Search Immortality Topics:

Page 20«..10..19202122..3040..»


Covid-19 Is Accelerating Human TransformationLets Not Waste It – WIRED

Posted: July 6, 2020 at 8:46 am

Back when we started WIRED magazine, it was all digital, all the time. In Silicon Valley, bodies were treated like the somewhat inconvenient and sometimes embarrassing things that needed to be fueled and occasionally rested so that they could support big heads that housed big ideas about the future. Human biology wasnt exactly on our radar, except in science fiction, where pandemics always seemed du jour.

WIRED OPINION

ABOUT

Jane Metcalfe is the founder, with Louis Rossetto, of WIRED. After a stint as the president of TCHO Chocolate, she created NEO.LIFE to track the ways we are changing as we bring an engineering mindset to our own biology. For more on this topic, read Neo.Life: 25 Visions for the Future of Our Species. To share your thoughts, please send email to visions@neo.life.

Then, in 1995, we published Scenarios, our first special issue, which imagined the future in 25 years, i.e. 2020. One article from that issue, The Plague Years, almost reads like a report from the current pandemic.

In it, a virus from China, of course named Mao flu, afflicts the elderly and the immunocompromised. A bio conference becomes a significant vector for infection. Singapore is initially able to contain the virus using draconian measures. The whole world goes into lockdown and cities empty as those who can afford it escape to the countryside. Theres an extensive loss of lives among medical personnel. Mao flu research becomes the only medical research taking place. The transgenic source of the virus is eventually traced back to a lab in China. There is even a cruise ship involved in our version. Ultimately, the cure is open sourced.

Our imagined solutions were based on a lot of computational and bioengineering virtuosity. In Scenarios, genomics, big data, sophisticated modeling, and immunotherapy end up solving the problem and saving our future selves. And thats pretty close to whats happening now. But what we didnt predict back in 1995 is the unprecedented amount of collaboration, cooperation, and data sharing thats going on now worldwide. And we certainly didnt anticipate the general disregard for who owns the intellectual property or who gets academic credit.

In Scenarios, it took 20 years to find the solution. Today we envision a vaccine within two years, and for frontline health care workers, probably much sooner. Its remarkable how fast science can happen when everyone is focused on the same problem. This devastating pandemic, with all its worldwide chaos and horror, has at the same time created a perfect alignment of technology, science, need, and opportunity. The global impact of Covid-19 could change science forever.

In the mid-20th century, World War II and the space race ignited the fields of computer science and communications. In the 1990s, the digital revolution came along and transformed, well, pretty much everything, from the way we communicate with each other to the way we do business, education, entertainment, and politics. Now, the next phase of technological innovationwe call it the Neobiological Revolutionis literally transforming our species. From gene editing to brain computer interfaces, our ability to engineer biological systems will redefine our species and its relation to all other species and the planet.

And Covid-19 is accelerating this transformation.

Last week marked the 20th anniversary of the day the White House announced the first draft of the human genome. In Bill Clintons words, it was the most important, most wondrous map ever produced by humankind. Since then, we have gone on to sequence over 12,000 other eukaryotes (which include humans, animals, plants, and fungi), along with even larger numbers of prokaryotes, viruses, plasmids, and organelles. We rapidly sequenced the SARS-CoV-2 virus and are watching it mutate in almost real time. We are sequencing individual patients who have had particularly adverse reactions to it, and using our big data technologies to help us understand why.

Read the rest here:
Covid-19 Is Accelerating Human TransformationLets Not Waste It - WIRED

Recommendation and review posted by G. Smith

In college, Elon Musk thought these 5 things would change the world – CNBC

Posted: July 6, 2020 at 8:46 am

The internet

Musk believed the internet, nascent in the '90s, would "fundamentally change humanity," he said on the podcast.

"I would not regard this as a profound insight but rather an obvious one," Musk said.

He compared the internet to the human nervous system: "If you didn't have a nervous system, you wouldn't know what's going on. Your fingers wouldn't know what's going on. Your toes wouldn't know what's going on. You'd have to do it by diffusion," he said.

"The way information used to work was by diffusion. One human would have to call another human or write them in a letter. [That was] extremely slow diffusion. And if you wanted access to books, and you did not have a library, you don't have it. That's it."

He knew the internet could change all that.

And while Musk only had minimal access to the internet at the time (only to use it for his physics studies, he said), he knew the internet would be a "fundamental and profound change."

"Now, you have access to all books instantly, and you can be in a remote mountaintop location and have access to all of humanity's information if you got a link to the internet," he said on the podcast. "Now suddenly, human organisms anywhere would have access to all the information instantly."

Musk believed "making life multi-planetary and making consciousness multi-planetary" would change the world, he said on the podcast.

As a child, Musk was influenced by a variety of science fiction booksand he believed he'd one day "[build] spaceships to extend the human species's reach," according tothe book"Elon Musk." (Musk previously said that theseven-book "Foundation" science fiction series by scientist and author Isaac Asimov, for example, was "fundamental to the creation of his aerospace company, SpaceX.")

On May 30, SpaceXsuccessfully launched two NASA astronautsinto orbit for the first time. It was a milestone forhuman spaceflightand got Musk one step closer to achievinghis Mars ambitions.

Just as a character in the 1997 movie Gattaca undergoes genetic engineering to pursue his dream of space travel, according to Musk, when he was younger he believed being able to change human genetics could change the world.

And it's happening today, with technology like Crispr, Musk said on the podcast.

"It will become normal, I think, to change the human genome for getting rid of diseases or propensity to various diseases," he said. "That's going to be like the first thing you'd want headed out. If you've got a situation where you're definitely going to die of some cancer at age 55, you'd prefer to have that edited out."

"There's the Gattaca sort-of extreme thing where it's not really edited out but it's edited in for various enhancements and that kind of thing," he said, "which probably will come too."

"I'm not arguing for or against it," Musk said. "I'm just saying it's more likely to come than not down the road."

As a teenager, Musk felt a "personal obligation" for the fate of mankind and felt inspired to create "cleaner energy technology" one day, according to the book"Elon Musk."

So he believed that sustainable energy would change the future.

"Sustainability, actually, was something that I thought was important before the environmental implications became as obvious as they are," he said on the podcast. "If you mine and burn hydrocarbons[compounds that form the basis of natural gas, oil and coal], then you're going to run out of them. It's not like mining metals.... We will never run out of metals, but we will run out of hydrocarbons."

He said the future may bring a carbon taxthat would raisethe cost of burning fossil fuels to mitigate climate change, which is a "no brainer."

In 2004, Musk invested in and became a co-founder ofelectric car companyTesla.Hebecame CEO in 2008. On Wednesday, Tesla became the world's most valuable automakerwhen the electric vehicle company's market capitalization surpassed Toyota's for the first time.

"AI is a really major one" too, Musk said on the podcast.

In 2019,at the World Artificial Intelligence Conference in Shanghai, Musk (who co-founded non-profit AI research lab OpenAIbut laterleft the company's board) said computers will "surpass us in every way," including scary things, likejob disruptionfrom robots or even apotentialAIracethatleadstoa third World War.

AI is "capable of vastly more than almost anyone knows and the rate of improvement is exponential," he saidhe said at the 2018 South by Southwest tech conference.

Musk also founded machine intelligence venture Neuralink, because he believes humans must merge with AI to avoid becoming irrelevant.

"We do want a close coupling between collective human intelligence and digital intelligence,"he said at the SXSW conference, "and Neuralink is trying to help in that regard by trying creating a high bandwidth interface between AI and the human brain."

Check out: The best credit cards of 2020 could earn you over $1,000 in 5 years

Don't miss:

Read more from the original source:
In college, Elon Musk thought these 5 things would change the world - CNBC

Recommendation and review posted by G. Smith

Human waste can offer advance warning of COVID-19 outbreaks – theday.com

Posted: July 6, 2020 at 8:46 am

Analyzing human waste could prove to be a valuable early detection tool to identify increases in COVID-19 cases or see where new hot spots might emerge.

An analysis of solid waste from a wastewater treatment plant in New Haven by researchers at Yale University and the Connecticut Agricultural Experiment Station from March 19 until May 1 showed that the amount of viral genetic material found in the waste corresponded with the COVID-19 infection rate in New Haven County.

In addition to providing trend data, the study also showed that the amount of virus found in the waste very closely matched hospital admissions data in New Haven County, said Jordan Peccia, Yale professor of environmental engineering and the project's lead researcher.

As Connecticut reopens its economy and lifts lockdown measures put in place to curb the spread of the virus, researchers said regular testing of solid waste could provide early warnings of new waves of infection and signal the need for more individual testing.

We were detecting increases in viral genetic material about seven days prior to the increase in the number of confirmed cases (in New Haven County), and three days earlier for hospitalizations, said Douglas Brackney, an associate scientist with the agricultural experiment station who is involved in the project. This can be a tool to predict overall community-wide activity and could be used to inform public health policy as well as preparedness in hospital settings and clinics and testing facilities.

The study took place early during the coronavirus pandemic in Connecticut at a time when testing was not widely available, so with more testing that gap gets smaller, Brackney said.

While COVID-19 testing is expensive and involves a lot of resources,analyzing waste can offer"a snapshot of community- wide activity almost in real time for a large part of states population at a much reduced cost, Brackney said.

But waste analysis is not meant to be a replacement for testing, which Peccia called the gold standard given thatit provides individual-level data about who is sick. Without that data, health officials cannot do contact tracing to identify who is sick orwho they came in close contact with them.

But data from analyzing waste can provide another piece of information for policymakers and officials to confirm infection rates in their communities.

Testing at the New Haven plant is ongoing, and researchers are providing data to the city of New Haven twice a week. With scaled-up resources, they could provide the data if not every day, then every two days, Peccia said.

Peccia is working to expand the testing to other parts of the state, particularly smaller cities such as New London and more rural areas, where often testing programs are not as robust as they are in more densely populated areas.

He is currently working on securing funding and said he hopes to expand the waste testing to about five or six other cities in the state by Aug. 1.

j.bergman@theday.com

Read the rest here:
Human waste can offer advance warning of COVID-19 outbreaks - theday.com

Recommendation and review posted by G. Smith

The Future of Sports – Bleacher Report

Posted: July 6, 2020 at 8:46 am

Each night, around 7 o'clock, I drift off into a little daydream. This has been the case for weeks now. My beloved Mets are jogging onto the grass at Citi Field, taking their positions; their ace, Jacob deGrom, making a beeline to the mound. I am up out of my seat, applauding, gazing out onto the field. I look up to the sky, and that's it, really. The scene tends to slip away from there. I look down to see the gates of my apartment's window guard and the emptied streets of Manhattan beyond them. I really am clapping, but it's got nothing to do with baseball. It's in support of local nurses and doctors at work or changing shifts. Across New York City, this ritual plays out night after night (the clapping for health care workersnot the Mets fantasies, I don't think).

There's a crossing of wires at play, like my precious sports memories are mingling with the signatures of my life during the COVID-19 eraclapping, quarantining, boredom. Will it stay this way? For a while, at least, I think it will.

As MLB, the NBA and other leagues near their returns, I find myself fascinated by questions pertaining to the virus and the ways it will ripple through our leagues. How many players will contract it? How will leagues' models evolve as they move forward? Even for mea lifelong overcommitted fan who sends excessive, neurotic text threads (unresponded to) during regular-season gamesI think most of the drama in sports will come not from daily games but from daily tests results. This is the virus overpowering the once-invincible sports machine.

Already, so much of the mystique of sports has been lost. I miss the steady, circular rhythm of leagues in-season, the way they appeared day after day, overlapping only a few sacred times a year as if choreographed by the moon instead of computers and marketing teams. I miss the shameless self-importance of teams playing no matter what. (Spring training continued for 10 days after the first cases of COVID-19 appeared in Florida.) It was simply more fun back when we could view athletes as impervious superheroes rather than as bored video-gamersor, worse, as medical patients. There is something uncomfortable about having seen a dominant, intimidating player like Rudy Gobert briefly exposed as reckless and unhygienic. Games will return soon enough, but what about the underlying myths that lend them relevance and depth?

The NBA's bubble-based return, set for July 30, cuts against team fandomso driven by proximityby moving everyone to Disney World. It admits that the game could go on without us, the fans, rowdy old faithful, by playing in near silence. Game rules are changing, too, yielding to the virus' demands. There are smaller coaching staffs to protect older people from exposure, and expanded rosters for when the inevitable happens. Every league is making compromises: MLB might ban its most endearing prop, the sunflower seed, and tweak its most fundamental, unique feature, the nine-inning game.

These leagues are right to weigh these measures and to take them. They are preventing tragedies, not creating them. But the bending of tradition makes me wonder about the future of sports, about how things just changed overnight, and how they might change again in 10 years or 50. Maybe that will be the enduring impact of COVID-19 when it comes to sportsthat it opened the gates to change.

Naturally, this is where things get strange. Stick it out anyway. Consider the ways that fans and leagues are already adapting to this odd time, this time of no sports, and then imagine what comes next, and what after that. One small bit of innovation leads to an unpredictable new one, and on it goes. Very quickly, this evolution brings us into the realm of science fiction.

We might be there already. While games were on hold, the public embraced something that in the past seemed both silly and dystopian: game simulations. Las Vegas offered sim-game betting lines; we hosted virtual Madden watch parties right here at B/R. They were and are an obvious placeholder for real sports. Still, their popularity made me curious about their power down the road, if animated graphics improve enough to match real sports. Technologically speaking, could that day be coming? I asked an expert.

Nicholas Bostrom is a professor at Oxford and a pioneer of the simulation theory, which posits that we may be living in a knockoff version of Earth created by a more advanced (real-life) society. (Assuming that computers will someday be able to produce unlimited realistic simulations of life, we might be wise, he suggests, to already "think that we are likely among the simulated minds rather than among the original biological ones.") Bostrom published Are You Living in a Computer Simulation? way back in 2003. Today, few are better equipped to tell us about the future of sims. So, Professor, how good can they get?

"Eventually we will have completely realistic virtual reality simulations that would be indistinguishable from physical reality," he says. "I don't see why in theory you couldn't have a purely artificial creature that was competing against another in a way that would create a sports event."

You might be wondering what the point of this would be once sports return. Well, consider the NBA's most exhausting debate topic: load (or injury) management. Back when there were regularly scheduled games, we wasted much time meditating on the notion of, say, Kawhi Leonard taking a night off, letting his teammates dominate the lowly Cavaliers or Knicks in front of a crowd that paid to see him play. It's obvious that if there were fewer games, the need to skip some of them would decrease. Fewer games would also soothe another of the league's concerns: players' lack of sleep amid a busy travel schedule.

Simulations could merge these issues and resolve them at once. Why not simulate lopsided games like Clippers-Cavs, providing rest for Leonard and everybody else involved? Each year, each team could sim 10 or 12 games, allowing a 70- or 72-game schedule for playersalready a desired ballparkand a full 82-game slate for the league's partners, like TV networks and casinos, who would package the simulated visuals and box scores.

Maybe this idea seems a little far out, but the NBA rarely minds. It is already welcoming the ideas of the future, from the four-point shot to aerospace revolution.

Indeed, Commissioner Adam Silver has long seen supersonic flight as the key to a truly global league. With it, Portland could face Sydney and return four hours later, in time for bed. We already have an Atlantic Division with teams from America's Northeast; how about adding a Transatlantic Division featuring Brazil, Spain and Nigeria? For now, the problem is a logistical one. "Under existing airline technology, the planes aren't fast enough to at least play in the current framework of our regular season," Silver told USA Today in 2017. Fortunately, with help from Elon Musk, Richard Branson and more, supersonic jets are on their way. Just one of many game-changers to come.

Robots have perfected three-point shooting and will someday make flawless floor-spacers. Salaries paid in cryptocurrency will provide a cap loophole and threaten the league's financial structure. Augmented reality on-screen willsomehowincrease complaints about players' shot selection. Advanced tracking through biometric data will grow into a major concern regarding personal privacy. How much should bidding teams know about a free agent's body? Who gets to dictate the right body fat percentage for somebody else or whether a balky ankle is strong enough to play on? And, as the Wall Street Journal once asked: If a fan gains access to a player's medical status and uses it to wager on a game, is that insider trading? (If the answers to these questions seem like a privacy violation, then consider how quickly athletes' COVID-19 test results became expected public information, even though they're irrelevant so long as sports are on hold. If there is already a demand to know whether Ezekiel Elliott, a running back, is experiencing an inability to smell, then there's no doubting the future demand for intimate insight about his legs.)

Yes, the future can seem vast and spookythough not to Thomas Frey. Frey is an author and member of the Association of Professional Futurists. His job is to burst with ideas, and he's bursting all right, riffing on the future of medicine, tech, sports, you name it. He envisions not only the events of the future but also the issues that will counter those eventsthe future's future. "Drone racing is kind of a hot area right now," he says, "but my sense is that the drone racing eventually gets so fast that you can't even see it, and so I'm not sure that sport sticks around." Dang. What else? Frey wants to elevate existing sportsthe ones played on the groundthrough the control and reduction of gravity. (Think NFL meets Quidditch or Slamball with no need for trampolines.) He wonders about anti-aging, tooin this case, what 3,000-year lifespans might mean for athletic primes.

Other revolutions are impossible to imagine playing out (unless you happen to be a member of the APF). "We're close to reviving extinct species like woolly mammoths," Frey notes, before pondering the cruelty of secluding them from other, natural-born animals. An idea strikes him. "Creating a sport with woolly mammoth riders going around the trackthat would seem bizarre today," he says. "But I would definitely pay to go see that."

Of course, there is not only the matter of tweaking (or inventing) sports, but also that of tweaking the players themselves. One of Frey's favorite topics is genetic engineeringthe process of tinkering with human genes before birth. "We're reinventing people. We're making people more durable. We're giving rights to CRISPR [the bio-tech giant], who will give us superbabies who grow up to be superhumans," he says. OK then. Frey thinks it's inevitable that, someday, we'll be able to genetically manufacture superior athletes: bigger, faster, smarterto an uncanny degree. He wonders about "downloading the human brain" and uploading it into the mind of another person. In time, if this all gets easy and silly enough, a supertoddler could have the basketball IQ of LeBron James. (Just imagine the recruiting violations that would follow.)

Bostrom has explored genetic engineering as well. "The enhancement options being discussed," he wrote in 2003, "include radical extension of human health-span, eradication of disease, elimination of unnecessary suffering" and more. A superhuman ability to ward off illnesssay, a coronaviruswould certainly come in handy. So too would advancements that eliminate athletic limitations. Imagine how a perfect set of knees would have changed the careers of Greg Oden, Brandon Roy and others; imagine Shaquille O'Neal with a sprinter's endurance; imagine Jimmer Fredette at 7'3".

Sounds pretty greator actually it sounds like it would look pretty great, visually. But would this be good for sports? Is it ethical? Or the right spirit? And how would this impact the lives of the athletes we love?

Every tech innovation takes something away from the humans it replaces or (ostensibly) aids. Flawless three-and-D bots entering the NBA would not only change the game but also eliminate dozens or hundreds of lucrative jobs. Supersonic travel, alluring as it may be, could have untold effects on passengersespecially international-league athletes, flying overseas day after day. Genetic engineering could draw a devastating, permanent line between the haves and the have-nots.

When it arrives in full force, Frey says, crafting a given attribute"20/10 vision, a perfect heart"may well cost tens of thousands of dollars. There's no telling what else will be at the disposal of fortunate young athletes then (though Frey, of course, has some ideas, including advanced VR headsets).

Already, financial inequality pervades all of sports. Young basketball players need to be able to cover the costs of trainers and AAU travel teams to earn recognition; it's probably not a coincidence that the children of well-off former players are entering the league at a higher rate than ever. Young baseball players need not only training but also equipment, toomitts, balls, bats, helmets, cleats. (Cleveland pitcher Mike Clevinger recently blamed these costs for the sport's declining popularity among young athletes.) Golf, football, hockeyevery major sport operates behind a financial barrier to entry. In 2018, The Atlantic noted that "just 34 percent of children from families earning less than $25,000 played a team sport at least once a day in 2017, versus 69 percent from homes earning more than $100,000." (Those numbers came from a study by the Aspen Institute, which found that the gap was rapidly growing.)

Imagine a world in which the NBA MVP is an 8'6" trust-fund kid. It seems awfully shallow. Could a souped-up superhuman celebrate the award with the same tenderness as Kevin Durant did in 2014? Even if they did, would we bother to cry along with them? There is no great story in sports without long odds and a dash of relatability.Genetic engineering would destroy the enduring notion of the underdog. It would dull the sweetness of our games, the unpredictability, the misery, the reward. What, then, would be left?

"I'm not particularly excited about sports enhancements," Bostrom says, speaking broadly. "We shouldn't make the mistake of thinking everything that makes the sport easier or makes performance better makes the sport more enjoyable. I think we should think of these things more as, You're designing a game. Think creatively about what would make the most fun game. It's not always the easiest thing."

So far, leagues have mostly welcomed new tech as it arrives, a concerning trend. Consider the modern obsession with instant replay.

Think back to the men's NCAA title game last April. With the season on the line, the ball was knocked out of a Texas Tech dribbler's hands and flew out of bounds. For anybody who has ever picked up a basketball and played a game on any level, it was instantly recognizable as Tech's ball. But after several minutes of replaywhich included referee consultant Gene Steratore saying, "At times, guys, I will tell you, when you start running replay really, really slow, you get a little bit of distortion in there as well, so you've gotta be cognizant to that," suggesting that looking more closely may bring us further from the truththe ball was given to Virginia, the underlying logic being that the most important thing is to get the call right. Is it? What about the flow of the game, the sanity of the viewer, the unspoken understandingsI knocked it out; it's your ballthat run between players and fans, deepening the sport?

This, I will always believe, is the good stuff. Even Bostromwho is so technical that he at one point connects sports fandom to ancient Greek war and says, "You can speculate that, from an evolutionary point of view, being able to detect small differences in fitness would be valuable"agrees these intangibles are worth protecting. Even at the cost of, say, letting simulations run wild.

"You can't predict how an actual game will play out just by sort of measuring the circumference of the biceps and the speed on the treadmill of the athletes," Bostrom says. "And I think if you could predict it, in some sense it could reduce interest. It's not the same as seeing the struggle, the human spirit, the grit, the audience cheering them on."

The question, then, is not so much whether replay or sims or any other technical advance are helpful or efficient but whether we have the ability to recognize when they are aiding sports versus when they are harming them, and when the time is right to rein them in.

"Rather than just allowing everything that makes the performance better," Bostrom says, "we should think more about changes that make the game more fun and rewarding for both the players and the audience."

Are we doing this now? It's hard to say. The COVID-19 pandemic is accelerating change and the acceptance of change. It is clouding the rule-changing thought process. Already, long-standing traditions and powerful illusions have been altered across sports. After years of debate within baseball about the designated hitter, it will be implemented leaguewide as part of MLB's plan for a safe return. It is but a footnote to a much more complex story, which is fine. But also, how does the DH protect anybody from the coronavirus?

The NBA's bubble league will introduce its own oddities, though not everyone will be there to experience them firsthand. Several players have already tapped out of the NBA reboot, some fearing the virus, some having tested positive for it, some unwilling to separate from their loved ones. Others are sitting out so they can focus on social justice reform after expressing concerns that basketball could detract from those efforts. For those traveling to Disney World, it will be a lonely undertaking. Players themselves "are not permitted to enter each other's hotel rooms." Card games, if they do occur, will be monitored closely, and decks will be swapped out frequently.

Every league is drawing its own unprecedented game plan. The NFL is planning to cover the seats closest to the sidelines to keep fans away from players (though the league of course will advertise on the tarp). The NHL will reportedly route its action through two hub cities, Toronto and Edmonton. The measures that college sports will need to takeassuming anybody is on campus come Septemberfigure to be the most drastic of all.

Tech innovation will accompany each return: temperature screenings, artificial crowd noise, broadcasting from home. As quarantine warps our collective sense of time, it feels as though we've known these quirks forever. But not long ago they would have seemed quite strange, impossible, unwelcome, like somebody somewhere out there was toying with our settings.

Leo Sepkowitz joined B/R Mag in 2018. Previously, he was a Senior Writer at SLAM Magazine. You can follow him on Twitter: @LeoSepkowitz.

Read more:
The Future of Sports - Bleacher Report

Recommendation and review posted by G. Smith

Genetically modified mosquitoes could be released in Florida this summer – WFLA

Posted: July 6, 2020 at 8:46 am

(THE CONVERSATION) This summer, for the first time, genetically modified mosquitoes could be released in the U.S.

On May 1, 2020, the company Oxitec received anexperimental use permitfrom the U.S. Environmental Protection Agency to releasemillions of GM mosquitoes(labeled by Oxitec as OX5034) every week over the next two years in Florida and Texas. Females of this mosquito species, Aedes aegypti, transmit dengue, chikungunya, yellow fever and Zika viruses. When these lab-bred GM males are released and mate with wild females, their female offspring die. Continual, large-scale releases of these OX5034 GM males should eventually cause the temporary collapse of a wild population.

However, as vector biologists, geneticists, policy experts and bioethicists, we are concerned that current government oversight and scientific evaluation of GM mosquitoes do not ensure their responsible deployment.

Genetic engineering for disease control

Coral reefs that can withstand rising sea temperatures,American chestnut treesthat can survive blight andmosquitoes that cant spread diseaseare examples of how genetic engineering may transform the natural world.

Genetic engineering offers an unprecedented opportunity for humans to reshape the fundamental structure of the biological world. Yet, as new advances ingenetic decodingandgene editingemerge with speed and enthusiasm, the ecological systems they could alter remain enormously complex and understudied.

Recently, no group of organisms has received more attention for genetic modification than mosquitoes toyield inviable offspringor make themunsuitable for disease transmission. These strategies hold considerable potential benefits for the hundreds of millions of people impacted bymosquito-borne diseaseseach year.

Although the EPA approved the permit for Oxitec, state approval is still required. A previously planned release in the Florida Keys of an earlier version of Oxitecs GM mosquito (OX513) waswithdrawn in 2018aftera referendum in 2016indicated significant opposition from local residents. Oxitec has field-trialed their GM mosquitoes inBrazil, the Cayman Islands, Malaysia and Panama.

Thepublic forumon Oxitecs recent permit application garnered 31,174 comments opposing release and 56 in support. The EPA considered these during their review process.

Time to reassess risk assessment?

However, it is difficult toassess how EPA regulatorsweighed and considered public comments and how much of theevidence used in final risk determinationswas provided solely by the technology developers.

The closed nature of this risk assessment process is concerning to us.

There is a potential bias and conflict of interest when experimental trials and assessments of ecological risk lackpolitical accountabilityand are performed by, or in close collaboration with, the technology developers.

This scenario becomes more troubling with afor-profit technology companywhen cost- and risk-benefit analyses comparing GM mosquitoes to other approachesarent being conducted.

Another concern is thatrisk assessmentstend to focus on only a narrow set of biological parameters such as the potential for the GM mosquito to transmit disease or the potential of the mosquitoes new proteins to trigger an allergic response in people and neglect other importantbiological,ethicalandsocialconsiderations.

To address these shortcomings, the Institute for Sustainability, Energy and Environment at University of Illinois Urbana-Champaign convened a Critical Conversation on GM mosquitoes. The discussion involved 35 participants from academic, government and nonprofit organizations from around the world with expertise in mosquito biology, community engagement and risk assessment.

A primary takeaway from this conversation was an urgent need to make regulatory procedures more transparent, comprehensive and protected from biases and conflicts of interest. In short, we believe it is time to reassess risk assessment for GM mosquitoes. Here are some of the key elements we recommend.

Steps to make risk assessment more open and comprehensive

First, an official, government-funded registry for GM organisms specifically designed to reproduce in the wild and intended for release in the U.S. would make risk assessments more transparent and accountable. Similar to the U.S.database that lists all human clinical trials, this field trial registry would require all technology developers to disclose intentions to release, information on their GM strategy, scale and location of release and intentions for data collection.

This registry could be presented in a way that protects intellectual property rights, just as therapies entering clinical trials are patent-protected in their registry. The GM organism registry would be updated in real time and made fully available to the public.

Second, a broader set of risks needs to be assessed and an evidence base needs to be generated by third-party researchers. Because each GM mosquito is released into a unique environment, risk assessments and experiments prior to and during trial releases should address local effects on the ecosystem and food webs. They should also probe the disease transmission potential of the mosquitos wild counterparts andecological competitors, examine evolutionary pressures on disease agents in the mosquito community andtrack the gene flowbetween GM and wild mosquitoes.

To identify and assess risks, a commitment of funding is necessary. The U.S.EPAs recent announcementthat it would improve general risk assessment analysis for biotechnology products is a good start. But regulatory and funding support for an external advisory committee to review assessments for GM organisms released in the wild is also needed;diverse expertise and local community representationwould secure a more fair and comprehensive assessment.

Furthermore, independent researchers and advisers could help guide what data are collected during trials to reduce uncertainty and inform future large-scale releases and risk assessments.

The objective to reduce or even eliminate mosquito-borne disease is laudable. GM mosquitoes could prove to be an important tool in alleviating global health burdens. However, to ensure their success, we believe that regulatory frameworks for open, comprehensive and participatory decision-making are urgently needed.

This article was updated to correct the date that Oxitec withdrew its OX513 trial application to 2018.

[Deep knowledge, daily.Sign up for The Conversations newsletter.]

This article is republished from The Conversation under a Creative Commons license. Read the original article here:https://theconversation.com/genetically-modified-mosquitoes-could-be-released-in-florida-and-texas-beginning-this-summer-silver-bullet-or-jumping-the-gun-139710.

The Conversation is an independent and nonprofit source of news, analysis and commentary from academic experts.)

Brian Allan,University of Illinois at Urbana-Champaign;Chris Stone,University of Illinois at Urbana-Champaign;Holly Tuten,University of Illinois at Urbana-Champaign;Jennifer Kuzma,North Carolina State University, andNatalie Kofler,University of Illinois at Urbana-Champaign

See original here:
Genetically modified mosquitoes could be released in Florida this summer - WFLA

Recommendation and review posted by G. Smith

Coronavirus: Former MI6 boss says theory COVID-19 came from Wuhan lab must not be dismissed as conspiracy – Yahoo News UK

Posted: July 6, 2020 at 8:46 am

A former British spy chief says he wants a more open debate on the origin of the coronavirus pandemic and warns against dismissing as conspiracy the idea that it might have come from a laboratory.

Sir Richard Dearlove doubled down on his belief the virus that causes COVID-19 was engineered and escaped by accident from a lab in the Chinese city of Wuhan, where the first victims were identified.

His opinion contrasts with a prevailing view among scientific experts as well as the US and British intelligence communities that the SARS-CoV-2 coronavirus was not man-made.

The intervention comes as a team of scientists from the World Health Organisation (WHO) prepares to fly to China this week to investigate the origin of a disease that has killed more than half a million people globally.

"I subscribe to the theory that it's an engineered escapee from the Wuhan Institute (of Virology)," said Sir Richard, who served as head of the Secret Intelligence Service, MI6, between 1999 and 2004.

"I am not saying anything other than it was the result of an accident and that the virus is the consequence of gain-of-function experiments that were being conducted in Wuhan, which I don't think are particularly sinister."

Sir Richard was referring to a type of scientific research that can be carried out to modify viruses.

"There is an accumulation of evidence that this is something that has to be openly discussed in the scientific community," the former spy chief said.

"If we are going to have an inquiry in the UK - which I'm sure will happen - about the pandemic and government policy, it will have to start with the science. Where did this virus actually come from?"

But the widely held view among scientists is that the novel coronavirus most likely occurred naturally.

They believe it probably passed from an animal - the prime suspect is a bat - to a human, possibly via an intermediary species, but without any genetic engineering or man-made modifications.

"There is no doubt that this was a natural event," said Dr Rachael Tarlinton, an associate professor of veterinary virology at the University of Nottingham.

"The artificial release theories seem to be a form of 'magical thinking' - a simplistic solution to a complex problem where if someone can be blamed then that someone can be removed and the problem go away," she said in an email exchange.

"Unfortunately real life just doesn't work this way - manipulating viruses in the lab to change their pathogenicity is actually quite difficult and unpredictable and any group that had the ability to work on something like this would be well aware of how hard this is," she said.

"We knew spillover from animals was a risk The virus may have passed through an intermediate species on its way into the human population from bats but we may never know which animal this was - candidates include pangolins and small carnivores like palm civets or mongooses. Unfortunately we can't go back in time and start monitoring from before the outbreak so we only have very patchy samples to try and work this out from."

This lack of a clear evidence trail is viewed with suspicion by some.

So too is the fact that the virus was so well adapted to transmitting among people and throughout different parts of the body from the moment it was first identified late last year.

The existence in Wuhan of two laboratories that have conducted research into coronaviruses in bats is also seen by those supportive of the lab theory to be more than just a coincidence.

A top official at the Wuhan Institute of Virology (WIV), which has drawn the most suspicion, has said there is "no way the virus came from us".

Yuan Zhiming, a vice director at the institute, was quoted by a Chinese state broadcaster in April as saying: "We have a strict regulatory regimen. We have a code of conduct for research so we are confident of that.

"Why are there rumours?" he asked. "Because the Institute of Virology [is] in Wuhan people can't help but make associations, which I think is understandable. But it is bad when some are deliberately trying to mislead people. This is entirely based on speculation."

He also denied that the virus was man-made.

With COVID-19 responsible for so much death and economic damage, the mystery about its origin has become a highly-political topic as well as a scientific one.

Story continues

It has added fuel to already heated hostilities between the United States and China.

US President Donald Trump, who blames Beijing for the pandemic, claimed in April that he had seen evidence it had come from a laboratory.

The US intelligence community took the unusual step of releasing a statement to say it concurred with the consensus view that the disease was not man-made, but spies are investigating whether the virus might have been held in a laboratory and leaked accidentally.

It's understood that Britain's intelligence and security services don't believe the theory that the virus was manufactured.

Sir Richard said: "I am just staggered. They clearly haven't read the science. And they haven't attempted to understand it. The onus is now on the leadership of China to explain why the theory and the hypothesis that it could be engineered is wrong."

Sir Richard first spoke about his coronavirus theory in The Daily Telegraph last month.

He told Sky News his thinking has been shaped in part by the work of a British clinical scientist called Professor Angus Dalgleish and Birger Sorensen, chairman of Norwegian company Immunor, which is seeking to develop a COVID-19 vaccine.

:: Listen to the Daily podcast on Apple Podcasts , Google Podcasts , Spotify , Spreaker

The two men have published a paper offering an alternative theory on a vaccine for coronavirus.

They have written other related coronavirus papers, including one that explores their belief it is more likely the virus was manipulated in a laboratory than occurring naturally.

This research has yet to be accepted by a journal for publication.

The pair said they wanted to challenge work on the origin of COVID-19 published in the scientific journal Nature Medicine in March, which ruled out lab-meddling.

"I thought the whole point of a scientific journal was that you put forward some speculation and you opened it up to debate," said Professor Dalgleish, who is a professor of oncology at the Institute for Infection and Immunity at St George's University London. He is also principal of the Institute for Cancer Vaccines and Immunotherapy.

"Disagree all you want - that's how you get to the right answers."

He and Mr Sorensen say they have gone against the scientific consensus before with their research on treatment for HIV.

"We maintained a very good friendship and working relationship," the British clinician said, explaining how they came to collaborate on COVID-19. He also holds stock options in Mr Sorensen's vaccine company.

Sir Richard challenged Nature to publish the two men's paper on the origin of the virus.

Sky News understands that it was submitted but not accepted.

Magdalena Skipper, editor in chief of Nature, said she was not permitted to discuss individual papers and whether or not they had been received or turned down.

However, as an editor and previously a researcher, she said it was crucial to keep an open mind when it comes to science and to engage in discussion.

"But in the end if one doesn't see many publications in favour of a certain theory, one has to conclude that that's because there isn't robust evidence in favour of that theory. Rather than seeking alternative explanations for that. Because after all it is that focus on the evidence in support of a theory which is the focus of research and how conclusions are made," she said.

Professor Kristian Andersen at the department of immunology and microbiology at Scripps Research, a medical research facility in California, was lead author on the March paper that argued the new coronavirus evolved naturally and not from a laboratory.

He defended his work and attacked the vaccine paper by Mr Sorensen and Professor Dalgleish, describing it as "complete nonsense, unintelligible, and not even remotely scientific - leading the authors to make unfounded and unsupported conclusions about the origin of SARS-CoV-2".

In an emailed statement, sent by a colleague, Professor Andersen added: "As we describe in our paper, all the data strongly suggest that this is a natural virus - no scientific data has been put forward suggesting otherwise, including in the present 'study'."

Mr Sorensen defended his approach.

"What nonsense? He is nonsense. He has no support. He says [originating from a laboratory] cannot happen. Of course this can happen," he said.

Sky News has spoken to four other scientists who believe that the lab theory should not be ruled out, though they did not say it was more likely than a natural explanation.

:: Listen to the The World Tomorrow on Apple podcasts , Spotify , and Spreaker

Professor Richard Ebright of the Waksman Institute of Microbiology at Rutgers University in New Jersey was dismissive of the Dalgleish-Sorensen paper but he took issue with Professor Andersen's piece in Nature too, describing it as opinion.

"The op-ed's conclusion that SARS-CoV-2 genome shows no signatures of purposeful human manipulation is correct," he said in an email exchange.

"The absence of signatures rules out the possibility the virus was engineered using methods that leave signatures. However, the absence of signatures of manipulation does not rule out the possibility the virus was engineered using widely employed - including at WIV - methods that do not leave signatures. The op-ed does not even address the possibility that an unpublished WIV bat coronavirus could be the progenitor of SARS-CoV-2."

He pushed back on condemning those who consider a lab leak as conspiracy theorists.

"By definition, an accident cannot be a 'conspiracy'," he said.

"Persons who use term 'conspiracy theory' to describe possibility of accidental release reveal themselves to be unable to read, unable to reason, or uninterested in truth."

He signalled that the only way to reach the truth would be through an independent, forensic investigation, which would require access to places like the Wuhan Institute of Virology.

In Australia, Professor Nikolai Petrovsky at Flinders University is also keeping an open mind.

He said normally a virus that jumps from an animal takes time to become good at infecting a human.

"Whereas what appears to have happened with COVID-19 is from day one it was perfectly adapted to infect humans and to transmit between humans which is why it's been such a big problem," he said.

"So then you have to ask: well, how did that happen?

"One possibility of course is that it was just a massive fluke... The other possibility that you have to consider in terms of where its origins may come from is: Has this virus seen human cells before in a situation we simply weren't aware of? And so one of those situations would be if the virus had been growing in human cells in the laboratory."

He too was concerned about scientific research that supports the lab theory not being published.

"It's always fraught with difficulty when you have a scientific question that runs up against a political issue," Professor Petrovsky said. "I think that COVID-19 and its origins is one of those areas where unfortunately we have enormous amount of politics overlaid over the science. And so it gets harder to get to the truth in that context."

Continued here:
Coronavirus: Former MI6 boss says theory COVID-19 came from Wuhan lab must not be dismissed as conspiracy - Yahoo News UK

Recommendation and review posted by G. Smith


Page 20«..10..19202122..3040..»