Search Immortality Topics:

Page 11234..1020..»


Category Archives: Biochemistry

USM Chemistry (Biochemistry Emphasis) Degree Earns ASBMB Reaccreditation – The University of Southern Mississippi

Wed, 01/31/2024 - 01:21pm | By: Ivonne Kawas

The University of Southern Mississippis (USM) B.S. degree in Chemistry (Biochemistry emphasis) has earned reaccreditation by the leading agency in the field of life sciences the American Society for Biochemistry and Molecular Biology (ASBMB).

This accreditation was obtained for the first time in 2017. Obtaining ASBMB accreditation, a national outcomes-based evaluation, ensures programs in the field meet the highest standards of academic excellence. USMs chemistry degree program is housed in the School of Mathematics and Natural Sciences (MANS),

Accreditation by ASBMB is a testament to the quality and content of our biochemistry curriculum, as well as to the knowledge and skills learned by our students as they begin to seek careers or further their studies at the graduate or professional levels, said Dr. Chris Winstead, dean of the College of Arts and Sciences. I appreciate the effort of the faculty in seeking this accreditation. This shows their dedication to providing the best preparation possible for our Southern Miss students, an education that is well-aligned with national standards and prepares them for their next steps.

Dr. Vijay Rangachari, professor of chemistry and biochemistry, emphasizes one of the direct accreditation benefits for students.

ASBMB accreditation inherently enhances the value of the students degree, allowing them to include on their resume that they graduated from an ASBMB-accredited program. Furthermore, upon degree completion, they can demonstrate competitiveness on a national scale by obtaining ASBMB certification.

Dr. Rangachari also highlights one of the strengths of the program, integral to both student success and ASBMB accreditation: the hands-on research opportunities provided in the laboratory.

To meet accreditation requirements, the curricula must include over 400 hours of hands-on laboratory experience. Therefore, students get an advantage in advancing their careers.

Students like Landon Lee, a native of Hattiesburg, Miss. who is pursuing the biochemistry emphasis, actively participate in cutting-edge research projects in the lab, alongside graduate students and faculty mentors.

Joining a research lab has significantly enriched my educational experience, as Ive been able to acquire skills related to academic research, project management, and creative thinking, said Lee. With the support and guidance from both the graduate students in my lab and Dr. Rangachari, my faculty mentor, it has become more than just a platform for applying classroom concepts; it has provided me a community that fosters my personal and academic development.

After completing his bachelors degree, Lee plans to further his studies: As I complete my degree, I intend to pursue a Ph.D. in neuroscience. My coursework has undoubtedly laid a strong foundation in physics, chemistry, and mathematics, enabling me to demonstrate key strengths as I strive toward this goal.

Dr. Theofanis Kitsopoulos, director in the School of MANS, reflects on the programs successful and highly valued alumni base, as it opens doors to diverse industries.

Our curriculum is carefully crafted to equip students not only with a strong theoretical foundation but also with practical skills highly valued in the job market, said Dr. Kitsopoulos. Several of our alumni choose to pursue advanced degrees in prestigious graduate programs in medical, dental, pharmaceutical, and other professional schools. They go on to succeed in diverse industries such as research and development, healthcare, environmental consulting, forensic science, and entrepreneurship. Some thrive as quality control and analytical chemists, while others pursue fulfilling paths as middle and high school science and chemistry teachers.

Learn more about the B.S. degree in Chemistry (Biochemistry emphasis).

Continue reading here:
USM Chemistry (Biochemistry Emphasis) Degree Earns ASBMB Reaccreditation - The University of Southern Mississippi

Posted in Biochemistry | Comments Off on USM Chemistry (Biochemistry Emphasis) Degree Earns ASBMB Reaccreditation – The University of Southern Mississippi

AI generates proteins with exceptional binding strength – ASBMB Today

A new studyin Nature reports an AI-driven advance in biotechnology with implications for drug development, disease detection, and environmental monitoring. Scientists at the Institute for Protein Design at the University of Washington School of Medicine used software to create protein molecules that bind with exceptionally high affinity and specificity to a variety of challenging biomarkers, including human hormones. Notably, the scientists achieved the highest interaction strength ever reported between a computer-generated biomolecule and its target.

Ian Haydon, UW Medicine Institute for Protein Design

Susana Vasquez-Torres in a UW Medicine Institute for Protein Design laboratory, where she is working to develop new proteins with high-binding affinity and specificity to a variety of challenging biomarkers.

Senior author David Baker, professor of biochemistry at UW Medicine, Howard Hughes Medical Institute investigator, and recipient of the 2023 Frontiers of Knowledge Award in Biology and Biomedicine, emphasized the potential impact: "The ability to generate novel proteins with such high binding affinity and specificity opens up a world of possibilities, from new disease treatments to advanced diagnostics."

Ian Haydon/UW Medicine Institute for Protein Design

A new protein designed using deep-learning methods. In this case, RFdiffusion generates a binding protein.

The team, led by Baker Lab members Susana Vazquez-Torres, Preetham Venkatesh, and Phil Leung, set out to create proteins that could bind to glucagon, neuropeptide Y, parathyroid hormone, and other helical peptide targets. Such molecules, crucial in biological systems, are especially difficult for drugs and diagnostic tools to recognize because they often lack stable molecular structures. Antibodies can be used to detect some of these medically relevant targets but are often costly to produce and have limited shelf lives.

"There are many diseases that are difficult to treat today simply because it is so challenging to detect certain molecules in the body. As tools for diagnosis, designed proteins may offer a more cost-effective alternative to antibodies," explained Venkatesh.

The study introduces a novel protein design approach that uses advanced deep-learning methods. The researchers present a new way of using RFdiffusion, a generative model for creating new protein shapes, in conjunction with the sequence-design tool ProteinMPNN. Developed in the Baker Lab, these programs allow scientists to create functional proteins more efficiently than ever before. By combining these tools in new ways, the team generated binding proteins by using limited target information, such as a peptide's amino acid sequence alone. The broad implications of this "build to fit" approach suggest a new era in biotechnology in which AI-generated proteins can be used to detect complex molecules relevant to human health and the environment.

Ian Haydon/UW Medicine Institute for Protein Design

An AI-designed protein in detail from the UW Medicine Institute for Protein Design.

"We're witnessing an exciting era in protein design, where advanced artificial intelligence tools, like the ones featured in our study, are accelerating the improvement of protein activity. This breakthrough is set to redefine the landscape of biotechnology," noted Vazquez-Torres.

In collaboration with the Joseph Rogers Lab at the University of Copenhagen and the Andrew Hoofnagle Lab at UW Medicine, the team conducted laboratory tests to validate their biodesign methods. Mass spectrometry was used to detect designed proteins that bind to low-concentration peptides in human serum, thereby demonstrating the potential for sensitive and accurate disease diagnostics. Additionally, the proteins were found to retain their target binding abilities despite harsh conditions including high heat, a crucial attribute for real-world application. Further showcasing the method's potential, the researchers integrated a high-affinity parathyroid hormone binder into a biosensor system and achieved a 21-fold increase in bioluminescence signal in samples that contained the target hormone. This integration into a diagnostic device highlights the immediate practical applications of AI-generated proteins.

The study, which illustrates the confluence of biotechnology and artificial intelligence and sets a new precedent in both fields, appears in Nature with the title De novo design of high-affinity binders of bioactive helical peptides.

(This article was produced by the University of Washington School of Medicine/UW Medicine.)

Read the original here:
AI generates proteins with exceptional binding strength - ASBMB Today

Posted in Biochemistry | Comments Off on AI generates proteins with exceptional binding strength – ASBMB Today

First step towards synthetic CO2 fixation in living cells – EurekAlert

image:

Researchers at the MPI for Terrestrial Microbiology have designed and constructed a new synthetic CO2-fixation pathway, the so-called THETA cycle.

Credit: Max Planck Institute for Terrestrial Microbiology/Geisel

Synthetic biology offers the opportunity to build biochemical pathways for the capture and conversion of carbon dioxide (CO2). Researchers at the Max-Planck-Institute for Terrestrial Microbiology have developed a synthetic biochemical cycle that directly converts CO2 into the central building block Acetyl-CoA. The researchers were able to implement each of the three cycle modules in the bacterium E.coli, which represents a major step towards realizing synthetic CO2 fixing pathways within the context of living cells.

Developing new ways for the capture and conversion of CO2 is key to tackle the climate emergency. Synthetic biology opens avenues for designing new-to-nature CO2-fixation pathways that capture CO2 more efficiently than those developed by nature. However, realizing those new-to-nature pathways in different in vitro and in vivo systems is still a fundamental challenge. Now, researchers in Tobias Erb's group have designed and constructed a new synthetic CO2-fixation pathway, the so-called THETA cycle. It contains several central metabolites as intermediates, and with the central building block, acetyl-CoA, as its output. This characteristic makes it possible to be divided into modules and integrated into the central metabolism of E. coli.

The entire THETA cycle involves 17 biocatalysts, and was designed around the two fastest CO2-fixing enzymes known to date: crotonyl-CoA carboxylase/reductase and phosphoenolpyruvate carboxylase. The researchers found these powerful biocatalysts in bacteria. Although each of the carboxylases can capture CO2 more than 10 times faster than RubisCO, the CO2-fixing enzyme in chloroplasts, evolution itself has not brought these capable enzymes together in natural photosynthesis.

The THETA cycle converts two CO2 molecules into one acetyl-CoA in one cycle. Acetyl-CoA is a central metabolite in almost all cellular metabolism and serves as the building block for a wide array of vital biomolecules, including biofuels, biomaterials, and pharmaceuticals, making it a compound of great interest in biotechnological applications. Upon constructing the cycle in test tubes, the researchers could confirm its functionality. Then the training began: through rational and machine learning-guided optimization over several rounds of experiments, the team was able to improve the acetyl-CoA yield by a factor of 100. In order to test its in vivo feasibility, incorporation into the living cell should be carried out step by step. To this end, the researchers divided the THETA cycle into three modules, each of which was successfully implemented into the bacterium E. coli. The functionality of these modules was verified through growth-coupled selection and/or isotopic labelling.

"What is special about this cycle is that it contains several intermediates that serve as central metabolites in the bacterium's metabolism. This overlap offers the opportunity to develop a modular approach for its implementation. explains Shanshan Luo, lead author of the study. We were able to demonstrate the functionality of the three individual modules in E. coli. However, we have not yet succeeded in closing the entire cycle so that E. coli can grow completely with CO2," she adds. Closing the THETA cycle is still a major challenge, as all of the 17 reactions need to be synchronized with the natural metabolism of E. coli, which naturally involves hundreds to thousands of reactions. However, demonstrating the whole cycle in vivo is not the only goal, the researcher emphasizes. "Our cycle has the potential to become a versatile platform for producing valuable compounds directly from CO2 through extending its output molecule, acetyl-CoA." says Shanshan Luo.

Bringing parts of the THETA cycle into living cells is an important proof-of-principle for synthetic biology, adds Tobias Erb. Such modular implementation of this cycle in E. coli paves the way to the realization of highly complex, orthogonal new-to-nature CO2-fixation pathways in cell factories. We are learning to completely reprogram the cellular metabolism to create a synthetic autotrophic operating system for the cell."

Cells

Construction and modular implementation of the THETA cycle for synthetic CO2 fixation. Nature Catalysis, 6(12), 1228-1240.

20-Dec-2023

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

More here:
First step towards synthetic CO2 fixation in living cells - EurekAlert

Posted in Biochemistry | Comments Off on First step towards synthetic CO2 fixation in living cells – EurekAlert

The Evaluation of the Quality Performance of Biochemical Analytes in Clinical Biochemistry Laboratory Using Six … – Cureus

Specialty

Please choose I'm not a medical professional. Allergy and Immunology Anatomy Anesthesiology Cardiac/Thoracic/Vascular Surgery Cardiology Critical Care Dentistry Dermatology Diabetes and Endocrinology Emergency Medicine Epidemiology and Public Health Family Medicine Forensic Medicine Gastroenterology General Practice Genetics Geriatrics Health Policy Hematology HIV/AIDS Hospital-based Medicine I'm not a medical professional. Infectious Disease Integrative/Complementary Medicine Internal Medicine Internal Medicine-Pediatrics Medical Education and Simulation Medical Physics Medical Student Nephrology Neurological Surgery Neurology Nuclear Medicine Nutrition Obstetrics and Gynecology Occupational Health Oncology Ophthalmology Optometry Oral Medicine Orthopaedics Osteopathic Medicine Otolaryngology Pain Management Palliative Care Pathology Pediatrics Pediatric Surgery Physical Medicine and Rehabilitation Plastic Surgery Podiatry Preventive Medicine Psychiatry Psychology Pulmonology Radiation Oncology Radiology Rheumatology Substance Use and Addiction Surgery Therapeutics Trauma Urology Miscellaneous

Read this article:
The Evaluation of the Quality Performance of Biochemical Analytes in Clinical Biochemistry Laboratory Using Six ... - Cureus

Posted in Biochemistry | Comments Off on The Evaluation of the Quality Performance of Biochemical Analytes in Clinical Biochemistry Laboratory Using Six … – Cureus

Biochemistry: Definition And Explanation – University of the People

Biochemistry is exciting and fascinating science, and this article will tell you everything youve been wanting to know about the field. Well give you the full biochemistry definition: the basics, the history, as well as the promising degrees and careers you can expect in the biochemists laboratory and beyond.

Biochemistry, or biological chemistry, is the branch of science that studies chemical and physicochemical processes within living organisms.

Source: Pexels

As a combination of biology and chemistry, biochemistry studies the chemical substances and processes which occur within the biology of the body or any living organisms.

Biochemists study large molecules such as carbohydrates and proteins in relation to metabolism and other important processes within the body. Other molecules that biochemists may study include enzymes and DNA. These types of molecules are important for understanding the complex processes which occur in all living organisms.

The term biochemistry was created by Carl Neuberg, a German chemist, in 1902. But the study itself has been around for over 400 years, essentially since the invention of the microscope in 1665 by Robert Hooke. The microscope made it possible to study cells.

In 1674, Anton van Leeuwenhoek was the first to observe live plant cells under the microscope, which opened up many more possibilities than the dead cells which were being observed up until then. Live cells allowed scientists to observe chemical processes that occurred within and between them.

In the 18th century, a notable discovery in the field was made by the French scientist, Antoine Lavoisier, who proposed the concept of photosynthesis, a process in which plants convert water, sunlight, and carbon dioxide into their nutrients. Lavoisier was also the first person to study cell respiration, which is the process of making the energy molecule in the cells mitochondria.

In the 20th century, DNA was acknowledged as the genetic material which made up the cell. This was established by James Watson and Francis Crick based on the research work of Rosalind Franklin.

Most recently, new technology continues to advance scientific studies in areas such as recombinant DNA, gene splicing, radioisotopic labeling, and electron microscopy.

A career in biochemistry is recommended for those who enjoy research, as it is generally a career in laboratory science. Most careers in the field require at least a bachelors degree, such as a position as a laboratory technician. Other positions, such as laboratory managers or principal investigators of research, will require a masters degree or a Ph.D.

Laboratory technicians engage in bench work and help perform experiments in the lab under the instruction of the principal investigators. Technicians need a bachelors degree in order to be qualified, but more education and research will allow for more independence in the lab.

Lab managers carry more responsibility in the laboratory and may conduct independent research under the guidance of the principal investigator.

Though a masters degree in the field will require an emphasis on research, a Ph.D. prepares biochemists for a career in independent research, principal investigators of research in laboratories, and lecturers in university.

There are also many industry positions available to biochemists. Biochemists may also work in governmental labs or for companies in agriculture, pharmaceuticals, public health, or biotechnology. Some biochemists may also work in services such as toxicology and forensics.

Source: Pexels

As one may imagine, a contender for biochemistry needs to have a good understanding of both biology and chemistry. Some universities may offer a specific biochemistry track, or students can begin their education by taking a bachelors degree in either biology or chemistry, with a minor in the other.

Biochemists also need to have a good grasp of mathematics and statistics in order to conduct research. As students advance in their studies, they will begin to hone in on their particular interests.

Similar studies include health sciences, which offer courses in biology, anatomy, biostatistics, and disease prevention. Universities such as the University of the People (UoPeople) offer associates and bachelors degrees in health science completely online and tuition-free. The university also offers potential certificate programs in health science that can give ones career the right boost.

As weve seen, the biochemistry definition includes a rich history and an exciting future for further discoveries. Since the invention of the microscope, biochemists have been investigating the complex, hidden world of cells and molecules.

Biochemistry is an exciting and constantly evolving field of science with an emphasis on research and laboratory technology. Different levels of education open up many opportunities for working in the field. If you have a passion for this science, then biochemistry may be a meaningful career choice for you.

Link:
Biochemistry: Definition And Explanation - University of the People

Posted in Biochemistry | Comments Off on Biochemistry: Definition And Explanation – University of the People

UH Moment: Discovery of Drug Candidate that Neutralizes SARS-CoV-2 Could Reduce Length of Infection Upon Exposure – Houston Public Media

UH Moment: Discovery of Drug Candidate that Neutralizes SARS-CoV-2 Could Reduce Length of Infection Upon Exposure  Houston Public Media

Read the original:
UH Moment: Discovery of Drug Candidate that Neutralizes SARS-CoV-2 Could Reduce Length of Infection Upon Exposure - Houston Public Media

Posted in Biochemistry | Comments Off on UH Moment: Discovery of Drug Candidate that Neutralizes SARS-CoV-2 Could Reduce Length of Infection Upon Exposure – Houston Public Media