapy into cells – FierceBiotech

Buyer beware of this $1 million gene therapy for aging – MIT Technology Review

Its said that nothing is certain except death and taxes. But doubt has been cast over the former since the 1970s, when scientists picked at the seams of one of the fundamental mysteries of biology: the molecular reasons we get old and die.

The loose thread they pulled had to do with telomeresmolecular timepieces on the ends of chromosomes that shorten each time a cell divides, in effect giving it a fixed life span. Some tissues (such as the gut lining) renew almost constantly, and it was found that these have high levels of an enzyme called telomerase, which works to rebuild and extend the telomeres so cells can keep dividing.

That was enough to win Elizabeth Blackburn, Carol Greider, and Jack Szostak a Nobel Prize in 2009. The obvious question, then, was whether telomerase could protect any cell from agingand maybe extend the life of entire organisms, too.

While telomere-extending treatments in mice have yielded intriguing results, nobody has demonstrated that tweaking the molecular clocks has benefits for humans. That isnt stopping one US startup from advertising a telomere-boosting genetic therapyat a price.

Libella Gene Therapeutics, based in Manhattan, Kansas, claims it is now offering a gene therapy to repair telomeres at a clinic in Colombia for $1 million a dose. The company announced on November 21 that it was recruiting patients into what it termed a pay-to-play clinical trial.

Buyer beware, though: this trial is for an unproven, untested treatment that might even be harmful to your health.

Sign up for The Download your daily dose of what's up in emerging technology

The company proposes to inject patients with viruses carrying the genetic instructions cells need to manufacture telomerase reverse transcriptase, a molecule involved in extending the length of telomeres.

The dangers are enormous, says Jerry Shay, a world expert on aging and cancer at the University of Texas Southwestern Medical Center. Theres a risk of activating a pre-cancerous cell thats got all the alterations except telomerase, especially in people 65 and over.

For years now, people involved in the company have made shifting claims about the study, raising uncertainty about who is involved, when it might start, and even where it would occur. Trial listings posted in October to currently show plans for three linked experiments, each with five patients, targeting critical limb ischemia, Alzheimers, and aging, respectively.

Jeff Mathis, president of Libella, told MIT Technology Review that two patients have already paid the enormous fee to take part in the study: a 90-year-old-woman and a 79-year-old man, both US citizens. He said they could receive the gene therapy by the second week of January 2020.

The decision to charge patients a fortune to participate in the study of an experimental treatment is a red flag, say ethics experts. Whats the moral justification for charging individuals with Alzheimers? asks Leigh Turner, at the University of Minnesotas Center for Bioethics. Why charge those bearing all the risk?

The telomere study is occurring outside the US because it has not been approved by the Food and Drug Administration. Details posted to indicate that the injections would be carried out at the IPS Arcasalud SAS medical clinic in Zipaquir, Colombia, 40 kilometers (25 miles) north of Bogot.

It takes a lot longer, is a lot more expensive, to get anything done in the US in a timely fashion, Mathis says of Libellas choice to go offshore.

To some promoters of anti-aging cures, urgency is justified. Heres the ethical dilemma: Do you run fast and run the risk of low credibility, or move slowly and have more credibility and global acceptancebut meanwhile people have died? says Mike Fossel, the president of Telocyte, a company planning to run a study of telomerase gene therapy in the US if it can win FDA signoff.

Our reporting revealed a number of unanswered questions about the trial. According to the listings, the principal investigatorwhich is to say the doctor in charge--is Jorge Ulloa, a vascular surgeon rather than an expert in gene transfer. I dont see someone with relevant scientific expertise, says Turner.

Furthermore, Bill Andrews, who is listed as Libellas chief scientific officer, says he does not know who Ulloa is, even though on Libellas website, the mens photos appear together on the list of team members. He said he believed that different doctors were leading the trial.

Turner also expressed concerns about the proposed 10-day observation period described in the posting for the overseas study: If someone pays, shows up, has treatment, and doesnt stick around very long, how are follow-up questions taking place? Where are they taking place?

Companies seeking to try the telomere approach often point to the work of Maria Blasco, a Spanish scientist who reported that telomere-lengthening gene therapy benefited mice and did not cause cancer. Blasco, director of the Spanish National Centre for Cancer Research, says she believes many more studies should be done before trying such a gene experiment on a person.

This isnt the first time Libella has announced that its trial would begin imminently. It claimed in late 2017 that human trials of the telomerase therapy would begin in the next few weeks. In 2016, Andrews (then partnered with biotech startup BioViva) claimed that construction of an age reversal clinic on the island nation of Fiji would be complete before the end of the year. Neither came to pass.

Similar questions surround Libellas most recent claims that it has two paying clients. Pedro Fabian Davalos Berdugo, manager of Arcasalud, said three patients were awaiting treatment in December. But Bioaccess, a Colombian contract research organization facilitating the Libella trial, said that no patients had yet been enrolled.

Also unclear is where Libella is obtaining the viruses needed for the treatment. Virovek, a California biotech company identified by several sources as Libellas manufacturer, did not answer questions about whether any treatment had been produced.

Continue reading here:
Buyer beware of this $1 million gene therapy for aging - MIT Technology Review

Posted in Genetic Therapy | Comments Off on Buyer beware of this $1 million gene therapy for aging – MIT Technology Review

A #ReUp of 2019: The year when gene therapy, DNA modifications came of age & saved lives – Economic Times

In the summer, a mother in Nashville with a seemingly incurable genetic disorder finally found an end to her suffering -- by editing her genome.

Victoria Gray's recovery from sickle cell disease, which had caused her painful seizures, came in a year of breakthroughs in one of the hottest areas of medical research -- gene therapy.

"I have hoped for a cure since I was about 11," the 34-year-old told AFP in an email.

"Since I received the new cells, I have been able to enjoy more time with my family without worrying about pain or an out-of-the-blue emergency."

Over several weeks, Gray's blood was drawn so doctors could get to the cause of her illness -- stem cells from her bone marrow that were making deformed red blood cells.

The stem cells were sent to a Scottish laboratory, where their DNA was modified using Crispr/Cas9 -- pronounced "Crisper" -- a new tool informally known as molecular "scissors."

The genetically edited cells were transfused back into Gray's veins and bone marrow. A month later, she was producing normal blood cells.

Medics warn that caution is necessary but, theoretically, she has been cured.

"This is one patient. This is early results. We need to see how it works out in other patients," said her doctor, Haydar Frangoul, at the Sarah Cannon Research Institute in Nashville.

"But these results are really exciting."

In Germany, a 19-year-old woman was treated with a similar method for a different blood disease, beta thalassemia. She had previously needed 16 blood transfusions per year.

Nine months later, she is completely free of that burden.

For decades, the DNA of living organisms such as corn and salmon has been modified.

But Crispr, invented in 2012, made gene editing more widely accessible. It is much simpler than preceding technology, cheaper and easy to use in small labs.

The technique has given new impetus to the perennial debate over the wisdom of humanity manipulating life itself.

"It's all developing very quickly," said French geneticist Emmanuelle Charpentier, one of Crispr's inventors and the cofounder of Crispr Therapeutics, the biotech company conducting the clinical trials involving Gray and the German patient.

Crispr is the latest breakthrough in a year of great strides in gene therapy, a medical adventure started three decades ago, when the first TV telethons were raising money for children with muscular dystrophy.

Scientists practising the technique insert a normal gene into cells containing a defective gene.

It does the work the original could not -- such as making normal red blood cells, in Victoria's case, or making tumor-killing super white blood cells for a cancer patient.

Crispr goes even further: instead of adding a gene, the tool edits the genome itself.

After decades of research and clinical trials on a genetic fix to genetic disorders, 2019 saw a historic milestone: approval to bring to market the first gene therapies for a neuromuscular disease in the US and a blood disease in the European Union.

They join several other gene therapies -- bringing the total to eight -- approved in recent years to treat certain cancers and an inherited blindness.

Serge Braun, the scientific director of the French Muscular Dystrophy Association, sees 2019 as a turning point that will lead to a medical revolution.

"Twenty-five, 30 years, that's the time it had to take," he told AFP from Paris.

"It took a generation for gene therapy to become a reality. Now, it's only going to go faster."

Just outside Washington, at the National Institutes of Health (NIH), researchers are also celebrating a "breakthrough period."

"We have hit an inflection point," said Carrie Wolinetz, NIH's associate director for science policy.

These therapies are exorbitantly expensive, however, costing up to $2 million -- meaning patients face grueling negotiations with their insurance companies.

They also involve a complex regimen of procedures that are only available in wealthy countries.

Gray spent months in hospital getting blood drawn, undergoing chemotherapy, having edited stem cells reintroduced via transfusion -- and fighting a general infection.

"You cannot do this in a community hospital close to home," said her doctor.

However, the number of approved gene therapies will increase to about 40 by 2022, according to MIT researchers.

They will mostly target cancers and diseases that affect muscles, the eyes and the nervous system.

Another problem with Crispr is that its relative simplicity has triggered the imaginations of rogue practitioners who don't necessarily share the medical ethics of Western medicine.

Last year in China, scientist He Jiankui triggered an international scandal -- and his excommunication from the scientific community -- when he used Crispr to create what he called the first gene-edited humans.

The biophysicist said he had altered the DNA of human embryos that became twin girls Lulu and Nana.

His goal was to create a mutation that would prevent the girls from contracting HIV, even though there was no specific reason to put them through the process.

"That technology is not safe," said Kiran Musunuru, a genetics professor at the University of Pennsylvania, explaining that the Crispr "scissors" often cut next to the targeted gene, causing unexpected mutations.

"It's very easy to do if you don't care about the consequences," Musunuru added.

Despite the ethical pitfalls, restraint seems mainly to have prevailed so far.

The community is keeping a close eye on Russia, where biologist Denis Rebrikov has said he wants to use Crispr to help deaf parents have children without the disability.

There is also the temptation to genetically edit entire animal species -- malaria-causing mosquitoes in Burkina Faso or mice hosting ticks that carry Lyme disease in the US.

The researchers in charge of those projects are advancing carefully, however, fully aware of the unpredictability of chain reactions on the ecosystem.

6 Nov, 2019

6 Nov, 2019

6 Nov, 2019

6 Nov, 2019

6 Nov, 2019

Charpentier doesn't believe in the more dystopian scenarios predicted for gene therapy, including American "biohackers" injecting themselves with Crispr technology bought online.

"Not everyone is a biologist or scientist," she said.

And the possibility of military hijacking to create soldier-killing viruses or bacteria that would ravage enemies' crops?

Charpentier thinks that technology generally tends to be used for the better.

"I'm a bacteriologist -- we've been talking about bioterrorism for years," she said. "Nothing has ever happened."

More here:
A #ReUp of 2019: The year when gene therapy, DNA modifications came of age & saved lives - Economic Times

Posted in Genetic Therapy | Comments Off on A #ReUp of 2019: The year when gene therapy, DNA modifications came of age & saved lives – Economic Times

Limelight Bio emerges with $75m to develop next generation gene therapies to overcome limitations of current treatments – Pharmaceutical Business…

');},success: function(response) {$('.megamenuthird[data-menu=' + $data_megamenu + '-articles]').html(response);},error: function(xhr) { // if error occured$('.megamenuthird[data-menu=' + $data_megamenu + '-articles]').html("Error occured.please try again"); }});}}//Child Level Menu Hoverfunction get_childlevelmenu(currentid){//console.log('current id '+currentid);var $currentelement = $('#'+currentid);$('.menu-item-'+$('#'+currentid).closest('.themegamenu').attr('cid').split('-')[3]).removeClass('defaultajax-1');var $data_menu = $('#'+currentid).closest('li').data('menu');var ajaxreplaceContent = $('#'+currentid).closest('.themegamenu').data('megamenu')+'-articles';var submenu = $data_menu.split('-');var data_menu_class=submenu[0];//$('.megamenuthird').empty();$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').empty();$('li.level_2').removeClass('activeli');$currentelement.closest('li').siblings().removeClass('activeli');$currentelement.closest('li').addClass('activeli');var current_megamenu_second = $('.megamenusecond[data-menu='+$data_menu+']').length;$('.megamenuopen .megamenusecond').removeClass('megamenusecond-show');//$currentelement.closest('li').find('.megamenuopen .megamenusecond').removeClass('megamenusecond-show');$('.megamenusecond[data-menu=' + $data_menu + ']').addClass('megamenusecond-show');//if(current_megamenu_seconda').html();/********* End level3 checking menu ********/// checking 4th level menu /*** 4th level Objec code here **///getting parent data-menuvar levelfour_data_menu = $('.megamenusecond[data-menu='+$data_menu+']').find('li.level_3.activeli').data('menu');// End getting parent data-menuvar subofSubChildLevel_cat_id = $('.megamenusecond[data-menu='+levelfour_data_menu+']').find('li.level_4.activeli').data('cat');var subofSubChildLevel_data_menu = $('.megamenusecond[data-menu='+levelfour_data_menu+']').find('li.level_4.activeli').data('menu');var subofSubChildLevel_taxnomy_type= $('.megamenusecond[data-menu='+levelfour_data_menu+']').find('li.level_4.activeli').data('type');var subofSubChildLevel_title = $('.megamenusecond[data-menu='+levelfour_data_menu+']').find('li.level_4.activeli>a').html();if(subofSubChildLevel_title!=''){var ajx_title=subofSubChildLevel_title;}else{var ajx_title=subChildLevel_title;}/*** End 4th level Objec code here **/if(subofSubChildLevel_cat_id!=''){var data_obj ={'title':ajx_title,'subofSubChildLevel_cat_id':subofSubChildLevel_cat_id,'subofSubChildLevel_taxnomy_type':subofSubChildLevel_taxnomy_type,'subChildLevel_cat_id': subChildLevel_cat_id,'subChildLevel_taxnomy_type' :subChildLevel_taxnomy_type,'ChildLevel_data_type':ChildLevel_data_type,'ChildLevel_data_cat_id':ChildLevel_data_cat_id,'parent_data_cat_id':parent_data_cat_id,'parent_data_type':parent_data_type};}else{var data_obj ={'title':ajx_title,'subChildLevel_cat_id': subChildLevel_cat_id,'subChildLevel_taxnomy_type' :subChildLevel_taxnomy_type,'ChildLevel_data_type':ChildLevel_data_type,'ChildLevel_data_cat_id':ChildLevel_data_cat_id,'parent_data_cat_id':parent_data_cat_id,'parent_data_type':parent_data_type};}} if( ajaxRequestProject != null ) {ajaxRequestProject.abort();ajaxRequestProject = null;}ajaxRequestProject = $.ajax({type: 'POST',url: '',data: data_obj, dataType: "html",beforeSend: function() {$('.megamenuthird[data-menu=' + ajaxreplaceContent+ ']').html('');},success: function(response) {$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html(response);},error: function(xhr) { // if error occured$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html("Error occured.please try again");}});}//Subchild Level Menu Hover//Child Level Menu Hoverfunction get_subchildlevelmenu(currentid){var $currentelement = $('#'+currentid);$('.menu-item-'+$('#'+currentid).closest('.themegamenu').attr('cid').split('-')[3]).removeClass('defaultajax-1');var $data_menu = $currentelement.closest('li').attr('data-menu'); var submenu = $data_menu.split('-'); var data_menu_class=submenu[0];var ajaxreplaceContent = $('#'+currentid).closest('.themegamenu').data('megamenu')+'-articles';$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').empty();$('.megamenuthird').removeClass('megamenuthird-show');$('.megamenuthird[data-menu=' + $data_menu + ']').addClass('megamenuthird-show');$('li.level_3').removeClass('activeli');$currentelement.closest('li').addClass('activeli');var subChildLevel_title = $currentelement.html();//last child level$currentelement.closest('li').parent().closest('li').find('.megamenusecond-new[data-menu=' + $data_menu + ']').find('li.level_4').removeClass('activeli');var $data_menu = $('#'+currentid).closest('li').data('menu');$('.megamenuopen .megamenusecond-new').removeClass('megamenusecond-show');$currentelement.closest('li').parent().closest('li').find('.megamenusecond-new[data-menu=' + $data_menu + ']').addClass('megamenusecond-show');$currentelement.closest('li').parent().closest('li').find('.megamenusecond-new[data-menu=' + $data_menu + ']').find('li.level_4:first-child').addClass('activeli');//console.log('subchild-'+title);var subChildLevel_cat_id=$currentelement.closest('li').data("cat");var subChildLevel_taxnomy_type = $currentelement.closest('li').data("type");var ChildLevel_data_type= $(".mega-options > li.project_m.activeli").data("type");var ChildLevel_data_cat_id= $(".mega-options > li.project_m.activeli").data("cat_id");var parent_data_cat_id= $currentelement.closest('.themegamenu').data("main_cat_id");var parent_data_type= $currentelement.closest('.themegamenu').data("main_type");// checking 4th level menu /*** 4th level Objec code here **/// End getting parent data-menuif($('.megamenusecond.megamenusecond-new').length > 0){var subofSubChildLevel_cat_id = $('.megamenusecond[data-menu='+$data_menu+']').find('li.level_4.activeli').data('cat');var subofSubChildLevel_data_menu = $('.megamenusecond[data-menu='+$data_menu+']').find('li.level_4.activeli').data('menu');var subofSubChildLevel_taxnomy_type= $('.megamenusecond[data-menu='+$data_menu+']').find('li.level_4.activeli').data('type');var subofSubChildLevel_title = $('.megamenusecond[data-menu='+$data_menu+']').find('li.level_4.activeli>a').html();if(subofSubChildLevel_title!==''){var ajx_title=subofSubChildLevel_title;}else{var ajx_title=subChildLevel_title;}if(subofSubChildLevel_cat_id!=''){var data_obj= {'title':ajx_title,'subofSubChildLevel_cat_id':subofSubChildLevel_cat_id,'subofSubChildLevel_taxnomy_type':subofSubChildLevel_taxnomy_type,'subChildLevel_cat_id': subChildLevel_cat_id,'subChildLevel_taxnomy_type' :subChildLevel_taxnomy_type,'ChildLevel_data_type':ChildLevel_data_type,'ChildLevel_data_cat_id':ChildLevel_data_cat_id,'parent_data_cat_id':parent_data_cat_id,'parent_data_type':parent_data_type};}else{var data_obj= {'title':ajx_title,'subChildLevel_cat_id': subChildLevel_cat_id,'subChildLevel_taxnomy_type' :subChildLevel_taxnomy_type,'ChildLevel_data_type':ChildLevel_data_type,'ChildLevel_data_cat_id':ChildLevel_data_cat_id,'parent_data_cat_id':parent_data_cat_id,'parent_data_type':parent_data_type};}}else{var data_obj= {'title':subChildLevel_title,'subChildLevel_cat_id': subChildLevel_cat_id,'subChildLevel_taxnomy_type' :subChildLevel_taxnomy_type,'ChildLevel_data_type':ChildLevel_data_type,'ChildLevel_data_cat_id':ChildLevel_data_cat_id,'parent_data_cat_id':parent_data_cat_id,'parent_data_type':parent_data_type};} if( ajaxRequestProject != null ) {ajaxRequestProject.abort();ajaxRequestProject = null;}ajaxRequestProject = $.ajax({ type: 'POST', url: '', dataType: "html", data: data_obj, beforeSend: function() {$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html('');},success: function(response) {$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html(response);},error: function(xhr) { // if error occured$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html("Error occured.please try again"); }});}//last child levelfunction get_lastchildlevelmenu(currentid){var $currentelement = $('#'+currentid);$('.menu-item-'+$('#'+currentid).closest('.themegamenu').attr('cid').split('-')[3]).removeClass('defaultajax-1');var $data_menu = $currentelement.closest('li').attr('data-menu'); var submenu = $data_menu.split('-'); var data_menu_class=submenu[0];var $ajax_data_menu = $currentelement.closest('li').attr('data-ajax'); var ajax_submenu = $ajax_data_menu.split('-'); var ajax_data_menu_class=ajax_submenu[0]+'-'+ajax_submenu[1];var ajaxreplaceContent = $('#'+currentid).closest('.themegamenu').data('megamenu')+'-articles';$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').empty();$('.megamenuthird').removeClass('megamenuthird-show');$('.megamenuthird[data-menu=' + $data_menu + ']').addClass('megamenuthird-show');$('li.level_4').removeClass('activeli');$currentelement.closest('li').addClass('activeli');var title = $currentelement.html();var subofSubChildLevel_cat_id=$currentelement.closest('li').data("cat");var subofSubChildLevel_taxnomy_type = $currentelement.closest('li').data("type");var subofSubChildLevel_title = $currentelement.closest('li').find('li.level_4.activeli>a').html();var subChildLevel_cat_id=$('.megamenusecond[data-menu='+ajax_data_menu_class+']').find('li.level_3.activeli').data('cat');var subChildLevel_data_menu=$('.megamenusecond[data-menu='+ajax_data_menu_class+']').find('li.level_3.activeli').data('menu');var subChildLevel_taxnomy_type = $('.megamenusecond[data-menu='+ajax_data_menu_class+']').find('li.level_3.activeli').data('type');var ChildLevel_data_type= $(".mega-options > li.project_m.activeli").data("type");var ChildLevel_data_cat_id= $(".mega-options > li.project_m.activeli").data("cat_id");var parent_data_cat_id= $currentelement.closest('.themegamenu').data("main_cat_id");var parent_data_type= $currentelement.closest('.themegamenu').data("main_type");var data_obj= {'title':title,'subofSubChildLevel_cat_id':subofSubChildLevel_cat_id,'subofSubChildLevel_taxnomy_type':subofSubChildLevel_taxnomy_type,'subChildLevel_cat_id': subChildLevel_cat_id,'subChildLevel_taxnomy_type' :subChildLevel_taxnomy_type,'ChildLevel_data_type':ChildLevel_data_type,'ChildLevel_data_cat_id':ChildLevel_data_cat_id,'parent_data_cat_id':parent_data_cat_id,'parent_data_type':parent_data_type};if( ajaxRequestProject != null ) {ajaxRequestProject.abort();ajaxRequestProject = null;}ajaxRequestProject = $.ajax({ type: 'POST', url: '', dataType: "html", data:data_obj, beforeSend: function() {$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html('');},success: function(response) {$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html(response);},error: function(xhr) { // if error occured$('.megamenuthird[data-menu=' + ajaxreplaceContent + ']').html("Error occured.please try again"); }});} $(document).ready(function(){//$('body').addClass('loaded');/********* End Third Level on over show/hide ****/$('.news-box-big').hover(function() {$(this).closest('.news').children('.big_title').toggleClass("bordertop");});$('.news-box-medium').hover(function() {$(this).closest('.medium_title').children('.tbt').toggleClass("bordertop");}); /********* Newsletter onclick events start here *******/ $(".header-cta a").click(function(e){ var $elem = $('.newsletter-box').position(); $('html,body').animate({ scrollTop: $(".newsletter-box").offset().top - 80}, 'fast'); }); /***** Newsletter onclick events End here *******/ /* Close guided tour */ $(".close-guided-tour").click(function(){$(".home_timeline").hide(); }); /* Close guided tour */ $(".close-guided-tour2").click(function(){ $(".timeline-tour2").hide(); }); /* $( ".fa-search" ).click(function() { $( 'body' ).toggleClass('search-open'); //$('.search-form').toggle(); }); $('.search-toggle').click(function () {$('.search-form').toggleClass('expanded');}); */ // Search toggle$('.navbar .search-toggle, .mobilesearch').click(function(e){e.preventDefault();$(this).parent().toggleClass('active').find('input[type="search"]').focus();});$('.search-submit').click(function(e){if( $(this).parent().find('.search-field').val() == '' ) {e.preventDefault();$(this).parent().parent().removeClass('active');}}); }); /* Reached newsletter */ $(function(){ $(document).scroll(function(){ if($(this).scrollTop() >= $('.email-capture').offset().top - 50) { $('body').addClass("email-capture-reached"); } else{ $('body').removeClass("email-capture-reached"); } if($(this).scrollTop() >= $('.timeline').offset().top - 50) { $('body').addClass("timeline-tour-open"); } else{ $('body').removeClass("timeline-tour-open"); } }); }); /****** Article page Share n/w ********/ $('.social-toggle').on('click', function() { $(this).next().toggleClass('open-menu'); }); /*** End Article page Share n/w ********/ /* Close guided tour */ $(".close-guided-tour2").click(function(){ $("body").addClass("timeline-closed"); }); /* End Timeline guided tour Track the news */ /* Reached related headline */ $(function(){ $(document).ready(function(){ $('body').addClass("headline-reached"); }); }); /* Reached start */ /*$(function(){ $(document).scroll(function(){ if($(this).scrollTop() >= $('#start').offset().top - 50) { $('body').addClass("start-reached"); } else{ $('body').removeClass("start-reached"); } }); });*/ /* Reached share-content */ $(function(){ $(document).scroll(function(){ if($(this).scrollTop() >= $('.share-content').offset().top - 50) { $('body').addClass("share-content-reached"); } else{ $('body').removeClass("share-content-reached"); } }); }); /* share copy-link section */ function myFunction() { var copyText = document.getElementById("copylink");; document.execCommand("Copy"); } /* Reached first sidebar mpu */ $(function(){ $(document).scroll(function(){ if($(this).scrollTop() >= $('.mpu1').offset().top - 50) { $('body').addClass("reached-mpu1"); } else{ $('body').removeClass("reached-mpu1"); } }); }); /* Sticky sidebar banner */ /* $(function(){ $(document).scroll(function(){ if ($(window).width() > 1400) { if($(this).scrollTop() >= $('#sticky-mpu').offset().top - 250 ) { $('.sidebar').addClass("banner-fixed"); } else{ $('.sidebar').removeClass("banner-fixed"); } } }); });*/ // Select all links with hashes $('a[href*="#"]') // Remove links that don't actually link to anything .not('[href="#"]') .not('[href="#0"]') .click(function(event) { // On-page links if ( location.pathname.replace(/^//, '') == this.pathname.replace(/^//, '') && location.hostname == this.hostname ) { // Figure out element to scroll to var target = $(this.hash); target = target.length ? target : $('[name=' + this.hash.slice(1) + ']'); // Does a scroll target exist? if (target.length) { // Only prevent default if animation is actually gonna happen event.preventDefault(); $('html, body').animate({ scrollTop: target.offset().top }, 1000, function() { // Callback after animation // Must change focus! var $target = $(target); $target.focus(); if ($":focus")) { // Checking if the target was focused return false; } else { $target.attr('tabindex','-1'); // Adding tabindex for elements not focusable $target.focus(); // Set focus again }; }); } } }); /******** onclick share button in catgeory page ******/ $(".share-button").click(function(){ if($(this).parent('.open-share').length == 0){ $('.share').removeClass('open-share'); $(this).parent('.share').addClass("open-share"); }else{ $('.share').removeClass('open-share'); } }); /************* Mobile menu js *******/ function openNav() { document.getElementById("mobilemenu").style.width = "100%"; document.getElementById("mobilemenu").style.left = "0px"; } function closeNav() { document.getElementById("mobilemenu").style.width = "0"; } $( ".mobilemenuicon" ).click(function() { setTimeout(function(){ $( '.mobile-menu-cta' ).addClass("mobilectashow"); }, 500); }); $( ".closebtn" ).click(function() { $( '.mobile-menu-cta' ).removeClass("mobilectashow") }); /********** End mobile menu js *******/ /********* contractors Single page close Header**/ $(".close_section").click(function(){ $('.headersf').hide(1000); $('.headersf').addClass('section_closed'); $('.header-singleproduct').addClass('margin_top_added'); $('.small_header_sf').addClass('small_header_sf_display'); }); /******* End contractors Single page close Header**/ /*** My accout drop down menu */ $('.ctanav .dropdown-menu a').on('click', function() { window.location.href = $(this).attr('href'); }); /*** cookie-popup **/ $("#cookiepopup-continue").click(function(){ $.cookie("cookie_compelo", ''); $('.home_timeline').hide(); }); $(window).on("load",function(){ var data = $.cookie("cookie_compelo"); if(data){ $('.home_timeline').hide(); }else{ $('.home_timeline').show(); } }); $(".home_timeline .close").click(function(){ $.cookie("cookie_compelo", ''); $('.home_timeline').hide(); }); $(window).on("load",function(){ var data = $.cookie("cookie_compelo"); if(data){ $('.home_timeline').hide(); }else{ $('.home_timeline').show(); } }); /*** End cookie popup **/ /**** New add js code ***/ if ($(window).width() > 960) { // Initialization $(function(){ $('[data-scroll-speed]').moveIt(); }); } /* Sticky sidebar banner EVENT PAGE */ $(function(){ $(document).scroll(function(){ var scroll = $(window).scrollTop(); if (scroll >= 655) { $('.sticky-mpu-event').addClass("banner-fixed"); } else{ $('.sticky-mpu-event').removeClass("banner-fixed"); } }); }); //advertising page jQuery.fn.moveIt = function(){ var $window = jQuery(window); var instances = []; jQuery(this).each(function(){ instances.push(new moveItItem($(this))); }); window.addEventListener('scroll', function(){ var scrollTop = $window.scrollTop(); instances.forEach(function(inst){ inst.update(scrollTop); }); }, {passive: true}); } var moveItItem = function(el){ this.el = jQuery(el); this.speed = parseInt(this.el.attr('data-scroll-speed')); }; moveItItem.prototype.update = function(scrollTop){ this.el.css('transform', 'translateY(' + -(scrollTop / this.speed) + 'px)');};// InitializationjQuery(function(){jQuery('[data-scroll-speed]').moveIt();}); /**** end new add js code **/

See the original post here:
Limelight Bio emerges with $75m to develop next generation gene therapies to overcome limitations of current treatments - Pharmaceutical Business...

Posted in Genetic Therapy | Comments Off on Limelight Bio emerges with $75m to develop next generation gene therapies to overcome limitations of current treatments – Pharmaceutical Business…

Auburn University research leads to gene therapy that provides hope for children with deadly disease – PRNewswire

The optimistic outlook is seen in an adorable 10-year-old girl named Jojo, who became the first patient to receive a gene therapy treatment, called AXO-AAV-GM1, during a human clinical trial this summer at the National Institutes of Health in Maryland. Auburn's College of Veterinary Medicine and the University of Massachusetts Medical School developed the treatment that has moved from helping cats with GM1 to hopefully helping children.

"Jojo is doing well and has experienced no major complications," said Dr. Doug Martin, professor in the Department of Anatomy, Physiology and Pharmacology in Auburn's veterinary college and the Scott-Ritchey Research Center. "Seeing all of the effort come together to help patientswho haveno treatment options today gives us great hope."

Auburn scientists for several decades have researched treatments to improve and extend the lives of cats affected by GM1. Martin is leading Auburn's effort, which was started by his mentor, Professor Emeritus Henry Baker.

To move the treatment toward human medicine, Martin developed a partnership with UMass Medical School researchers Drs. Miguel Sena-Esteves and Heather Gray-Edwards, an Auburn alumnaand they have worked collaboratively for 15 years, combining animal and human medicine studies to cure rare diseases that affect both animals and humans. In December 2018, the gene therapy was licensed to Axovant Gene Therapies Ltd., a clinical-stage company developing innovative gene therapies.

"This treatment is extremely promising because it has worked well in GM1mice and cats, and it is delivered by a single IV injection that takes less than an hour," Martin said. "We're hopeful that the treatment makes a real difference for patients and their families.

"The NIH is hoping to begin treating three or four more children in the next few months. As the trial progresses and more patients are treated, we'll have a good idea of whether the gene therapy helps children as much as it has helped the animals."

The NIH clinical trial is led by Dr. Cynthia Tifft, deputy clinical director at the National Human Genome Research Institute. "GM1 gangliosidosis is a devastating disease in young children, for which there are no currently approved treatment options. The development of a safe and effective gene therapy for these patients would be a welcome advancement in the field of pediatric lysosomal storage disorders affecting the brain," Tifft said.

For Auburn graduates Sara and Michael Heatherly of Opelika, whose son Porter was the first known case of GM1 in Alabama and died in 2016, the knowledge of a treatment is one of mixed emotions.

"We are excited to know there is hope for the future of children diagnosed with GM1," Michael Heatherly said. "We are thankful for everyone who has dedicated their time, resources and careers to move this treatment forward and to Axovant for bringing all of their work to life and making it a reality for GM1 patients.

"We understood early on the research would not help Porter, but we wanted to help spread the word of the research and the progress that was being made."

The Heatherlys gave Auburn researchers a reason to hope, and work harder for a cure. To honor the family, which held fundraisers for several years to support the research, the College of Veterinary Medicine's Scott-Ritchey Research Center incorporated Porter's likeness in a creative identity for the center.

SOURCE Auburn University

Read the original here:
Auburn University research leads to gene therapy that provides hope for children with deadly disease - PRNewswire

Posted in Genetic Therapy | Comments Off on Auburn University research leads to gene therapy that provides hope for children with deadly disease – PRNewswire

Engelhardt named 2019 Fellow of the National Academy of Inventors – Iowa Now

The National Academy of Inventors (NAI) has named University of Iowa cystic fibrosis and gene therapy researcher John Engelhardt, PhD, a 2019 Fellow.

Engelhardt, who is professor and head of anatomy and cell biology in the UI Carver College of Medicine and director of the UI Center for Gene Therapy, is recognized for his work in developing gene therapies to treat cystic fibrosis (CF). He will receive the award during an induction ceremony at the Heard Museum in Phoenix, Arizona, on April 10, 2020.

Engelhardts research primarily focuses on the molecular basis of CF, a progressive, inherited disease that causes persistent lung infections and other complications. CF is caused by well-studied mutations in a single gene, and Engelhardt has worked to develop gene therapy and gene editing methods to help treat the condition.

He also develops viral vector systems and animal models to test these methods and ultimately improve gene delivery. The animal models his laboratory has created are used by over 80 CF researchers, and he recently renewed a Research and Resource Center, funded by the National Institutes of Health (NIH), to continue this service to the research community and biotechnology companies that are developing therapies for CF and other lung diseases.

Engelhardt additionally studies airway stem cell niches, or the regulatory mechanisms that control stem cell growth and repair in the lungs, and has developed stem cell therapies for CF.

He currently holds 12 issued US patents, 41 issued foreign patents, and has 23 active patent applications. His patents and applications have been licensed to six companies, including two start-ups and a Fortune 100 company. Engelhardt provides critical tools and assistance to other researchers and companies in the field of CF research, and he is sponsored by the Cystic Fibrosis Foundation.

Engelhardt co-founded the gene therapy company Talee Bio, which was sold and is now Spirovant Sciences. The Philadelphia-based company was recently a part of a $3 billion deal to enhance the development of gene therapies for CF and other genetic diseases. Engelhardt remains on the scientific advisory board for Spirovant Sciences and serves as a key advisor as new therapies are created and tested.

NAI President Paul Sanberg says Engelhardt was selected for induction as he has demonstrated a highly prolific spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on the quality of life, economic development, and welfare of society.

The University of Iowa Research Foundation (UIRF) nominated Engelhardt for this award to recognize his impact on creating and broadly commercializing gene therapies and his mentoring of other entrepreneurs on campus.

John has an extensive portfolio of intellectual property for advancing the commercialization of gene therapies, said Marie Kerbeshian, executive director of UIRF and an assistant vice president in the Office of the Vice President for Research. Not only is he a successful entrepreneur, as a UI researcher he is a key supporter of other researchers and other companies as they seek cures for cystic fibrosis.

He is one of 168 distinguished academic inventors across 136 research universities and institutes worldwide to join the academy this year. To date, NAI Fellows hold more than 41,500 issued U.S. patents, and the 2019 class includes six recipients of the U.S. National Medal of Technology & Innovation and U.S. National Medal of Science, four Nobel Laureates, among other honors.

We are very proud to see Dr. Engelhardts innovative and groundbreaking work recognized nationally, said Brooks Jackson, MD, MBA, UI vice president for medical affairs and the Tyrone D. Artz Dean of the UI Carver College of Medicine. He is a pioneer in his field and has set a prime example of how dedication and collaboration can lead to major advances in finding treatments for debilitating diseases.

Engelhardt is the second UI faculty member to join the academy, after UI neurosurgeon Matthew Howard, MD, was named a 2018 fellow for his work in developing brain and spinal cord neuromodulation devices.

Engelhardt joined the UI faculty in 1997 and is the Roy J. Carver Chair in Molecular Medicine and director of the Center for Gene Therapy of Cystic Fibrosis, which has received funding from the NIH continuously over the past 20 years. He earned a doctoral degree in human genetics from Johns Hopkins University and was a post-doctoral fellow at the University of Michigan. He has published 263 articles and book chapters, and has received over $74 million dollars in NIH grant support for his research.

More here:
Engelhardt named 2019 Fellow of the National Academy of Inventors - Iowa Now

Posted in Genetic Therapy | Comments Off on Engelhardt named 2019 Fellow of the National Academy of Inventors – Iowa Now