Search Immortality Topics:

Page 11234..1020..»

Category Archives: Human Genetic Engineering

Human genetic enhancement – Wikipedia

Human genetic enhancement or human genetic engineering refers to human enhancement by means of a genetic modification. This could be done in order to cure diseases (gene therapy), prevent the possibility of getting a particular disease[1] (similarly to vaccines), to improve athlete performance in sporting events (gene doping), or to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence.These genetic enhancements may or may not be done in such a way that the change is heritable (which has raised concerns within the scientific community).[2]

Genetic modification in order to cure genetic diseases is referred to as gene therapy. Many such gene therapies are available, made it through all phases of clinical research and are approved by the FDA. Between 1989 and December 2018, over 2,900 clinical trials were conducted, with more than half of them in phase I.[3] As of 2017, Spark Therapeutics' Luxturna (RPE65 mutation-induced blindness) and Novartis' Kymriah (Chimeric antigen receptor T cell therapy) are the FDA's first approved gene therapies to enter the market. Since that time, drugs such as Novartis' Zolgensma and Alnylam's Patisiran have also received FDA approval, in addition to other companies' gene therapy drugs. Most of these approaches utilize adeno-associated viruses (AAVs) and lentiviruses for performing gene insertions, in vivo and ex vivo, respectively. ASO / siRNA approaches such as those conducted by Alnylam and Ionis Pharmaceuticals require non-viral delivery systems, and utilize alternative mechanisms for trafficking to liver cells by way of GalNAc transporters.

Some people are immunocompromised and their bodies are hence much less capable of fending off and defeating diseases (i.e. influenza, ...). In some cases this is due to genetic flaws[clarification needed] or even genetic diseases such as SCID. Some gene therapies have already been developed or are being developed to correct these genetic flaws/diseases, hereby making these people less susceptible to catching additional diseases (i.e. influenza, ...).[4]

In November 2018, Lulu and Nana were created.[5] By using clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9, a gene editing technique, they disabled a gene called CCR5 in the embryos, aiming to close the protein doorway that allows HIV to enter a cell and make the subjects immune to the HIV virus.

Athletes might adopt gene therapy technologies to improve their performance.[6] Gene doping is not known to occur, but multiple gene therapies may have such effects. Kayser et al. argue that gene doping could level the playing field if all athletes receive equal access. Critics claim that any therapeutic intervention for non-therapeutic/enhancement purposes compromises the ethical foundations of medicine and sports.[7]

Other hypothetical gene therapies could include changes to physical appearance, metabolism, mental faculties such as memory and intelligence.

Some congenital disorders (such as those affecting the muscoskeletal system) may affect physical appearance, and in some cases may also cause physical discomfort. Modifying the genes causing these congenital diseases (on those diagnosed to have mutations of the gene known to cause these diseases) may prevent this.

Also changes in the mystatin gene[8] may alter appearance.

Behavior may also be modified by genetic intervention.[9] Some people may be aggressive, selfish, ... and may not be able to function well in society.[clarification needed] There is currently research ongoing on genes that are or may be (in part) responsible for selfishness (i.e. ruthlessness gene, aggression (i.e. warrior gene), altruism (i.e. OXTR, CD38, COMT, DRD4, DRD5, IGF2, GABRB2[10])

There is some research going on on the hypothetical treatment of psychiatric disorders by means of gene therapy. It is assumed that, with gene-transfer techniques, it is possible (in experimental settings using animal models) to alter CNS gene expression and thereby the intrinsic generation of molecules involved in neural plasticity and neural regeneration, and thereby modifying ultimately behaviour.[11]

In recent years, it was possible to modify ethanol intake in animal models. Specifically, this was done by targeting the expression of the aldehyde dehydrogenase gene (ALDH2), lead to a significantly altered alcohol-drinking behaviour.[12] Reduction of p11, a serotonin receptor binding protein, in the nucleus accumbens led to depression-like behaviour in rodents, while restoration of the p11 gene expression in this anatomical area reversed this behaviour.[13]

Recently, it was also shown that the gene transfer of CBP (CREB (c-AMP response element binding protein) binding protein) improves cognitive deficits in an animal model of Alzheimers dementia via increasing the expression of BDNF (brain-derived neurotrophic factor).[14] The same authors were also able to show in this study that accumulation of amyloid- (A) interfered with CREB activity which is physiologically involved in memory formation.

In another study, it was shown that A deposition and plaque formation can be reduced by sustained expression of the neprilysin (an endopeptidase) gene which also led to improvements on the behavioural (i.e. cognitive) level.[15]

Similarly, the intracerebral gene transfer of ECE (endothelin-converting enzyme) via a virus vector stereotactically injected in the right anterior cortex and hippocampus, has also shown to reduce A deposits in a transgenic mouse model of Alzeimers dementia.[16]

There is also research going on on genoeconomics, a protoscience that is based on the idea that a person's financial behavior could be traced to their DNA and that genes are related to economic behavior. As of 2015, the results have been inconclusive. Some minor correlations have been identified.[17][18]

George Church has compiled a list of potential genetic modifications based on scientific studies for possibly advantageous traits such as less need for sleep, cognition-related changes that protect against Alzheimer's disease, disease resistances, higher lean muscle mass and enhanced learning abilities along with some of the associated studies and potential negative effects.[19][20]

Read the original here:
Human genetic enhancement - Wikipedia

Posted in Human Genetic Engineering | Comments Off on Human genetic enhancement – Wikipedia

Genetic disorder – Wikipedia

Health problem caused by one or more abnormalities in the genome

Medical condition

A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosomal abnormality. Although polygenic disorders are the most common, the term is mostly used when discussing disorders with a single genetic cause, either in a gene or chromosome.[1][2] The mutation responsible can occur spontaneously before embryonic development (a de novo mutation), or it can be inherited from two parents who are carriers of a faulty gene (autosomal recessive inheritance) or from a parent with the disorder (autosomal dominant inheritance). When the genetic disorder is inherited from one or both parents, it is also classified as a hereditary disease. Some disorders are caused by a mutation on the X chromosome and have X-linked inheritance. Very few disorders are inherited on the Y chromosome or mitochondrial DNA (due to their size).[3]

There are well over 6,000 known genetic disorders,[4] and new genetic disorders are constantly being described in medical literature.[5] More than 600 genetic disorders are treatable.[6] Around 1 in 50 people are affected by a known single-gene disorder, while around 1 in 263 are affected by a chromosomal disorder.[7] Around 65% of people have some kind of health problem as a result of congenital genetic mutations.[7] Due to the significantly large number of genetic disorders, approximately 1 in 21 people are affected by a genetic disorder classified as "rare" (usually defined as affecting less than 1 in 2,000 people). Most genetic disorders are rare in themselves.[5][8]

Genetic disorders are present before birth, and some genetic disorders produce birth defects, but birth defects can also be developmental rather than hereditary. The opposite of a hereditary disease is an acquired disease. Most cancers, although they involve genetic mutations to a small proportion of cells in the body, are acquired diseases. Some cancer syndromes, however, such as BRCA mutations, are hereditary genetic disorders.[9]

A single-gene disorder (or monogenic disorder) is the result of a single mutated gene. Single-gene disorders can be passed on to subsequent generations in several ways. Genomic imprinting and uniparental disomy, however, may affect inheritance patterns. The divisions between recessive and dominant types are not "hard and fast", although the divisions between autosomal and X-linked types are (since the latter types are distinguished purely based on the chromosomal location of the gene). For example, the common form of dwarfism, achondroplasia, is typically considered a dominant disorder, but children with two genes for achondroplasia have a severe and usually lethal skeletal disorder, one that achondroplasics could be considered carriers for. Sickle-cell anemia is also considered a recessive condition, but heterozygous carriers have increased resistance to malaria in early childhood, which could be described as a related dominant condition.[17] When a couple where one partner or both are sufferers or carriers of a single-gene disorder wish to have a child, they can do so through in vitro fertilization, which enables preimplantation genetic diagnosis to occur to check whether the embryo has the genetic disorder.[18]

Most congenital metabolic disorders known as inborn errors of metabolism result from single-gene defects. Many such single-gene defects can decrease the fitness of affected people and are therefore present in the population in lower frequencies compared to what would be expected based on simple probabilistic calculations.[19]

Only one mutated copy of the gene will be necessary for a person to be affected by an autosomal dominant disorder. Each affected person usually has one affected parent.[20]:57 The chance a child will inherit the mutated gene is 50%. Autosomal dominant conditions sometimes have reduced penetrance, which means although only one mutated copy is needed, not all individuals who inherit that mutation go on to develop the disease. Examples of this type of disorder are Huntington's disease,[20]:58 neurofibromatosis type 1, neurofibromatosis type 2, Marfan syndrome, hereditary nonpolyposis colorectal cancer, hereditary multiple exostoses (a highly penetrant autosomal dominant disorder), tuberous sclerosis, Von Willebrand disease, and acute intermittent porphyria. Birth defects are also called congenital anomalies.

Two copies of the gene must be mutated for a person to be affected by an autosomal recessive disorder. An affected person usually has unaffected parents who each carry a single copy of the mutated gene and are referred to as genetic carriers. Each parent with a defective gene normally do not have symptoms.[21] Two unaffected people who each carry one copy of the mutated gene have a 25% risk with each pregnancy of having a child affected by the disorder. Examples of this type of disorder are albinism, medium-chain acyl-CoA dehydrogenase deficiency, cystic fibrosis, sickle cell disease, TaySachs disease, NiemannPick disease, spinal muscular atrophy, and Roberts syndrome. Certain other phenotypes, such as wet versus dry earwax, are also determined in an autosomal recessive fashion.[22][23] Some autosomal recessive disorders are common because, in the past, carrying one of the faulty genes led to a slight protection against an infectious disease or toxin such as tuberculosis or malaria.[24] Such disorders include cystic fibrosis,[25] sickle cell disease,[26] phenylketonuria[27] and thalassaemia.[28]

X-linked dominant disorders are caused by mutations in genes on the X chromosome. Only a few disorders have this inheritance pattern, with a prime example being X-linked hypophosphatemic rickets. Males and females are both affected in these disorders, with males typically being more severely affected than females. Some X-linked dominant conditions, such as Rett syndrome, incontinentia pigmenti type 2, and Aicardi syndrome, are usually fatal in males either in utero or shortly after birth, and are therefore predominantly seen in females. Exceptions to this finding are extremely rare cases in which boys with Klinefelter syndrome (44+xxy) also inherit an X-linked dominant condition and exhibit symptoms more similar to those of a female in terms of disease severity. The chance of passing on an X-linked dominant disorder differs between men and women. The sons of a man with an X-linked dominant disorder will all be unaffected (since they receive their father's Y chromosome), but his daughters will all inherit the condition. A woman with an X-linked dominant disorder has a 50% chance of having an affected fetus with each pregnancy, although in cases such as incontinentia pigmenti, only female offspring are generally viable.

X-linked recessive conditions are also caused by mutations in genes on the X chromosome. Males are much more frequently affected than females, because they only have the one X chromosome necessary for the condition to present. The chance of passing on the disorder differs between men and women. The sons of a man with an X-linked recessive disorder will not be affected (since they receive their father's Y chromosome), but his daughters will be carriers of one copy of the mutated gene. A woman who is a carrier of an X-linked recessive disorder (XRXr) has a 50% chance of having sons who are affected and a 50% chance of having daughters who are carriers of one copy of the mutated gene. X-linked recessive conditions include the serious diseases hemophilia A, Duchenne muscular dystrophy, and LeschNyhan syndrome, as well as common and less serious conditions such as male pattern baldness and redgreen color blindness. X-linked recessive conditions can sometimes manifest in females due to skewed X-inactivation or monosomy X (Turner syndrome).

Y-linked disorders are caused by mutations on the Y chromosome. These conditions may only be transmitted from the heterogametic sex (e.g. male humans) to offspring of the same sex. More simply, this means that Y-linked disorders in humans can only be passed from men to their sons; females can never be affected because they do not possess Y-allosomes.

Y-linked disorders are exceedingly rare but the most well-known examples typically cause infertility. Reproduction in such conditions is only possible through the circumvention of infertility by medical intervention.

This type of inheritance, also known as maternal inheritance, is the rarest and applies to the 13 genes encoded by mitochondrial DNA. Because only egg cells contribute mitochondria to the developing embryo, only mothers (who are affected) can pass on mitochondrial DNA conditions to their children. An example of this type of disorder is Leber's hereditary optic neuropathy.

It is important to stress that the vast majority of mitochondrial diseases (particularly when symptoms develop in early life) are actually caused by a nuclear gene defect, as the mitochondria are mostly developed by non-mitochondrial DNA. These diseases most often follow autosomal recessive inheritance.[29]

Genetic disorders may also be complex, multifactorial, or polygenic, meaning they are likely associated with the effects of multiple genes in combination with lifestyles and environmental factors. Multifactorial disorders include heart disease and diabetes. Although complex disorders often cluster in families, they do not have a clear-cut pattern of inheritance. This makes it difficult to determine a person's risk of inheriting or passing on these disorders. Complex disorders are also difficult to study and treat because the specific factors that cause most of these disorders have not yet been identified. Studies that aim to identify the cause of complex disorders can use several methodological approaches to determine genotypephenotype associations. One method, the genotype-first approach, starts by identifying genetic variants within patients and then determining the associated clinical manifestations. This is opposed to the more traditional phenotype-first approach, and may identify causal factors that have previously been obscured by clinical heterogeneity, penetrance, and expressivity.

On a pedigree, polygenic diseases do tend to "run in families", but the inheritance does not fit simple patterns as with Mendelian diseases. This does not mean that the genes cannot eventually be located and studied. There is also a strong environmental component to many of them (e.g., blood pressure). Other factors include:

A chromosomal disorder is a missing, extra, or irregular portion of chromosomal DNA. It can be from an atypical number of chromosomes or a structural abnormality in one or more chromosomes. An example of these disorders is trisomy 21 (Down syndrome), in which there is an extra copy of chromosome 21.

Due to the wide range of genetic disorders that are known, diagnosis is widely varied and dependent of the disorder. Most genetic disorders are diagnosed pre-birth, at birth, or during early childhood however some, such as Huntington's disease, can escape detection until the patient is well into adulthood.

The basic aspects of a genetic disorder rests on the inheritance of genetic material. With an in depth family history, it is possible to anticipate possible disorders in children which direct medical professionals to specific tests depending on the disorder and allow parents the chance to prepare for potential lifestyle changes, anticipate the possibility of stillbirth, or contemplate termination.[30] Prenatal diagnosis can detect the presence of characteristic abnormalities in fetal development through ultrasound, or detect the presence of characteristic substances via invasive procedures which involve inserting probes or needles into the uterus such as in amniocentesis.[31]

Not all genetic disorders directly result in death; however, there are no known cures for genetic disorders. Many genetic disorders affect stages of development, such as Down syndrome, while others result in purely physical symptoms such as muscular dystrophy. Other disorders, such as Huntington's disease, show no signs until adulthood. During the active time of a genetic disorder, patients mostly rely on maintaining or slowing the degradation of quality of life and maintain patient autonomy. This includes physical therapy, pain management, and may include a selection of alternative medicine programs.

The treatment of genetic disorders is an ongoing battle, with over 1,800 gene therapy clinical trials having been completed, are ongoing, or have been approved worldwide.[32] Despite this, most treatment options revolve around treating the symptoms of the disorders in an attempt to improve patient quality of life.

Gene therapy refers to a form of treatment where a healthy gene is introduced to a patient. This should alleviate the defect caused by a faulty gene or slow the progression of the disease. A major obstacle has been the delivery of genes to the appropriate cell, tissue, and organ affected by the disorder. Researchers have investigated how they can introduce a gene into the potentially trillions of cells that carry the defective copy. Finding an answer to this has been a roadblock between understanding the genetic disorder and correcting the genetic disorder.[33]

Around 1 in 50 people are affected by a known single-gene disorder, while around 1 in 263 are affected by a chromosomal disorder.[7] Around 65% of people have some kind of health problem as a result of congenital genetic mutations.[7] Due to the significantly large number of genetic disorders, approximately 1 in 21 people are affected by a genetic disorder classified as "rare" (usually defined as affecting less than 1 in 2,000 people). Most genetic disorders are rare in themselves.[5][8] There are well over 6,000 known genetic disorders,[4] and new genetic disorders are constantly being described in medical literature.[5]

The earliest known genetic condition in a hominid was in the fossil species Paranthropus robustus, with over a third of individuals displaying amelogenesis imperfecta.[34]

Read more:
Genetic disorder - Wikipedia

Posted in Human Genetic Engineering | Comments Off on Genetic disorder – Wikipedia

Genetic Engineering – Courses, Subjects, Eligibility …

Genetic Engineering additionally called genetic modification or genetic manipulation is the immediate control of a living being's genes using biotechnology. It is an arrangement of innovations used to change the hereditary forms of cells, including the exchange of qualities inside and across species limits to create enhanced or novel living beings.

Genetic Engineering has been connected in various fields including research, medicine, industrial biotechnology and agriculture. In research, GMOs are utilized to contemplate quality capacity and articulation through loss of function, gain of function, tracking and expression experiments. By thumping out genes responsible for specific conditions it is possible to create animal model organisms of human diseases. And in addition to producing hormones, immunizations and different drug genetic engineering can possibly fix hereditary diseases through quality treatment. Similar strategies that are utilized to create medications can likewise have mechanical applications, for example, producing enzymes for detergents, cheeses and different products.

The ascent of commercialised genetically modified crops has given a financial advantage to agriculturists in a wide range of nations, however, has additionally been the wellspring of a large portion of the debate encompassing the innovation. This has been available since its initial implementation, the primary field trials were destroyed by anti-GM activists. In spite of the fact that there is a logical accord that at presently accessible sustenance got from GM crops represents no more serious hazard to human wellbeing than regular nourishment, GM sustenance security is the main concern with critics.

Genetic engineering is the study of genes and the science of heredity. Genetic engineers or geneticists study living organisms ranging from human being to crops and even bacteria.

These professionals also conduct researches which is a major part of their work profile. The experiments are conducted to determine the origin and governing laws of a particular inherited trait. These traits include medical condition, diseases etc. The study is further used to seek our determinants responsible for the inherited trait.

Genetic engineers or Geneticists keep on finding ways to enhance their work profile depending on the place and organization they are working with. In manufacturing, these professionals will develop new pharmaceutical or agricultural products while in a medical setting, they advise patients on the diagnosed medical conditions that are inherited and also treat patients on the same.

Skill sets for Genetic engineers or Geneticists

Strong understanding of scientific methods and rules

complex problem solving and critical thinking

ability to use computer-aided design (CAD)

graphics or photo imaging

PERL, Python

word processing software programs

excellent mathematical, deductive and inductive reasoning, reading, writing, and oral comprehension skills

ability to use lasers spectrometers, light scattering equipment, binocular light compound microscopes, bench top centrifuges, or similar laboratory equipment

Typical responsibilities of a Genetic Engineering or Geneticist includes:

When a genetic engineer gains a year of experience, one of the regions they can indulge into is hereditary advising, which includes offering data, support and counsel on hereditary conditions to your patients.

An individual aspiring to pursue a professional degree in Genetic Engineering can begin the BTech course after his/her 10+2 Science with Physics, Chemistry, Maths and Biology.

Admission to BTech in Genetic Engineering is made through entrance tests conducted in-house by various universities or through the scores of national engineering entrance examination like JEE for IITs/NITs & CFTIs across the country.

Genetic Engineering professionals require a bachelors or masters degree in Genetic Engineering or Genetic Sciences for entry-level careers. In any case, a doctoral qualification is required for those looking for free research professions. Important fields of study in Genetic Engineering incorporate natural chemistry, biophysics or related fields.

Genetic Engineers require a solid comprehension of logical techniques and guidelines, and in addition complex critical thinking and basic reasoning aptitudes. Phenomenal scientific, deductive and inductive thinking aptitudes, and in addition perusing, composing, and oral cognizance abilities are additionally expected to work in this field.

A semester- wise breakup of the course is tabulated below



Mathematics 1

Mathematics 2


Material Science


Principles of Environmental Science



Basic Engineering 1

Basic Engineering 2


Cell Biology


Value Education



Enzyme Technology

Basic Molecular Techniques

Genetics & Cytogenetics

Molecular Biology


Stoichiometry and Engineering Thermodynamics


Bio-press Principles

Mechanical Operations & heat Transfer


German Language Phase 1/French Language Phase 1/Japanese Language Phase 1

German Language Phase 2/Japanese Language Phase 2/French Language Phase 2




Advanced Molecular Techniques

Recombinant DNA Technology

Functional Genomics and Microarray Technology


Momentum Transfer

Chemical Reaction Engineering

Bioprocess Engineering

Gene Therapy


Biosensors and Biochips

Plant Tissue Culture and Transgenic Technology


Personality Development




Bio-separation Technology

Project Work

Animal Cell Culture and Transgenic Technology

Bio-Safety, Bio-ethics, IPR & Patients

Nano-biotechnology in Healthcare


Stem Cell Biology


Aspirants who wish to join the engineering industry as a genetic engineer can apply for the following jobs profiles available:



Genetic Engineer

They apply their knowledge ofengineering, biology, and biomechanical principles into the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health care and management.


They teach at undergraduate and graduate level in areas allocated and reviewed from time to time by the Head of Department.

Research Scientist

They are responsible for designing, undertaking and analyzing information from controlled laboratory-based investigations, experiments and trials.

Scientific/Medical Writer

The research, prepare and coordinate scientific publications. The medical writer is responsible for researching, writing and editing clinical/statistical reports and study protocols, and summarizing data from clinical studies.

Most of the engineering educational institutes shortlist candidates for admission Into BTech in Genetic Engineering course on the basis of engineering entrance exams. These entrance exams are either conducted at the national level like JEE or held in-house by various engineering institutes in the country.

Some of the popular engineering entrance examinations aspirants should consider appearing for admissions to UG and PG level Automobile engineering courses are:

Q. Which college is best for genetic engineering?

A. SRM University Chennai Tamil Nadu, Bharath University Chennai Tamil Nadu, Aryabhatta Knowledge University Patna Bihar, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore are some of the institutes offering genetic engineering

Q. Is Jee required for genetic engineering?

A. NITs and IITs across India does not offer genetic engineering. But there are 23 collages which take admission on the basis of JEE main

Q. What is the qualification for genetic engineering?

A. For admission to BTech Genetic Engineering course, the candidate is needed to have passed the Higher Secondary School Certificate (10+2) examination from a recognized Board of education with Biology, Physics and Chemistry as main subjects with a minimum aggregate score of 60%.

Q. Does IIT offer genetic engineering?

A. No, IIT directly does not offer genetic engineering. Candidates have to take Life Sciences in graduation or Biotechnology from any engineering college in India.

View post:
Genetic Engineering - Courses, Subjects, Eligibility ...

Posted in Human Genetic Engineering | Comments Off on Genetic Engineering – Courses, Subjects, Eligibility …

Top 4 Applications of Genetic Engineering

The following points highlight the top four applications of genetic engineering. The applications are: 1. Application in Agriculture 2. Application to Medicine 3. Energy Production 4. Application to Industries.

An important application of recombinant DNA technology is to alter the genotype of crop plants to make them more productive, nutritious, rich in proteins, disease resistant, and less fertilizer consuming. Recombinant DNA technology and tissue culture techniques can produce high yielding cereals, pulses and vegetable crops.

Some plants have been genetically programmed to yield high protein grains that could show resistance to heat, moisture and diseases.

Some plants may even develop their own fertilizers some have been genetically transformed to make their own insecticides. Through genetic engineering some varieties have been produced that could directly fix atmospheric nitrogen and thus there is no dependence on fertilizers.

Scientists have developed transgenic potato, tobacco, cotton, corn, strawberry, rape seeds that are resistant to insect pests and certain weedicides.

Bacterium, Bacillus thurenginesis produces a protein which is toxic to insects. Using the techniques of genetic engineering, the gene coding for this toxic protein called Bt gene has been isolated from bacterium and engineered into tomato and tobacco plants. Such transgenic plants showed nee to tobacco horn worms and tomato fruit worms. These genotypes are awaiting release in USA.

There are certain genetically evolved weed killers which are not specific to weeds alone but kill useful crops also. Glyphosate is a commonly used weed killer which simply inhibits a particular essential enzyme in weeds and other crop plants. A target gene of glyphosate is present in bacterium salmonella typhimurium. A mutant of S. typhimurium is resistant to glyphosate.

The mutant gene was t cloned to E. coli and then recloned to Agrobacterium tumifaciens through its Ti Plasmid. Infection of plants with Ti plasmid containing glyphosate resistant gene has yielded crops such as cotton, tabacco maize, all of which are resistant to glyphosate.

This makes possible to spray the crop fields with glyphosate which will kill the weeds only and the genetically modified crops with resistant genes remain unaffected.

Recently Calogene, a biotech company, has isolated a bacterial gene that detoxifies; side effects of herbicides. Transgenic tobacco plants resistant to T MV mosaic virus and tomato i resistant to Golden mosaic virus have been developed by transferring virus coat protein genes susceptible plants. These are yet to be released.

The gene transfer technology can also play significant role in producing new and improved variety of timber trees.

Several species of microorganisms have been produced that can degrade toxic chemicals and could be used for killing harmful pathogens and insect pests.

For using genetic engineering techniques for transfer of foreign genes into host plant cells, a number of genes have already been cloned and complete libraries of DNA and mt DNA of pea are now known.

Some of the cloned genes include:

(i) Genes for phaseolin of french bean,

(ii) Few phaseolin leg haemoglobin for soybean,

(iii) Genes for small sub-unit RUBP carboxylase of pea, and i genes for storage protein in some cereals.

Efforts are being made to improve several agricultural crops using various techniques of genetic engineering which include:

(i) Transfer of nitrogen fixing genes (nif genes) from leguminous plants into cereals.

(ii) Transfer of resistance against pathogens and pests from wild plants to crop plants.

(iii) Improvement in quality and quantity of seed proteins.

(iv) Transfer of genes for animal proteins to crop plants.

(v) Elimination of unwanted genes for susceptibility to different diseases from cytoplasmic male sterile lines in crop like maize, where cytoplasmic male sterility and susceptibility are located in mitochondrial plasmid.

(vi) Improvement of photosynthetic efficiency by reassembling nuclear and chloroplast genes and by the possible conversion of C3 plants into C4 plants.

(vii) Development of cell lines which may produce nutritious food in bioreactors.

Genetic engineering has been gaining importance over the last few years and it will become more important in the current century as genetic diseases become more prevalent and agricultural area is reduced. Genetic engineering plays significant role in the production of medicines.

Microorganisms and plant based substances are now being manipulated to produce large amount of useful drugs, vaccines, enzymes and hormones at low costs. Genetic engineering is concerned with the study (inheritance pattern of diseases in man and collection of human genes that could provide a complete map for inheritance of healthy individuals.

Gene therapy by which healthy genes can be inserted directly into a person with malfunctioning genes is perhaps the most revolutionary and most promising aspect of genetic engineering. The use of gene therapy has been approved in more than 400 clinical trials for diseases such as cystic fibres emphysema, muscular dystrophy, adenosine deaminase deficiency.

Gene therapy may someday be exploited to cure hereditary human diseases like haemophilia and cystic fibrosis which are caused by missing or defective genes. In one type of gene therapy new functional genes are inserted by genetically engineered viruses into the cells of people who are unable to produce certain hormones or proteins for normal body functions.

Introduction of new genes into an organism through recombinant DNA technology essentially alters protein makeup and finally i body characteristics.


Recombinant DNA Technology is also used in production of vaccines against diseases. A vaccine contains a form of an infectious organism that does not cause severe disease but does cause immune system of body to form protective antibodies against infective organism. Vaccines are prepared by isolating antigen or protein present on the surface of viral particles.

When a person is vaccinate against viral disease, antigens produce antibodies that acts against the viral proteins and inactivate them. With recombinant DNA technology, scientists have been able to transfer the genes for some viral sheath proteins to vaccinia virus which was used against small pox.

Vaccines produced by gene cloning are contamination free and safe because they contain only coat proteins against which antibodies are made. A few vaccines are being produced by gene cloning, e.g., vaccines against viral hepatitis influenza, herpes simplex virus, virus induced foot and mouth disease in animals.


Until recently the hormone insulin was extracted only in limited quantities from pancreas of cows and pigs. The process was not only costly but the hormone sometimes caused allergic reactions in some patients of diabetes.

The commercial production of insulin was started in 1982 through biogenetic or recombinant DNA technology and the medical use of hormone insulin was approved by food and drug administration (FDA) of USA in 1982.

The human insulin gene has been cloned in large quantities in bacterium E. coli which could be used for synthesis of insulin. Genetically engineered insulin is commercially available as humilin.


Lymphokines are proteins which regulate immune system in human body, -Interferon is one of the examples. Interferon is used to fight viral diseases such as hepatitis, herpes, common colds as well as cancer. Such drugs can be manufactured in bacterial cell in large quantities.

Lymphokines can also be helpful for AIDS patients. Genetically engineered interleukin-II, a substance that stimulates multiplication of lymphocytes is also available and is being currently tested on AIDS patients.


A fourteen aminoacid polypeptide hormone synthesized by hypothalamus was obtained only in a small quantity from a human cadavers. Somatostatin used as a drug for certain growth related abnormalities appears to be species specific and the polypeptide obtained from other mammals has no effect on human, hence its extraction from hypothalamus of cadavers.

Genetic engineering technique has helped in chemical synthesis of gene which is joined to the pBR 322 plasmid DNA and cloned into a bacterium. The transformed bacterium is converted into somatostatin synthesising factory. ADA (adenosine deaminase) deficiency is a disease like combined immune deficiency which killed the bubble boy David in 1984.

The children with ADA deficiency die before they are two years old. Bone marrow cells of the child after removal from the body were invaded by a harmless virus into which ADA has been inserted.

Erythropoetin, a genetically engineered hormone is used to stimulate the production of red blood cells in people suffering from severe anaemia.

Production of Blood clotting factors:

Normally heart attack is caused when coronary arteries are blocked by cholesterol or blood clot. plasminogen is a substance found in blood clots. Genetically engineered tissue plasminogen activator (tPA) enzyme dissolves blood clots in people who have suffered heart attacks. The plasminogen activator protein is produced by genetech company which is so potent and specific that it may even arrest a heart attack underway.


Cancer is a dreaded disease. Antibodies cloned from a single source and targetted for a specific antigen (monoclonal antibodies) have proved very useful in cancer treatment. Monoclonal antibodies have been target with radioactive elements or cytotoxins like Ricin from castor seed to make them more deadly. Such antibodies seek cancer cells and specifically kill them with their radioactivity or toxin.

Recombinant DNA technology has tremendous scope in energy production. Through this technology Ii is now possible to bioengineer energy crops or biofuels that grow rapidly to yield huge biomass that used as fuel or can be processed into oils, alcohols, diesel, or other energy products.

The waste from these can be converted into methane. Genetic engineers are trying to transfer gene for cellulase to proper organisms which can be used to convert wastes like sawdust and cornstalks first to sugar and then to alcohol.

Genetically designed bacteria are put into use for generating industrial chemicals. A variety of organic chemicals can be synthesised at large scale with the help of genetically engineered microorganisms. Glucose can be synthesised from sucrose with the help of enzymes obtained from genetically modified organisms.

Now-a-days with the help of genetic engineering strains of bacteria and cyanobacteria have been developed which can synthesize ammonia at large scale that can be used in manufacture of fertilisers at much cheaper costs. Microbes are being developed which will help in conversion of Cellulose to sugar and from sugar to ethanol.

Recombinant DNA technology can also be used to monitor the degradation of garbage, petroleum products, naphthalene and other industrial wastes.

For example bacterium pseudomonas fluorescens genetically altered by transfer of light producing enzyme called luciferase found in bacterium vibrio fischeri, produces light proportionate to the amount of its breaking down activity of naphthalene which provides way to monitor the efficiency of the process.

Maize and soybeans are extensively damaged by black cutworm. Pseudomonas fluorescens is found in association with maize and soybeans. Bacillus thuringiensis contain a gene pathogenic to the pest. The pest has, over the years, not only become dangerous to the crops but has developed resistance to a number of pesticides.

When the gene from B. thuringiensis (Bt) was cloned into pseudomonas fluorescence and inoculated into the soil, it was found that genetically engineered pseudomonas fluorescens could cause the death of cutworms.

Continued here:
Top 4 Applications of Genetic Engineering

Posted in Human Genetic Engineering | Comments Off on Top 4 Applications of Genetic Engineering

How biological detective work can reveal who engineered a virus –

SARS-CoV-2, the virus that causes Covid-19, has made our future vulnerability to biological pathogens and what we can learn to help prevent the next pandemic a salient concern. We dont have much evidence one way or the other whether Covids emergence into the world was the result of a lab accident or a natural jump from animal to human. And while the US intelligence communitys current best guess is that the virus probably was not genetically engineered, the theory has been the subject of much debate and has not been definitively ruled out.

The many unknowns we confront underscore the need for a much bigger toolkit to deal with pathogenic threats than we currently have which is why a recent paper about a new advance in tracing genetic editing is particularly exciting.

Bioengineering often leaves traces characteristic patterns in the RNA or DNA of an engineered organism that are a product of a plethora of design decisions that go into synthetic biology. That fact about bioengineered genomes raises an interesting question: What if those traces that gene editing leaves behind were more like fingerprints? That is, what if its possible not just to tell if something was engineered but precisely where it was engineered?

Thats the idea behind genetic engineering attribution: the effort to develop tools that let us look at a genetically engineered sequence and determine which lab developed it. A big international contest among researchers earlier this year demonstrates that the technology is within our reach though itll take lots of refining to move from impressive contest results to tools we can reliably use for bio detective work.

The contest, the Genetic Engineering Attribution Challenge, was sponsored by some of the leading bioresearch labs in the world. The idea was to challenge teams to develop techniques in genetic engineering attribution. The most successful entrants in the competition could predict, using machine-learning algorithms, which lab produced a certain genetic sequence with more than 80 percent accuracy, according to a new preprint summing up the results of the contest.

This may seem technical, but it could actually be fairly consequential in the effort to make the world safe from a type of threat we should all be more attuned to post-pandemic: bioengineered weapons and leaks of bioengineered viruses.

One of the challenges of preventing bioweapon research and deployment is that perpetrators can remain hidden its difficult to find the source of a killer virus and hold them accountable.

But if its widely known that bioweapons can immediately and verifiably be traced right back to a bad actor, that could be a valuable deterrent.

Its also extremely important for biosafety more broadly. If an engineered virus is accidentally leaked, tools like these would allow us to identify where they leaked from and know what labs are doing genetic engineering work with inadequate safety procedures.

Hundreds of design choices go into genetic engineering: what genes you use, what enzymes you use to connect them together, what software you use to make those decisions for you, computational immunologist Will Bradshaw, a co-author on the paper, told me.

The enzymes that people use to cut up the DNA cut in different patterns and have different error profiles, Bradshaw says. You can do that in the same way that you can recognize handwriting.

Because different researchers with different training and different equipment have their own distinctive tells, its possible to look at a genetically engineered organism and guess who made it at least if youre using machine-learning algorithms.

The algorithms that are trained to do this work are fed data on more than 60,000 genetic sequences different labs produced. The idea is that, when fed an unfamiliar sequence, the algorithms are able to predict which of the labs theyve encountered (if any) likely produced it.

A year ago, researchers at altLabs, the Johns Hopkins Center for Health Security, and other top bioresearch programs collaborated on the challenge, organizing a competition to find the best approaches to this biological forensics problem. The contest attracted intense interest from academics, industry professionals, and citizen scientists one member of a winning team was a kindergarten teacher. Nearly 300 teams from all over the world submitted at least one machine-learning system for identifying the lab of origin of different sequences.

In that preprint paper (which is still undergoing peer review), the challenges organizers summarize the results: The competitors collectively took a big step forward on this problem. Winning teams achieved dramatically better results than any previous attempt at genetic engineering attribution, with the top-scoring team and all-winners ensemble both beating the previous state-of-the-art by over 10 percentage points, the paper notes.

The big picture is that researchers, aided by machine-learning systems, are getting really good at finding the lab that built a given plasmid, or a specific DNA strand used in gene manipulation.

The top-performing teams had 95 percent accuracy at naming a plasmids creator by one metric called top 10 accuracy meaning if the algorithm identifies 10 candidate labs, the true lab is one of them. They had 82 percent top 1 accuracy that is, 82 percent of the time, the lab they identified as the likely designer of that bioengineered plasmid was, in fact, the lab that designed it.

Top 1 accuracy is showy, but for biological detective work, top 10 accuracy is nearly as good: If you can narrow down the search for culprits to a small number of labs, you can then use other approaches to identify the exact lab.

Theres still a lot of work to do. The competition looked at only simple engineered plasmids; ideally, wed have approaches that work for fully engineered viruses and bacteria. And the competition didnt look at adversarial examples, where researchers deliberately try to conceal the fingerprints of their lab on their work.

Knowing which lab produced a bioweapon can protect us in three ways, biosecurity researchers argued in Nature Communications last year.

First, knowledge of who was responsible can inform response efforts by shedding light on motives and capabilities, and so mitigate the events consequences. That is, figuring out who built something will also give us clues about the goals they might have had and the risk we might be facing.

Second, obviously, it allows the world to sanction and stop any lab or government that is producing bioweapons in violation of international law.

And third, the article argues, hopefully, if these capabilities are widely known, they make the use of bioweapons much less appealing in the first place.

But the techniques have more mundane uses as well.

Bradshaw told me he envisions applications of the technology could be used to find accidental lab leaks, identify plagiarism in academic papers, and protect biological intellectual property and those applications will validate and extend the tools for the really critical uses.

The past year and a half should have us all thinking about how devastating pandemic disease can be and about whether the precautions being taken by research labs and governments are really adequate to prevent the next pandemic.

The answer, to my mind, is that were not doing enough, but more sophisticated biological forensics could certainly help. Genetic engineering attribution is still a new field. With more effort, itll likely be possible to one day make attribution possible on a much larger scale and to do it for viruses and bacteria. That could make for a much safer future.

Correction, October 25, 9:50 am: A previous version of this story stated that SARS-CoV-2 had been definitively proven not to be a bioengineered virus. While an August 2021 US intelligence report concluded, Most agencies assess with low confidence that SARS-CoV-2 probably was not genetically engineered, and many scientists agree with that assessment, it was an overstatement to claim that the theory has been definitively ruled out. The introduction and conclusion of the story have been updated to reflect this lower level of certainty. (h/t to Alina Chan, biologist at the Broad Institute of MIT and Harvard, for her critique and input)

More here:
How biological detective work can reveal who engineered a virus -

Posted in Human Genetic Engineering | Comments Off on How biological detective work can reveal who engineered a virus –

CRISPR Revolution: Do We Need Tighter Gene-Editing Regulations? No – American Council on Science and Health

Life goes on as gene-edited foods begin to hit the market. Japanese consumers have recently startedbuying tomatoes that fight high blood pressure, and Americans have been consuming soy engineered to produce high amounts of heart-healthy oils for a little over two years. Few people noticed these developments because, as scientists have said for a long time, the safety profile of a crop is not dictated by the breeding method that produced it. For all intents and purposes, it seems that food-safety regulators have done a reasonablejob of safeguarding public health against whatever hypothetical risks gene editing may pose.

But this has not stopped critics of genetic engineering from advocating for more federal oversight of CRISPR and othertechniquesused to make discrete changes to the genomes of plants, animals and other organisms we use for food or medicine. Over at The Conversation, a team of scientists recently made the case for tighter rules in Calling the latest gene technologies natural is a semantic distraction they must still be regulated.

Many scientists have defended gene editing, in part, by arguing that it simply mimics nature. A mutation that boosts the nutrient content of rice, for example, is the same whether it was induced by a plant breeder or some natural phenomenon. Indeed, the DNA of plants and animals we eat contains untold numbers of harmless, naturally occurringmutations. But The Conversation authors will have none of this:

Unfortunately, the risks from technology dont disappear by calling it natural... Proponents of deregulation of gene technology use the naturalness argument to make their case. But we argue this is not a good basis for deciding whether a technology should be regulated.

They have written a very long peer-reviewed article outlining a regulatory framework based on "scale of use."The ideais that the more widely a technology is implemented, the greater risk it may pose to human health and the environment, which necessitates regulatory "control points" to ensure its safe use. It's an interesting proposal, but it's plagued by several serious flaws.

Where's the data?

The most significant issue with a scale-based regulatory approachis that it's a reaction to risks that have never materialized. This isn't to say that a potentially harmful genetically engineered organism will never be commercialized. But if we're going to upend our biotechnology regulatory framework, we need to do so based on real-world evidence. Some experts have actually argued, based on decades of safety data, that the US over-regulates biotech products. As biologist and ACSHadvisorDr. Henry Miller and legal scholar John Cohrssen wrote recently in Nature:

After 35 years of real-world experience with genetically engineered plants and microorganisms, and countless risk-assessment experiments, it is past time to reevaluate the rationale for, and the costs and benefits of, the case-by-case reviews of genetically engineered products now required by the US Environmental Protection Agency (EPA), US Department of Agriculture (USDA) and US Food and Drug Administration (FDA).

The problem with scale

Real-world data aside for the moment, there are some theoretical problems with the scalabilitymodel as well. Theargument assumes thatrisks associated with gene editing proliferate as use of the technology expands, because each gene edit carries a certain level of risk. This is a false assumption, as plant geneticist Kevin Folta pointed out on a recent episode of the podcast we co-host (21 minute mark).

Scientists have a variety of tools with which to monitor and limit the effects of specific gene edits. For example, proteins known as anti-CRISPRs can be utilized to halt the gene-editing machinery so it makes only the changes we want it to. University of Toronto biochemist Karen Maxwell has explained how this could work in practice:

In genome editing applications, anti-CRISPRs may provide a valuable 'off switch for Cas9 activity for therapeutic uses and gene drives. One concern of CRISPR-Cas gene editing technology is the limited ability to control its activity after it has been delivered to the cell . which can lead to off-target mutations. Anti-CRISPRs can potentially be exploited to target Cas9 activity to particular tissues or organs, to particular points of the cell cycle, or to limit the amount of time it is active

Suffice it to say that these and other safeguards significantly alter the risk equation and weaken concerns about a gene-edits-gone-wild scenario. Parenthetically, scientists design these sorts of preventative measures as they develop more genetic engineering applications for widespread use. This is why the wide variety of cars in production today have safety features that would have been unheard of in years past.

Absurdity alert: The A-Bomb analogy

To bolster their argument, The Conversation authors made the following analogy:

Imagine if other technologies with the capacity to harm were governed by resemblance to nature. Should we deregulate nuclear bombs because the natural decay chain of uranium-238 also produces heat, gamma radiation and alpha and beta particles? We inherently recognize the fallacy of this logic. The technology risk equation is more complicated than a supercilious 'its just like nature' argument

If someone has to resort to this kind of rhetoric, the chances are excellent that their argument is weak. Fat Man and Little Boy, the bombs dropped on Japan in 1945, didn't destroy two cities because a nuclear physicist in New Mexico made a technical mistake. These weapons are designed to wreak havoc. Tomatoes bred to produce more of an amino acid, in contrast, are not.

The point of arguing that gene-editing techniques mimic natural processes isn't to assert that natural stuff is good; therefore, gene editing is also good. Instead, the point is to illustrate that inducing mutations in the genomes of plants and animals is not novel or uniquely risky. Even the overpriced products marketed as all-natural have been improved by mutations resulting from many years of plant breeding.

Nonetheless, some scientists have argued that reframing the gene-editing conversation in terms of risk vs benefit would be a smarter approach than making comparisons to nature. I agree with them, so let's start now. The benefits of employing gene editing to improve our food supply and treat disease far outweigh the potential risks, which we can mitigate. Very little about modern life is naturaland it's time we all got over it.

Read more from the original source:
CRISPR Revolution: Do We Need Tighter Gene-Editing Regulations? No - American Council on Science and Health

Posted in Human Genetic Engineering | Comments Off on CRISPR Revolution: Do We Need Tighter Gene-Editing Regulations? No – American Council on Science and Health