Search Immortality Topics:

Page 11234..1020..»

2016 Reminder Healthy Living Can Add Up To 14 Years to Your Life

Posted: February 2, 2016 at 5:25 am

Recommendation and review posted by Guinevere Smith

Technocalpyse Part 1, 2, 3

Posted: January 24, 2016 at 7:16 am

Recommendation and review posted by Guinevere Smith

The Ethics of the Future: Human Genetic Engineering and Human Immortality Medicine is Coming in 19 years!!

Posted: January 1, 2015 at 12:46 pm

The Ethics of the Future: Genetic Engineering and Immortality Medicine

2015 is Going to Be a Fascinating Year for Longevity Science

By Professor Mark

How do you feel about the potential for great advances in Human Longevity Science that have been occurring in recent years? Do you feel excited about the prospect of living a much longer life, or are you indifferent? Are you nervous about the prospects of what this sort of tinkering with genetics and human nature might bring?

Is the potential for a vastly expanded lifespan going to be something that everyone can enjoy, or will it be an advantage simply for those that can afford it? If you could live 100 years longer, would you want to? Would you care if the opportunity were afforded to you as an individual? Would such a huge opportunity lead to a new and beautiful life on earth, or would earth somehow take these momentous advantages and turn the world on its head?

My Beliefs Regarding Advanced Genetic Engineering

Many years ago, when I was an undergraduate at Penn State, our professor posited similar questions in our Genetics Class, which played a major role in affecting my beliefs toward the subject of hyper-longevity and Genetic Engineering. The class was large, with more than 100 students, and my professor asked the class what their opinions were regarding the use of genetic manipulation and engineering to alter human life.

Surprisingly, the class was completely silent. In response to this silence, the professor called up two students to debate the subject. One of my classmates volunteered to voice his opposition to genetic engineering, and I chose to volunteer, providing an argument in favor of it.

My opponent voiced his opinion to the class that genetic engineering for this purpose would be ethically wrong because it is not in man’s best interest to play God. Most of our classmates seemed to agree, nodding subtly in agreement.

Personal Aesthetic: Choosing to Be Different

I felt as though I was standing upon a grand crossroads of history. As I looked around the class, it felt as though all of my classmates, for all of their cliquish differences, were being incredibly closed-minded, like they just accepted what they had been told all their lives and were afraid to think for themselves.

After the professor gauged the response of the students, I had my opportunity to argue in favor of this advanced human genetic engineering. I glanced around the class, and felt my argument come together cleanly in my mind. I saw white girls with bleached hair stretching down their backs, more than a few of which had fake breasts. I saw black girls with expensive weaves and complex and expensive hairstyles.

There were white students mimicking their hip hop and rap idols, and I even saw a young Asian student that had very obviously dyed her hair red. In my class I saw a great commingling of different styles. People both attempting to exemplify American standards of beauty and those taking on the aspects of other cultures, adopting them as their own.

As I looked around at all of this, recognizing the great diversity in my class, I had a strong feeling that there was not one person in the class that didn’t have at least one thing they wanted to alter about the characteristics they were born with. I continued thinking to myself, that these students probably wanted to be different in a variety of different ways: some wanted to be smarter, some taller. Some girls wish they had larger breasts, and some guys wanted larger penises. Others probably wish that they didn’t have to go through the trouble to put in contacts and hair dyes to look like the person they wish they were. For myself, I would have given anything just to be a few inches taller.

A Call for Genetic Freedom

After standing quietly for a moment, with all of these thoughts running through my at head a rapid place, I spoke from my position, in the back of the class, and suddenly stated loudly: Genetic Freedom!

I felt that just those two words spoke for themselves, but my professor threw a dejected glance in my direction, and I could detect her shaking her head almost imperceptibly. Her silence was a sign that she needed more. After the brief silence, I continued. I argued to the class that the individual should have full control to alter his DNA as he sees fit, so long as it doesn’t negatively impact society or the rights of anyone else.

She seemed thoroughly unhappy with the argument, and the class began to chatter loudly, nearly in unison. After the short spate of controlled chaos, the class continued with liveliness and energy, but I felt that others in the class largely shunned me as a result of the fervent beliefs I expressed in regard to what legitimately amounted to the potential future of the human race.

Will People Be Able to Resist Genetic Alteration?

I still laugh to myself to this day about how my belief met such incredulity in the face of so many. In the future, once science makes it possible to make such powerful changes to humanity at the genetic level, I am confident that these same students, if given the actual opportunity to improve themselves through futuristic genetic methods, would absolutely jump at the chance with no second thought.

It wouldn’t be Playing God. It wouldn’t be unethical. It would simply be the new reality. In fact, once the time comes to pass when Genetic Alteration becomes a reality, the exact same people today that seek out plastic surgery and cosmetic surgery will clamor for these procedures as soon as they become available. In the end, I believe I made a B in the course, which is regretful, because I’ve always remained highly interested in genetics.

The Future of Humanity: The Organic and the Engineered

Another of my professors at Penn State, himself with a doctorate in genetics, explained an interesting aspect of human evolution, one which I had never thought of before. He explained that the many races that make up humanity as a whole developed their differences as a result of dispersing far from one another, and slowly adapting to their new environments over time.

After they migrated, geography, distance, and other factors kept them from interacting heavily with one another, which caused their minor adaptations to become more pronounced. In the same way that they developed their own habits and cultures, their aesthetic and physical makeup also changed. Some grew taller, others grew paler, and each individual culture became maximally resistant to the diseases which were prominent in their area.

Even though these physical and genetic changes were significant, any healthy woman on earth could still mate with any other healthy man, no matter how different he looked or acted. What he said that truly sparked my mind was that if the different races of human beings stayed geographically isolated from one another for longer period of time, eventually the different races could have changed enough to where they could no longer produce children with one another.

Could Genetically Engineered Humans Evolve Beyond Humanity?

This can also apply to the future of genetic engineering. The modern world is so interconnected that geography has no impact on the ability of humans to breed with one another, but genetic enhancement may lead to a point at which a human born today would not be able to mate with an individual that was the result of generations of genetically altered parents.

As Genetic Engineering becomes more advanced, humans may change enough at the genetic level to prevent interbreeding between lineages which have undergone these advancements and those that chose not to. This change would of course be gradual, first reducing the ability to conceive before denying that ability altogether. At this point, it would take genetic engineering just to create a viable child for two disparate humans. Interestingly enough, it may even come to pass that different species of humans evolve from such endeavors, as distinct from one another as they are from humans themselves.

The beginning of this story could begin sometime in the next hundred years, as scientists and medical specialists develop the ability to safely and effectively alter DNA to meet the specifications of the individual.

The Future is Coming: the Great Human Divergence and the Neo-Sapient

The people that choose to reject Genetic Modification and Advanced Longevity Treatments in the near future will create an interesting binary world. This could be the beginning of a grand human experiment. This could be the focal point of a genetic divergence so strong that it literally fragments the human race, creating a new class of post-humans that have advanced to a point where they qualify as their own unique species.

I think back to the genetics course I mentioned earlier. I remember the absolute ocean of diversity that was contained within the 100-student course, and I was able to visualize a future in which Genetic Modification leads to even greater diversity, and a uniqueness that has never existed in the history of the human race. It made me think of the diversity of the universe, and the unlimited options for diversity that it represents. As someone with an affinity for astronomy, I find it utterly inconceivable that planet earth is home to the only lifeforms in the universe.

Of course, along with my great optimism, I do recognize that there are risks and unknowns related to the future of Genetic Modification. There is even the potential that the science behind Genetic Modification could be used for Genetic Warfare. There is certainly the potential that the same science that creates a new humanity could be used to destroy large swathes of it. I can imagine an apocalypse that is not nuclear and grandiose, but genetic and nanoscopic.

Post-Humanism and the Search For Other Worlds

In the end, will humans be able to develop interplanetary travel and colonization in order to insure itself against such potential apocalyptic scenarios? It’s a subject that I am particularly concerned with, and is the core reason why I support NASA and the United States Space Program. As the world moves faster and the dangers become greater, it is imperative that we are able to save humanity even in the case of a state of mutually assured destruction.

If there truly is a Genetic Revolution on the horizon, it is vitally important that we use all of the resources we have available in order to make our dreams of space colonization a reality. Imagine a future so spectacular: A future where a multitude of post-human species advance outward from earth in order to colonize space like a rainbow across the galaxy.

This journey will be arduous and epic, as earthlings spread across the cosmos in order to find new viable homes and potentially interact with other life forms.

What Would Aliens Be Like?

Can you imagine how literally otherworldly that would be? If we found advanced aliens, would they have unlocked the key to eternity? Would we have done the same? There is no doubt that the first time that we make contact with an extraterrestrial species, they will come from worlds and cultures which are absolutely unimaginable in the face of everything that we have experienced.

I may have delved a bit into the realm of science fiction, but the future of humanity in the face of Genetic Modification has the potential to be every bit as exciting and otherworldly as the potential future that I just described. It instills a tremendous sense of fear, awe, and most importantly, unlimited potential.

Do You Think That You Could Handle Immortality?

If you ask the average person out on the street about the potential future afforded by Genetic Engineering, Advanced Longevity, and Immortality medicine, you’ll likely get a number of different responses, some positive, some negative, others simply incredulous. If you surveyed 100 people, I believe that you would find that the majority would ultimately reject the idea of immortality.

Some people think that eternity would take the excitement out of life. Others fear that they would eventually just become a broken shell of their former selves as their bodies physically decline in spite of science’s ability to prevent death. For many, the concept of eternity is just as fearsome as the concept of death itself. It’s not all that different from the way that people feel about retirement these days. They are frustrated because they have to work so hard all through the healthiest part of their lives only to be too frail and broken down by the time they retire to enjoy it.

Longevity Medicine and the Future

That’s why Longevity Medicine is so important. We want our retirement years to last as long as possible, and we want to be able to enjoy them. Maybe one day, we will be retired as long in our lives as we are at work, or longer! That’s what the approach to immortality will be like!

There are a growing number of people that are optimistic about a lengthy future. They understand that even with regard to a concept like immortality, life is the sum of individual experience. Some will take advantage of a life bordering on immortality, while others would simply choose to be boring. People that live lives full of happiness and vitality shouldn’t be deprived the opportunity to extend that joy, simply because there are others who wouldn’t appreciate it!

The arguments stemming from the subject of Human Immortality continue to become both more interesting and more complex, both for those that long for such a fate, and those that oppose the concept. No matter how you feel about the idea of Advanced Longevity, there is no doubt that such opportunities to live lives we now consider unimaginable will eventually come to pass.

As long as human beings are able to engage in scientific advancement without destroying ourselves or sending ourselves back to the stone age, such opportunities will present themselves to the human race in the near future.

Gene Therapy and Stem Cell Therapy: The First Steps to Hyperlongevity

The seeds of these future endeavors are being planted today, in the fields of gene therapy, genetic medicine, and stem cell therapy. This is also the core concept behind medical treatments which seek to optimize hormone production in the body in order to alleviate the medical conditions associated with hormone imbalance and aging.

Hormone Replacement Therapy: Streamline Your Body for the Future!

Treatments such as Testosterone Replacement Therapy, Sermorelin Acetate Therapy, and Bio-Identical Human Growth Hormone Replacement Therapy seek to correct common hormonal imbalances that occur as a result of the aging process. There is even a strong argument that these hormone imbalances are actually the root cause of many symptoms of aging, including frailty, osteoporosis, and cognitive decline.

There are many Health, Wellness, and Longevity Physicians that believe that these forms of Hormone Replacement Therapy are some of the must effective means to prolong a healthy and active life when used in combination with a healthy and conscientious lifestyle. These medical treatments are the best way to decrease your mortality risk so that you are more likely to experience the next great advancement in Anti-Aging Medicine.

If you feel that your quality of life has been on the decline as a result of changes in your body and mind resulting from the aging process, I strongly encourage you to get your hormone levels checked, because there is a significant chance that you may be suffering from a reversible form of hormone deficiency.

The Future of Human Genetic Engineering

This is truly an exciting time to be alive. We are quickly approaching the point at which scientific breakthroughs in health science will continue to occur at an ever-increasing pace, with groundbreaking new health advances occurring on a regular basis. The following years will be incredibly interesting, because there are a multitude of clinical trials regarding the promise and potential effectiveness of both gene therapy and stem cell therapy.

By 2012, these studies, and other similar studies, were already displaying high levels of potential to both treat and protect both animals and humans from disease. Beyond Hormone Optimization and Genetic Therapy, the next stage of advancement will most likely be in the field of nanomedicine. Beyond nanomedicine is femtomedicine.

At this stage of scientific inquiry, this is as far as even the most forward-thinking physician or philosopher could imagine, but there is no doubt as we create new medical treatments and expend our knowledge of medical science, new opportunities for advancement will be conceptualized that could be even more life-altering and fantastic than those that we just mentioned.

When you consider the future of medicine and longevity, you realize that human beings as they are now aren’t simply the end result of millions of years of evolution, but also a gateway to the next state of terrestrial life, a transitional state between what was and what will be, an opportunity to experience even greater consciousness and enlightenment by conquering time, itself.

What is the Idea Behind Human Immortality?

When we discuss the idea of human immortality, it doesn’t just mean allowing a human being to live forever, human immortality represents the idea that it will be possible, with future biomedical and genetic enhancements, for human beings to experience a practical immortality in which one is able to live as they were in the prime of their life, for all of their life.

It seems just as you master your body and your mind in the late twenties and early thirties, your body and mind start to enter a slow and unstoppable decline. What if you could preserve that period of physical and psychological perfection forever? It is during this period that the average person reaches his or her functional peak as an individual, with regard to strength, cognitive ability, immunity, and overall health.

How Much Better Would Life Be if You Lived to 200?

Think about how different and exciting that life would be if you could have the body and mind of a 29 year old for 120 years. There are a number of people that think that humans should not have this opportunity, but it sounds much better than spending the whole sum of those years in slow and steady decline.

How Much Better Would Life Be if You Could Live Indefinitely?

Immortalists subscribe to the belief that individuals that truly enjoy life and are creative or passionate enough to find interesting or fulfilling things to do would be able to easily take advantage of a significantly lengthened lifespan. I do understand how such a long life would feel to someone that lacks passion or imagination, however. I can imagine two hundred years of absolutely drudgery. If one does not have the propensity to invest or save to create wealth, I can imagine two hundred years of hard work with nothing to show for it.

With luck, a more automated world would allow us to enjoy our lives while actually working less. Imagine a world of eco-friendly machines could do the work of one hundred men. This could be a wonderful world of leisure for all, but it could also lead to a world where machines are used as a method of control and domination, like in Frank Herbert’s dystopian novel Dune.

The Temptation of Human Immortality

Whether the opportunity for Human Immortality comes in twenty years or two hundred years, there will be those that seek out the opportunity for such a life, and there will be those that choose to reject the opportunity for immortality.

The central question that Immortalists posit is a simple one: Why would anyone actually want to die or grow old? When you think of it that way, it sounds absolutely silly. Who would ever want to do such things? But in reality, it seems as though most human beings are resigned to such a fate.

Who Really Wants to Grow Old?

More than simply growing old, who wants to lose their lust for life or their libido? Who wants to experience their own body slowly deteriorate as they are beaten down by illness and disease? Human Immortalists are those that are willing to fight against what is perceived as inevitable by society at large. They believe that those that have resigned themselves to decay and death are simply not willing to imagine a post-human age where they could evolve beyond the inevitability of death.

It seems that many humans think of Human Immortalists as harbingers of doom which are going to bring about a new genocide. They believe that Immortalists are going against the will of God by altering the Human Genetic Code in an attempt to foster extreme lifespans, improved aesthetic, and vastly improved health outcomes.

The Great Schism of Humanity

There is a strong chance that a rift will develop between those that choose genetic alteration and those that choose to forgo such opportunities. In the end, it is likely that humanity will rift into two distinct groups. Over time, greater and greater numbers will opt for Genetic Modification, and those that opt out of such procedures may potentially lose footing in society as a result of their choice.

If modification indeed has the ability to create such disparity, genetically modified humans will spread their genes with one another, and their offspring may have greater potential for both prosperity and intellect, which will create a socioeconomic rift between GM Humans and Unmodified Humans.

Will Post-Humans be able to act ethically under these circumstances? Will Unmodified Humans be able to accept a place in the world where they are unequivocally inferior to their GM counterparts? This new world will be different and exciting, and it’s up to us to create a civil world where we can act in the best interest of all.

What Other Strange Opportunities May Become Available in the Future?

On top of our ability to vastly extend and improve our long-term health, the future will also provide us with enhanced opportunities with regard to personal aesthetic. We will not only be able to cure conditions such as psoriasis which plague millions in the world today, but many may choose to move beyond mere optimization and may choose to fully customize their appearance. Perhaps one may choose not to have olive or alabaster skin as many in society desire today, but go for a different color all together.

What if someone chose to color their skin orange, green, or blue? What if they wanted to be leopard print or covered in zebra stripes? This may appear otherworldly and unnatural to our minds, but when presented with an entire array of customization, what would be so strange about doing something like that to stand out? How different would it be to dying your hair blue or rainbow, if there were no dangers in undergoing such a change?

But, given enough time and scientific innovation, skin color and other basic augmentations like genetic breast and penis enlargement will be just another evolution in the concept of general aesthetic. The potential for more extreme changes would eventually become possible. What if humans wanted to take on the characteristics of animals? What if someone wanted the ears or tail of a cat, for example? There would even be the potential to do even more drastic things that we can barely imagine today.

Genetically Engineered Pets

These genetic advancements won’t occur in a human vacuum. They will also apply to animals as well. Today people are paying top dollar for basic genetically modified hypo-allergenic dogs, and glow-in-the-dark mammals have even been developed in laboratories.

In the future, it is likely that scientists will come up with scientific modifications which significantly enhance both the aesthetic and intelligence of animals. It’s even likely that animals will experience the benefits of genetic engineering more quickly than humans, as this future will largely be facilitated by means of animal testing.

The Post-Human Era Starts with Basic Genetic Engineering and Ends with Post-Humanism, Hyperlongevity, and Potential Immortality

You may not be able to tell, but we are already in the midst of the first phase of the Post-Human era. The beginning of this era was marked by the first time that egg and sperm from two different individuals was combined and implanted into an adoptive mother. It was such a grand event in retrospect, but the passing into this new era was not met with massive celebrations, but simply with concerns over the ethics of the new future.

Post-Humanity will have a litany of moral conundrums to unravel, some that we can imagine, and others that are unfathomable to us today. The state of the mortal mind is simply not equipped to handle the moral and ethical quandaries that the genetically modified mind will face. What if there are other lifeforms just like us in other parts of the galaxy, that have also learned to take control of their very existence on the cellular level? What if the number of unique alien civilizations in the universe is unlimited? What if we as earthlings are just one form of intelligent life among a countless litany of others?

The Current State of Genetic Modification and Gene Therapy

Today, scientists, researchers, and physicians are taking the first step into this future, with the quickly growing field of genetic therapy. We are on the cusp of doing some truly amazing things, like genetically altering viruses in order to protect humans from genetic disorders and conditions. At first, these initial treatments have been risky, reserved for those in most dire need, but as medical science becomes more well-versed in these therapeutic advancements, they will become safer and more widely available to the general public. Could you imagine reducing your risk of cancer by 80% just with a single injection? That may be the future for you.

The Current State of Organ Regeneration and Stem Cell Therapy

Another aspect of genetic therapy has to do with the advancing field of Stem Cell Therapy. There are new, state of the art treatments available which utilize stem cells in order to improve the health of the heart. Patients that have experienced heart attack or heart disease can be treated with stem cells which have the ability to develop into new and healthy muscle tissue.

Similar techniques have also been used in order to regenerate other parts of the body or parts of individual organs. In one famous case, scientists biomanufactured a windpipe for a patient with the patient’s own cells. They were able to do this by taking the stem cells and allowing them to grow in culture before pouring them over a scaffold in the shape of a windpipe. Just by providing the cells with the nutrients to grow, they were able to recreate a human windpipe in the laboratory just in a matter of days.

Because the windpipe was created from the patient’s own cells, the body did not reject the windpipe when it was surgically implanted into the body. This is one of the first successful cases where a patient’s life was changed through the scientific advancements of genetic organ replacement.

Stem Cell Therapy Will Be Available in the Near Future: Hormone Replacement Therapy is Here Today!

Stem Cell Therapy is exciting and will become increasingly common and popular over the next century in the United States. Today, there are a few places where Stem Cell Therapy is available internationally, especially in Asia, but they have yet to be medically certified, and there are still a number of pertinent risks involved. In the Western World, Stem Cell Treatments are currently going through clinical trials. Although the results are mixed, continual progress is being made.

There are many scientists that believe that Stem Cell Research will lead to a new future in medicine, but policies enacted during the presidency of George W. Bush have set the United States behind by at least a decade, and other nations in Europe and Asia are currently taking advantage of their head start, and may one day eclipse us in these new and futuristic medical therapies.

In just a few short years, genetic testing will become affordable enough that it will become a common and recommended part of prenatal care as well as regular checkups throughout the lifespan. Over time, more and more Genetic Disorders will be able to be effectively treated with Gene Therapy, and with every breakthrough, people will be that much more likely to live a longer and healthier life.

Once the clinical science is sound, it won’t even be a difficult ordeal for the patient. It would simply be like going to visit the pharmacist, or making a call to a specialist pharmacy. After receiving the medication, one will be able to administer the medication on his or her own and without the frequent oversight of a medical professional.

Not long after these Genetic Treatments are made available to the public, Stem Cell Therapies will quickly become more and more advanced as well. There are even companies that have expressed a desire to take your stem cells and develop them in a laboratory environment. The goal of this treatment would be to take your own stem cells and foster the healthiest cells to multiply. After these cultures are developed, they would be mailed back to you in order for you to inject them to alleviate health conditions and other symptoms related to the aging process.

Beyond Genetic Engineering and Stem Cell Therapies, will come new forms of medical treatment that we are just beginning to research today, but will surely flourish in the coming decades: nanomedicine and femtomedicine.

Nanoscience and the Healthcare of the Future

These are tiny, genetically engineered cellular machines that will be able to improve your health by altering the functions of your body in a positive manner. They will be able to repair and alter particular forms of cells so that they function optimally, even after a period of long life in which you would expect to see physiological breakdown. It is even believed that these treatments can also preserve and repair the brain itself! Isn’t that exciting?

There are countless people in the world that have a litany of big dreams, more than they could ever hope to accomplish in a single lifetime in some cases. They have these long checklists of things they want to do in their life, a whole wide world they want to explore. Some have an unquenchable thirst for knowledge, and want to read thousands of books or learn dozens of languages in their life.

There are countless more people that have spent their early lives living on the edge, and suffer from issues such as alcohol dependency or drug addiction which have harmed their bodies and their brains. With these forms of genetic and nanomedicine, it will be possible to repair the bodies and minds of these individuals, allowing them to make a fresh start. It is possible that addiction itself may become a historical curiosity as a result of these medical advances.

What Would Do If You Had 200 More Years to Live?

  • Would you learn to play multiple musical instruments?

  • Would you research for decades in order to write the perfect novel?

  • Would you visit every country on earth?

The number of dreams that humans have yearned for is nearly infinite, and most never live to achieve all of their dreams, if they achieve any of their dreams at all. If you are still alive in the near future, around 2032, you will be able to take full advantage of what Longevity Medicine and Anti-Aging Therapy have to offer!

Some time in the future, we will finally overcome the condition of aging. We will be able to prevent all illness and be able to live in perpetuity, as long as we don’t succumb to an accident or similar fate. This is the extreme vision of Immortality Medicine.

The First Immortals Could be Alive Today!

By the time we make it to the 22nd century, there will already be individuals that have taken the road to Hyperlongevity, and there will likely be millions of humans that have taken part in this great leap forward into Post-Humanism. They will not only be healthier, but smarter too, with further advances in Genetic Science that allow us to amplify the capacity of our brains.

As people continue to develop down this evolutionary road, will we even consider them humans anymore? They will represent a new version of humanity, and they will likely use a new term to define themselves, whether that be Neohuman or some other clever word or phrase.

I believe that this advance into Neohumanism will also lead to a new era in space travel and human colonization. With these extensive lifespans, many Neohumans will inevitably turn their eyes to the stars in a desire to find new worlds and discover new lands and extraterrestrial lifeforms. Brave Neohumans from all over the planet will take to interplanetary space vessels in order to colonize and experience new worlds and lands that are beyond the scope of human imagination.

Can I Live to Experience This New Era of Humanity?

All of the things we’ve discussed may seem incredibly exciting to you, but we understand that these innovations are going to come in the near future. If you want to take part in this grand human experiment, it’s important that you live long enough to seize these innovations as they come! There are steps you can take now to alleviate the negative symptoms of the aging process and increase your odds of experiencing the new, human revolution.

My suggestions will not ensure that you will live for the next twenty years or longer, but they will potentially drastically decrease your mortality risk so that you are able to seek out this new and exciting future that we have laid before you.

Today, the door to Neo-Humanism, Hyperlongevity, and even Human Immortality is slightly open, and there are many alive today that will experience these magnificent and life-altering advances.

Will You Take Advantage of the Advances of Hyper-Longevity and Anti-Aging Medicine? Are You Willing to Commit to a Longer and more Youthful Life?

It’s quite plain to see that we are at the crest of an event horizon, beyond which it will truly be possible to lengthen lifespans indefinitely. The most important thing is to breach that horizon. By taking steps to increase health and lifespan now, you allow yourself the opportunity to take care of further, greater medical enhancements down the road.

The most modern advances available today are in the form of Recombinant Hormone Replacement Therapies. By optimizing your hormone balance, you increase the odds that you will live long enough to experience the new, up-and-coming breakthroughs of the mid-21st century.

If you live just a few more years, new genetic medical treatments will become available which will significantly increase your lifespan. While you are enjoying the benefit of genetic medicine, researchers and medical scientists will advance and perfect Genetic Therapy and Stem Cell Therapy, allowing you to live even longer!

There are a number of Stem Cell and Gene Therapies going through clinical trials as you read this, which show great promise in preventing or treating serious illnesses which severely inhibit lifespan today. As the medical community becomes more adept at using these new tools for the purpose of treatment, they will begin to utilize these treatments as forms of Positive Medicine.

They will be able to treat patients before they even get sick in order to optimize their health and greatly improve lifespans as a result, because the incidence of illness will decline significantly. In addition, these same treatments will be able to streamline existing physiological processes, keeping the body physiologically stronger and more youthful. They will be able to tailor these treatments uniquely to the individual in order to give the best care to each individual patient.

Stay on the Cutting Edge of Longevity Medicine to Perpetually Extend the Human Lifespan

With each of these breakthroughs and treatments, we will come one step closer to Immortality. Eventually, scientists and researchers will crack the code of human life, and finally figure out how to allow us to truly live indefinitely. It may take 100 years or it may take 500 years to achieve true Immortality, but each life-extending advance will allow people to survive until the next great advance. Hyper-Longevity will eventually become a universal reality, barring accident, war, or any other form of life-ending catastrophe.

You may feel that this is a science fiction world that I am describing, but it very well may be possible for you to experience this all for yourself. It is estimated that at some point between 2032 and 2052 we will have perfected medical practices which allow us to live significantly longer lives than we do today. Those that are optimistic feel that we are just twenty years away from this era, while those that are more cautious suggest that fifty years would be a more reasonable estimate.

Twenty to fifty years may not seem like that long in scientific study, but in terms of your own life, it is a significant period of time. Are you willing to make the sacrifices now in order to experience Hyperlongevity in the near future?

Eight Ways to Extend Your Lifespan

There are a lot of steps that you can take in your life today in order to significantly increase the odds that you survive to experience this new and amazing future. If you follow the suggestions below, conscientiously, you will maximize your potential to extend your life until further longevity advances develop in the coming decades.

These eight factors have been shown to be most important when determining the length of an individual’s lifespan:

  • Nutrition

  • Exercise

  • Environment

  • Social Circles

  • Vice

  • Climate

  • Calorie-Restricted Diet

  • Hormone Replacement Therapy

The Diet of the 21st Century: Caloric Restriction and Fasting for a Longer Life

A recent article in Newsmax Health explained that the future of longevity isn’t fad dieting or strenuous exercise, but a Calorie-Restricted diet which manages metabolism and ensures a long and healthy life.

Over the last century, there have been more than twenty thousand studies regarding caloric restriction in animal species from around the globe. All of these studies have unequivocally shown that restricting the calories in an animal’s diet has the ability to significantly increase the lifespan, and the same appears to apply to human beings..

This may sound like a starvation diet at first, but conscientiously and significantly restricting calories in the human diet is a powerful means to a longer life. Of course, most people consume at least 1500 calories per day and some consume several thousand! But, it appears that the sweet spot for human longevity is quite a bit lower than that 1500 calorie threshold.

For those that are struggling with Caloric Restriction, especially those that are currently overweight, HCG Injections can help relieve the feeling of hunger associated with the initial phase of the diet in order to acclimate to their new dietary lifestyle more effectively.

At first it may seem counter-intuitive, that too much of the Bread of Life can actually shorten the lifespan, but that absolutely seems to be the case. A diet that provides high levels of nutrients through the consumption of a small number of calories is the number one way to increase human longevity effectively. Intermittent Fasting and Caloric Restriction slow down aging and also reduce the incidence of a wide variety of illnesses that plague so many in America today.

The Modern Media and the Culture of Food in the West

In the United States, as well as other countries in the West including the United Kingdom, children were raised in a reality in which starvation was one of the greatest evils of the 19th and 20th century. The various forms of media available all showed the terrible fates of so many who were denied the food needed to live. Nowhere is this imagery more vivid in Western Civilization than in the footage captured after the end of World War II as the true horrors of the Holocaust were revealed to the world at large.

During the Cold War we also experienced further evidence of the horrors of famine as communist Russia and China struggled with providing their populations with proper nutrition, leading countless to die of starvation over many decades. Today, on modern television, there are advertisements for charities throughout Africa and Asia which show the plight of the starving in these third world nations.

I do not mean to discount the real and significant struggles that those that came before us experienced in the not so distant past, but it had a powerful impact on food culture in the West, particularly the idea that it is better to eat too much than too little. In our elementary education and beyond, we are confronted with story after story of mass famine, and it seems that part of the way that we culturally appreciate our current abundance is by partaking in it.

This appreciation for our abundance has led directly to a culture of overeating that borders on obsession. In the West, we simply love our food too much, and the expansion of cuisine in the West has allowed anyone to get whatever they want, when they want it, whether they go to the grocery store, the pizza parlor, or the Chinese buffet.

A Culture of Overeating Develops into a Culture of Force Feeding

Throughout the twentieth century, we have always been taught that we need to eat every last bite on our plates. Often times, we were also strongly encouraged, if not forced, to go back for a second portion. In addition to this, the proliferation of soda drinks has led directly to a significant increase in the empty calories that the average American consumes.

As the twentieth century barreled on, parents on average had less time to cook and prepare meals at home, which led to the greater proliferation of both fast food and microwavable dinners, loaded with sugars, salts, and carbohydrates which increased our caloric consumption even more!

During this age, restaurants like Burger King and McDonald’s became the captains of the fast food industry, generating billions of dollars in profit funneling cheap calories into the mouths of men, women, and children all across the country.

Because of all these pressures to overeat, the longevity gains that people in the West experienced as a result of modernization all began to slip away, the combination of unhealthy eating and an increasingly sedentary lifestyle is threatening today’s generation with the prospect of living shorter lives than their parents on average!

The United States would be stronger in every way, if it could foster greater consciousness about the importance of eating smarter to eat longer. If we all just made the proactive decision to engage in a lifestyle of at least mild caloric restriction, it would both decrease the price of health care and allow the citizens of this nation to live longer, happier, and healthier lives.

Do You Dream of a Healthier, Happier Life? Contact the Conscious Evolution Institute Today!

If you are a man or woman over the age of thirty and currently live in the United States, the Conscious Evolution Institute can help you improve your health and longevity. We provide Doctor-Monitored Bio-Identical Hormone Replacement Therapy to patients all across the United States.

With just a simple phone call, we can arrange for you to meet with one of our affiliate physicians in order to set you on the road to a new you. We offer a variety of Hormone Replacement options, including Testosterone Replacement Therapy, Human Growth Hormone Injections, Sermorelin Acetate Injections, and HCG Injection Therapy for Weight Loss.

We also provide nutrition and lifestyle counseling in order to help you maximize the results of your treatment by choosing foods, supplements, and exercises that will get your body running on all cylinders!

If you feel that you may be a candidate for Hormone Replacement Therapy, don’t hesitate, call us today, and one of our friendly specialists will walk you through the process and answer any and all questions that you may have.

For more information on Ten Ways To Live Ten Years Longer check out http://www.hgh.tv/human-growth-hormone-injections/anti-aging-longevity/ten-ways-to-live-ten-years-longer.php#article

Recommendation and review posted by Guinevere Smith

Department of Neurology – Department of Neurology – Home

Posted: September 26, 2016 at 12:43 am

I would like to take a moment to welcome you to the Department of Neurology at Saint Louis University School of Medicine. I am certain you will find this information both helpful and informative.

Saint Louis University School of Medicine has a long history of excellence in teaching, research and patient care. Saint Louis University established the first medical school west of the Mississippi River in 1836. In 1929, Mother Marie Kernaghan became the first woman to graduate from Saint Louis University with a Ph.D. Her degree was in physics. In 1932, the University opened the Firmin Desloge Memorial Hospital, later named Saint Louis University Hospital. Dr. Gilbert Chaddock was the first neurologist of record at Saint Louis University. He was the main consulting neurologist in the 1930s.

Our institution is rooted in tradition while looking forward to growing in new and exciting ways. Saint Louis University Hospital is now a part of SSM (Sisters of St. Mary) which will create even more diversity in patient care and in teaching experiences for our students and residents. Although our primary inpatient service is at SSM Health Saint Louis University Hospital, we also have a partnership with Saint Louis John Cochran VA Medical Center and Cardinal Glennon Childrens Medical Center.

As a graduate of Saint Louis University School of Medicine in 1997 and completing a fellowship in Child Neurology at Saint Louis University in 2007, I know first-hand of the amazing faculty, students, residents and staff we have in the Department of Neurology. Our department is dedicated to our patients, students, and residents. We strive to provide the best care possible for our patients while committing to teaching our students and residents so they will become experts in the field of neurology. I am looking forward to all that we will accomplish in the future and I encourage you to peruse our website for further information about our department.

Sincerely,

Sean Goretzke, MD

View original post here:
Department of Neurology – Department of Neurology – Home

Recommendation and review posted by Fredricko

Medical school in Canada – Wikipedia, the free encyclopedia

Posted: September 26, 2016 at 12:43 am

This article is about institutions that grant formal Doctor of Medicine (M.D.) or Doctor of Medicine and Master of Surgery (M.D., C.M.) degrees only. For information on other systems, see alternative medicine.

In Canada, a medical school is a faculty or school of a university that trains would-be medical doctors and usually offers a three- to five-year Doctor of Medicine (M.D.) or Doctor of Medicine and Master of Surgery (M.D., C.M.) degree. Although presently most students enter medicine having previously earned another degree, the M.D. is technically considered an undergraduate degree in Canada. There are currently seventeen medical schools in Canada. Some faculties, such as Manitoba, McMaster, and Toronto, in addition to training would-be medical doctors offer two-year bachelor’s or master’s degrees to train physician assistants.[1]

As of 2013, approximately 3,900 students were enrolled in Canadian medical schools.[citation needed]

Generally, medical students begin their studies after receiving a bachelor’s degree in another field, often one of the biological sciences. However, not all medical schools in Canada require a bachelor’s degree for entry.[2] For example, Quebec’s medical schools accept applicants after a two-year CEGEP diploma, which is the equivalent of other provinces’ grade 12 plus the first year of university. Most faculties of medicine in Western Canada require at least 2 years, and most faculties in Ontario require at least 3 years of university study before application can be made to medical school. The University of Manitoba requires applicants to complete a prior degree before admission. The Association of Faculties of Medicine of Canada (AFMC) publishes a detailed guide[3] to admission requirements of Canadian faculties of medicine on a yearly basis.

Admission offers are made by individual medical schools, generally on the basis of a personal statement, autobiographical sketch, undergraduate record (GPA), scores on the Medical College Admission Test (MCAT),[4] and interviews. Medical schools in Quebec (Francophones and Anglophone alike), the University of Ottawa (a bilingual school), and the Northern Ontario School of Medicine (a school which promotes francophone culture), do not require the MCAT, as the MCAT has no French equivalent. Some schools, such as the University of Toronto and Queen’s University, use the MCAT score as a cut-off, where sub-standard scores compromise eligibility.[5][6] Other schools, such as the University of Western Ontario, give increasing preference to higher performance.[7]McMaster University strictly utilizes the Verbal Reasoning section of the MCAT to determine interview eligibility and admission rank.[8]

The annual success rate for Canadian citizens applying for admission to Canadian medical schools is normally below 10%.[9] Just over 2,500 positions were available in first-year classes in 2006-2007 across all seventeen Canadian faculties of medicine. The average cost of tuition in 2006-2007 was $12,728 for medical schools outside of Quebec; in Quebec (for Quebecers only), average tuition was $2,943. The level of debt among Canadian medical students upon graduation has received attention in the medical media.[10][11]

Medical school in Canada is generally a 4-year program at most universities. Notable exceptions include McMaster University and the University of Calgary, where programs run for 3 years, without interruption for the summer. McGill University and Universit de Montral in the province of Quebec both offer a five-year program that includes a medical preparatory year to entering CEGEP graduates. While Universit Laval in Quebec City offers a four- to five-year program to all entering students (both CEGEP graduates and university-level students), Universit de Sherbrooke offers a formal four-year M.D. program to all admitted students.

The first half of the medical curriculum is dedicated mostly to teaching the fundamentals of, or basic subjects relevant to, medicine, such as anatomy, histology, physiology, pharmacology, genetics, microbiology, ethics, and epidemiology. This instruction can be organized by discipline or by organ system. Teaching methods can include traditional lectures, problem-based learning, laboratory sessions, simulated patient sessions, and limited clinical experiences. The remainder of medical school is spent in clerkship. Clinical clerks participate in the day-to-day management of patients. They are supervised and taught during this clinical experience by residents and fully licensed staff physicians. Typical rotations include internal medicine, family medicine, psychiatry, surgery, emergency medicine, obstetrics and gynecology, and pediatrics. Elective rotations are often available so students can explore specialties of interest for residency training.

Some medical schools offer joint degree programs in which a limited number of interested medical students may simultaneously enroll in M.Sc. or Ph.D. programs in related fields. Often this research training is undertaken during elective time and between the basic science and clinical clerkship halves of the curriculum. For example, while Universit de Sherbrooke offers a M.D./M.Sc. program, McGill University offers a M.D./Ph.D. for medical students holding an undergraduate degree in a relevant field.

Students enter into the Canadian Resident Matching Service (CaRMS) in the fall of their final year. Students rank their preferences of hospitals and specialties. In turn, the programs to which they applied rank each student. Both sets of rank lists are confidential. Each group’s preferences are entered into a computerized matching system to determine placement for residency positions. ‘Match Day’ usually occurs in March,[12] a few months before graduation. The length of post-graduate training varies with choice of specialty. Family medicine is a 2-year program accredited by the College of Family Physicians of Canada (CFPC), and third year programs of residency training are available in various areas of practice, including Emergency Medicine, Maternal/Child, Care of the Elderly, Palliative Care or Sports Medicine. All other medical specialty residencies are accredited by the Royal College of Physicians and Surgeons of Canada; most are 5 years long. Internal medicine and pediatrics are 4-year programs in which the final year can be used to complete a fellowship in general internal medicine or general pediatrics, or used towards a longer fellowship (e.g., cardiology). A few surgical residencies, including cardiac surgery, neurosurgery, and some general surgery programs, last 6 years. Sub-specialty fellowships are available after most residencies.

There are subtle differences between how residency training is organized in Canada as opposed to the United States. For example, M.D. graduates proceed directly into their residencies without the intermediate step of internship. However, this difference is somewhat superficial: for many residencies, the first postgraduate year (PGY1) in Canada is very similar to a rotating internship, with 1-2 month-long rotations in diverse fields. On the other hand, in Canada the graduate is often committed to a sub-specialty earlier than a similar American graduate.

Some sub-specialties are organized differently. For example, in the United States, cardiac and thoracic surgery are rolled into one fellowship (cardiothoracic surgery) following residency in general surgery. In Canada, cardiac surgery is a direct-entry residency (equivalent training can be obtained by pursuing a cardiac fellowship following residency in general surgery, but this route is far less popular). A fellowship in thoracic surgery can be pursued following residency in either cardiac or general surgery.

Unlike the United States and United Kingdom, in Canada there are no national guidelines for residents’ call schedules or work hours. However, each province in which residency training takes place negotiates such details as part of a collective agreement between the authority and the provincial professional association of residents. An example of this is the Professional Association of Internes and Residents of Ontario.

Both Canadian specialty colleges participate in mandatory continuing medical education (CME) schemes. Examples of CME activities include attendance at conferences, participating in practice-based small group learning, and taking courses such as advanced cardiac life support.

The CFPC program for family physicians is called MAINPRO, short for ‘Maintenance of Proficiency.'[13] A certain number of credits must be obtained over 5 year cycles. There are different classes of credits depending on whether the CME activity is considered accredited (e.g., attending accredited workshops or conferences) or non-accredited (e.g., teaching medical students, preparing research papers for publication, reading scholarly journals).

The Office of Professional Affairs of the RCPSC is responsible for a mandatory maintenance of certification (MOC) program as part of its strategy of continuous professional development linked to each Fellows professional practice.[14] The framework of CPD options includes a broad spectrum of learning activities linked to a credit system. All Fellows submit their completed learning activities through MAINPORT, the RCPSC learning portfolio. Fellows of the RCPSC must submit a minimum number of credits per year (40 credits) and over a 5-year cycle (400 credits) to maintain their membership with the Royal College and their right to use the designation FRCPC or FRCSC. That instead gives way to more time.

During the final year of medical school, students complete part 1 of the Medical Council of Canada Qualifying Examination (MCCQE),[15] which is administered by the Medical Council of Canada and organized as a part-multiple choice, part-short answer computer-adaptive test. Upon completion of the final year of medical school, students are awarded the degree of M.D. Students then begin training in the residency program designated to them by CaRMS. Part 2 of the MCCQE, an Objective Structured Clinical Examination, is taken following completion of 12 months of residency training. After both parts of the MCCQE are successfully completed, the resident becomes a Licentiate of the Medical Council of Canada. However, in order to practice independently, the resident must complete the residency program and take a board examination pertinent to his or her intended scope of practice. In the final year of residency training, residents take an exam administered by either the RCPSC or the CFPC, depending on whether they are training for specialty or family practice. They are then eligible to apply for full licensure with their provincial or territorial medical regulatory authority (i.e., provincial college).

Together with the Canadian Medical Association (CMA), the AFMC carries out accreditation surveys and rules on the accreditation status of all of the undergraduate medical programs in Canada, as well as all university-based continuing medical education. The Liaison Committee on Medical Education, jointly administered by the Association of American Medical Colleges and the American Medical Association, also accredits Canadian medical schools. The M.D. and M.D.C.M medical degrees are the only medical degrees offered in Canada listed in the WHO/IMED list of medical schools.

In Canada, physician training is available in both official languages: English and French. Postgraduate trainees are referred to as ‘residents,’.

More here:
Medical school in Canada – Wikipedia, the free encyclopedia

Recommendation and review posted by Guinevere Smith

Medical school in the United States – Wikipedia, the free …

Posted: September 26, 2016 at 12:43 am

A medical school in the United States is a four-year graduate institution with the purpose of educating physicians in the field of medicine. Such schools provide a major part of the medical education in the United States. Graduates receive either a Doctor of Medicine (M.D.) or a Doctor of Osteopathic Medicine (D.O.) degree.

Admissions to medical school in the United States is generally considered competitive. Admissions criteria include grade point averages, Medical College Admission Test scores, letters of recommendation, and interviews. Most students have at least a bachelor’s degree, usually in a biologic science, and some students have advanced degrees, such as a master’s degree. Most students that apply to medical school do not matriculate at a medical school. Medical School in the United States does not require a degree in biological sciences. People with degrees in different fields can be admitted to medical school as long as the criteria for admission is followed.

Medical school typically consists of four years of training, although a few programs (at least two) offer three-year tracks. The first two years consist of basic science courses, such as anatomy, biochemistry, histology, microbiology, pharmacology, physiology, cardiology, pulmonology, gastroenterology, endocrinology, psychiatry, neurology, etc. The third and fourth years consist of clinical rotations, sometimes called clerkships, where students attend hospitals and clinics. These rotations are usually at teaching hospitals but are sometimes at community hospitals or with private physicians. The typical “core” (i.e. mandatory) rotations taken in third year are Obstetrics and Gynecology, Pediatrics, Psychiatry, Family Medicine, Internal Medicine, and Surgery. Fourth year for the most part will consist of electives and some mandatory rotations like Emergency Medicine and Neurology – but again, some schools are different and some have been able to allow students to take an elective or two during third year, while many schools have also been trying to do the same. Some schools have been trying to incorporate Neurology and/or Emergency Medicine into third year, since by the time students are applying for residency programs, many haven’t been exposed to either. However, again, it varies by school, and it varies by the mission of each medical school.

The Flexner Report, published in 1910, had a significant impact on reforming medical education in the United States. The report led to the implementation of more structured standards and regulations in medical education. Currently, all medical schools in the United States must be accredited by a certain body, depending on whether it is a D.O. granting medical school or an M.D. granting medical school. The Liaison Committee on Medical Education (LCME) is an accrediting body for educational programs at schools of medicine in the United States and Canada. The LCME accredits only the schools that grant a Doctor of Medicine (M.D.) degree; osteopathic medical schools that grant the Doctor of Osteopathic Medicine (D.O.) degree are accredited by the Commission on Osteopathic College Accreditation of the American Osteopathic Association. The LCME is sponsored by the Association of American Medical Colleges and the American Medical Association.

In 1910, the Flexner Report reported on the state of medical education in the United States and Canada. Written by Abraham Flexner and published in 1910 under the aegis of The Carnegie Foundation for the Advancement of Teaching, the report set standards and reformed American medical education.

In general, admission into a US medical school is considered highly competitive and typically requires completion of a four-year Bachelor’s degree or at least 90 credit hours from an accredited college or university. Many applicants obtain further education before medical school in the form of Master’s degrees or other non science-related degrees. Admissions criteria may include overall performance in the undergraduate years and performance in a group of courses specifically required by U.S. medical schools (pre-health sciences), the score on the Medical College Admission Test (MCAT), application essays, letters of recommendation (most schools require either one letter from the undergraduate institution’s premedical advising committee or a combination of letters from at least one science faculty and one non-science faculty), and interviews.

Beyond objective admissions criteria, many programs look for candidates who have had unique experiences in community service, volunteer work, international studies, research, or other advanced degrees. The application essay is the primary opportunity for the candidate to describe his/her reasons for entering a medical career. The essay requirements are usually open-ended to allow creativity and flexibility for the candidate to draw upon his/her personal experiences/challenges to make him/her stand out amongst other applicants. If granted, an interview serves as an additional way to express these subjective strengths that a candidate may possess.

Since 2005, the Association of Medical Colleges has recommended that all medical schools conduct background checks on applicants in order to prevent individuals with convictions for serious crimes from being matriculated.[2]

Most commonly, the bachelor’s degree is in one of the biological sciences, but not always; in 2005, nearly 40% of medical school matriculates had received bachelor’s degrees in fields other than biology or specialized health sciences.[3] All medical school applicants must, however, complete year-length undergraduate courses with labs in biology, general chemistry, organic chemistry, and physics; some medical schools have additional requirements such as biochemistry, calculus, genetics, psychology and English. Many of these courses have prerequisites, so there are other “hidden” course requirements (basic science courses) that are often taken first.

A student with a bachelor’s degree who has not taken the pre-medical coursework may complete a postbaccalaureate (postbacc) program. Such programs allow rapid fulfillment of prerequisite course work as well as grade point average improvement. Some postbacc programs are specifically linked to individual medical schools to allow matriculation without a gap year, while most require 12 years to complete.

Several universities[4] across the U.S. admit college students to their medical schools during college; students attend a single six-year to eight-year integrated program consisting of two to four years of an undergraduate curriculum and four years of medical school curriculum, culminating in both a bachelor’s and M.D. degree or a bachelor’s and D.O. degree. Some of these programs admit high school students to college and medical school.

While not necessary for admission, several private organizations have capitalized on this complex and involved process by offering services ranging from single-component preparation (MCAT, essay, etc.) to entire application review/consultation.

In 2014, the average MCAT and GPA for students entering U.S.-based M.D. programs were 31.4 and 3.69,[5] respectively, and 27.21 and 3.53 for D.O. matriculants, although the gap has been getting smaller every year.[6]

In 2012, 45,266 people applied to medical schools in the United States through the American Medical College Application Service. Of these 45,266 students, 19,517 of them matriculated into a medical school for a success rate of 43 percent.[7] However, this figure does not account for the attrition rate of pre-med students in various stages of the pre-application process (those who ultimately do not decide to apply due to weeding out by low GPA, low MCAT, lack of clinical and research experience, and numerous other factors).[8]

Once admitted to medical school, it generally takes four years to complete a Doctor of Medicine (M.D.) or Doctor of Osteopathic Medicine (D.O.) degree program. However, at least two schools, Texas Tech University and the Lake Erie College of Osteopathic Medicine[9] are now offering a three-year accelerated program for those students going into primary care.[10] The course of study is divided into two roughly equal components: pre-clinical and clinical.

Pre-clinical study comprises the first one to two years and consists of classroom and laboratory instruction in core subjects such as anatomy, biochemistry, physiology, pharmacology, histology, embryology, microbiology, pathology, pathophysiology, and neurosciences. Once students successfully complete pre-clinical training, they generally take Step 1 of the medical licensing boards, the USMLE or the COMLEX.

The clinical component usually occupies the final two to three years of medical school and takes place almost exclusively on the wards of a teaching hospital or, occasionally, with community-based physicians. The students observe and take part in the care of patients under the supervision of resident and attending physicians. Rotations (also known as clerkships) are required in internal medicine, surgery, pediatrics, family medicine, obstetrics/gynecology, neurology, and psychiatry. Beyond these, a variable number of specialty electives are required. Additionally, students are generally required to take a sub-internship rotation where they will perform duties at the intern level. During the fourth year, most medical students take Step 2 of the medical licensing boards (USMLE Clinical Knowledge & Clinical Skills [for M.D.] or COMLEX Cognitive Evaluation & Performance Evaluation [for D.O.]).

Many medical schools also offer joint degree programs in which some medical students may simultaneously enroll in master’s or doctoral-level programs in related fields such as a Masters in Business Administration, Masters in Healthcare Administration, Masters in Public Health, JD, Master of Arts in Law and Diplomacy, and Masters in Health Communication. Some schools, such as the Wayne State University School of Medicine and the Medical College of South Carolina, both offer an integrated basic radiology curriculum during their respective MD programs led by investigators of the Advanced Diagnostic Ultrasound in Microgravity study.

Upon completion of medical school, the student gains the title of doctor and the degree of M.D. or D.O. but cannot practice independently until completing at least an internship and also Step 3 of the USMLE (for M.D.) or COMLEX (for D.O.). Doctors of Medicine and Doctors of Osteopathic Medicine have an equal scope of practice in the United States, with some osteopathic physicians supplementing their practice with principles of osteopathic medicine.

Medical schools use a variety of different grading methods. Even within one school, the grading of the basic sciences and clinical clerkships may vary. Most medical schools use the pass/fail schema, rather than letter grades; however the range of grading intervals varies. The following are examples of grades used with different intervals:[11]

In addition, a Medical School Performance Evaluation, also called Dean’s letter, more specifically describes the performance of a student during medical school.[12]

All medical schools within the United States must be accredited by one of two organizations. The Liaison Committee on Medical Education (LCME), jointly administered by the Association of American Medical Colleges and the American Medical Association, accredits M.D. schools,[13] while the Commission on Osteopathic College Accreditation of the American Osteopathic Association accredits osteopathic (D.O.) schools. There are presently 141 M.D. programs[14] and 30 D.O. programs[15] in the United States.

Accreditation is required for a school’s students to receive federal loans. Additionally, schools must be accredited to receive federal funding for medical education.[16] The M.D. and D.O. are the only medical degrees offered in the United States which are listed in the WHO/IMED list of medical schools.

Unlike many other countries, U.S. medical students finance their education with personal debt. In 1992, the average debt of a medical doctor after residency, for those graduating with debt, was $25,000. For the Class of 2009, the average debt of a medical student is $157,990, with 25.1% of students having debt in excess of $200,000 (prior to residency). For the past decade, tuition prices have increased 5-6% each year- it is not clear what has caused these increases.[17]

Medical schools do not have accounting transparency, so it is difficult to pin-point the root cause of tuition increases.[18] Medical education is still based on the 2 + 2 model posited by the 100-year-old Flexner report.

A current economic theory suggests that increasing borrowing limits have been the cause of the increased tuition. As medical students are allowed to borrow more, medical schools raise tuition prices to maximally increase revenue. Studies show that schools raise prices 97 cents for each one dollar increase in borrowing capacity.[19]

There is no consensus on whether the level of debt carried by medical students has a strong effect on their choice of medical specialty. Dr. Herbert Pardes and others have suggested that medical school debt has been a direct cause of the US primary care shortage.[20] Some research suggests that for a sub-set of debt sensitive medical students, this is certainly the case. For most students, debt is but one consideration in choosing a residency. Whatever the cause may be, the 2008 Family Medicine Residency match filled only 44% of available slots with US graduates, down from the 1984 level of 98%.[21]

In February 2010, The Wall Street Journal published a story of Dr Michelle Bisutti’s $555,000 medical school debt. The huge amount of debt is a direct result of Bisutti deferring her student debt payment during her residency.[22]

Income-based repayment (IBR) and Pay as You Earn (PAYE) give options to lower monthly repayment based on adjusted gross income (AGI) for all Federal student loans. Physicians in public service are also eligible for student loan forgiveness after ten years of loan payment while in a public service job.[23]

Repayment options that lower monthly payments and student loan forgiveness (PSLF) in public service are advised to medical residents slated to earn much higher salaries after residency.[24]

Medical schools reside inside complex multi-purpose institutions known as academic health centers. Academic health centers aim to educate medical students and residents, provide top quality patient care, and perform cutting-edge research. Since medical students are educated inside academic health centers, it is impossible to separate the finances from other operations inside the center. Funding for medical studentsand higher graduate medical educationcomes from several sources above and beyond personal debt financing.[25]

Link:
Medical school in the United States – Wikipedia, the free …

Recommendation and review posted by Guinevere Smith

List of medical schools in the United Kingdom – Wikipedia …

Posted: September 26, 2016 at 12:43 am

There are thirty-two medical schools in the United Kingdom that are recognised by the General Medical Council and from which students can obtain a medical degree.[2] There are twenty-four such schools in England, five in Scotland, two in Wales and one in Northern Ireland. All but Warwick Medical School and Swansea Medical School offer undergraduate courses in medicine. The Bute Medical School (University of St Andrews) and Durham Medical School offer undergraduate pre-clinical courses only, with students proceeding to another medical school for clinical studies. Although Oxford University and Cambridge University offer both pre-clinical and clinical courses in medicine, students who study pre-clinical medicine at one of these universities may move to another university for clinical studies. At other universities students stay at the same university for both pre-clinical and clinical work.

Medical education prior to the foundation of the first medical school in the United Kingdom at the University of Edinburgh in 1726[3] was most often based on apprenticeships and professors of medicine did very little if any training of students. Few students graduated as physicians during this period.

The earliest place of medical training in Britain was in 1123 at St Bartholomew’s Hospital, now part of Queen Mary, University of London. The first Chair of Medicine at a British university was established at Aberdeen in 1497,[4] although this was only filled intermittently and there were calls “for the establishment of a medical school” in 1787.[5] Medical teaching has taken place erratically at the University of Oxford since the early 16th century, and its first Regius Professor of Physic was appointed in 1546. Teaching was reformed in 1833 and again in 1856,[6] but the current medical school was not founded until 1936.[7] The University of St Andrews established a Chair of Medicine in 1772, but did not have a medical school (at Dundee) until 1897.[8] The Linacre Readership in Medicine at the University of Cambridge was founded in 1524, and the Regius Professor of Physic was established in 1540. Teaching was reformed in 1829,[6] but the current medical school was established in 1976.[9] Teaching of apprentices was first recorded in 1561 at St Thomas’s Hospital, London, and formalised between 1693 and 1709.[10]

The University of Edinburgh Medical School was founded in 1726 and was the first formally established medical school in the UK. This was followed by Glasgow in 1744, although the school was without a teaching hospital until 1794.[11] The oldest medical school in England is St George’s, University of London, which began formal teaching in 1751.[12] In 1768 teaching at St Thomas’s and Guy’s hospitals in London was formalised with the foundation of the United Hospitals Medical School, which lasted until the foundation of a separate medical school at Guy’s in 1825 (now both part of King’s College London).[10] The London Hospital Medical College (LHMC) was founded in 1785 and is now part of Queen Mary, University of London’s School of Medicine. In the first half of the 19th century, the newly founded university colleges in London opened teaching hospitals in 1834 (University College Hospital)[13] and 1839 (King’s College Hospital).[14] The Middlesex Hospital Medical School (now part of UCL) was also founded in this period, in 1835.[13] The London School of Medicine for Women was founded in 1874, the first medical school in Britain to teach women (now part of UCL).[15]

Outside of London and the universities, medical teaching began in Manchester in 1752[16] and lectures in Birmingham in 1767.[17] Medical schools in Manchester (1824),[18]Birmingham (1825),[17]Sheffield (1829),[19]Leeds (1831),[20] Bristol (1833),[21]Newcastle (1834),[22]Liverpool (1834),[23] and Belfast (1835)[24] were formally established in the first half of the 19th century. Durham University introduced teaching by a Reader in Medicine from its opening in 1833, but had no medical school until the affiliation of the College of Medicine in Newcastle in 1854.[25] In the later 19th century a medical school was established at Cardiff in 1894.[26]

The Medical Act 1858 was a key development in the professionalising of medical practice and training, introducing the General Medical Council and the Medical Register.[27]

The next expansion of medical schools began following the recommendations of the Royal Commission on Medical Education (1965-1968) (the Todd Report), which called for the immediate establishment of new schools in Southampton, Leicester and Nottingham to aid medical education in the United Kingdom;[28][29] all were built between 1970 and 1980. Medical schools at Warwick (located in the City of Coventry), Swansea, Keele (located in the City of Stoke-on-Trent) and Hull (in partnership with York) eventually opened in the 1990s and early 21st century, as well as new medical schools at University of East Anglia (located in the city of Norwich) Durham, Brighton and Sussex, and Plymouth and Exeter. Buckingham University, the oldest private university in England, launched a graduate entry medical school in 2010[30] although it offers only postgraduate MD qualifications to doctors already qualified to MBBS or equivalent and does not offer initial medical training approved by the General Medical Council at present. It is due to accept its first batch of undergraduates for a four and a half year MBBCh course in 2015 at a cost of 35,000 per year.[31] The school will be known as Buckingham Milton Keynes Medical School and will be in partnership with Milton Keynes NHS Trust.[31] The University of Central Lancashire is expected to submit an application for a private medical school in summer 2013. However, the BMA has expressed concerns that private schools could worsen wider participation in medicine.[32]

Visit link:
List of medical schools in the United Kingdom – Wikipedia …

Recommendation and review posted by Guinevere Smith

Sanford School of Medicine | USD

Posted: September 26, 2016 at 12:43 am

Nagi Nunpa (Lakota for Two Spirit)

Presented by: Jessica Hanson, Ph.D., Associate Scientist, Sanford Research Assistant Professor, Department of OB/Gyn, University of South Dakota Sanford School of Medicine; and Caitlin Borges, M.S.W., Clinic Specialist, Center for Disabilities, University of South Dakota Sanford School of Medicine. Location: Health Science Center Room 106

Presenters: Lauren Destino, MD Clinical Assistant Professor, Associate Medical Director of the Pediatric Hospital Medicine Division and Acute Care Floors Lucile Packard Children’s Hospital Stanford and Stanford University School of Medicine Theodore C. Sectish, MD Program Director and Vice Chair, Professor of Pediatrics Harvard Medical School and Boston Children’s Hospital Location: Sanford USD Medical Center Schroeder Auditorium, Avera Education Center Classroom 2, The VA Hospital Room 351 and registered video conferencing sites.

Presented by: Karen A. Munger, Ph.D., Coordinator, R&D Service, Sioux Falls VA Health Care System, Associate Professor, Internal Medicine. Location: Health Science Center Room 106

Presenter: Jennifer Tegethoff, MD, FAAP Clinical Assistant Professor, University of South Dakota Sanford School of Medicine Location: Sanford USD Medical Center Schroeder Auditorium, Avera Education Center Classroom 2, The VA Hospital Room 351 and registered video conferencing sites.

Maria Stys, MD Academic Assistant Professor, University of South Dakota, Sanford School of Medicine Sanford Cardiovascular Institute

Presenters: Brian Burrell, Ph.D., Basic Biomedical Sciences and Ranjit Koodali, Chemistry and Dean of Graduate School join us to learn about the new Neuroscience and Nanotechnology Graduate Training Program (USD-N3). The workshop will provide an explanation of the grant and how it will be administered, along with the opportunity to identify potential collaborative projects between neuroscience and chemisty that may be further developed through the USD-N3 program. Join us to learn more about this exciting new program. Refreshments will be served. CBBRe workshops are held on the first Wednesday of each month (second Wednesday in this case) and aim to bring CBBRe students, staff and faculty together for discussion and collaboration. Other members of your department are welcome to attend. Meetings will be held in the Lee Med Building, Room 105.

Presenter: Joseph Segeleon, MD Professor, Department of Pediatrics, University of South Dakota Sanford School of Medicine Vice President, Chief Medical Officer, Sanford Children’s Hospital, Sioux Falls, South Dakota Location: Sanford USD Medical Center, Schroeder Auditorium Avera Education Center Classroom 2 The VA Hospital Room 351, and registered video conferencing sites

Larry Burris, DO Assistant Clinical Professor, Neurology, Sanford School of Medicine Transplant Nephrologist and NeuroIntensivist

LCME Accreditation: One Year and Counting Retreat Objectives: a. Review drafts of LCME subcommittee self-study reports, including strengths, challenges and recommendations b. Review Independent Student Analysis c. Prioritize recommendations that need to be addressed Agenda and registration available online.

Read this article:
Sanford School of Medicine | USD

Recommendation and review posted by Guinevere Smith

What Happens When We All Live to 100? – The Atlantic

Posted: September 24, 2016 at 8:45 pm

For millennia, if not for eonsanthropology continuously pushes backward the time of human originlife expectancy was short. The few people who grew old were assumed, because of their years, to have won the favor of the gods. The typical person was fortunate to reach 40.

Beginning in the 19th century, that slowly changed. Since 1840, life expectancy at birth has risen about three months with each passing year. In 1840, life expectancy at birth in Sweden, a much-studied nation owing to its record-keeping, was 45 years for women; today its 83 years. The United States displays roughly the same trend. When the 20th century began, life expectancy at birth in America was 47 years; now newborns are expected to live 79 years. If about three months continue to be added with each passing year, by the middle of this century, American life expectancy at birth will be 88 years. By the end of the century, it will be 100 years.

Viewed globally, the lengthening of life spans seems independent of any single, specific event. It didnt accelerate much as antibiotics and vaccines became common. Nor did it retreat much during wars or disease outbreaks. A graph of global life expectancy over time looks like an escalator rising smoothly. The trend holds, in most years, in individual nations rich and poor; the whole world is riding the escalator.

Projections of ever-longer life spans assume no incredible medical discoveriesrather, that the escalator ride simply continues. If anti-aging drugs or genetic therapies are found, the climb could accelerate. Centenarians may become the norm, rather than rarities who generate a headline in the local newspaper.

Pie in the sky? On a verdant hillside in Marin County, Californiahome to hipsters and towering redwoods, the place to which the Golden Gate Bridge leadssits the Buck Institute, the first private, independent research facility dedicated to extending the human life span. Since 1999, scientists and postdocs there have studied ways to make organisms live much longer, and with better health, than they naturally would. Already, the institutes researchers have quintupled the life span of laboratory worms. Most Americans have never heard of the Buck Institute, but someday this place may be very well known.

Buck is not alone in its pursuit. The University of Michigan, the University of Texas, and the University of California at San Francisco are studying ways to slow aging, as is the Mayo Clinic. Late in 2013, Google brought its trove of cash into the game, founding a spin-off called the California Life Company (known as Calico) to specialize in longevity research. Six months after Calicos charter was announced, Craig Venter, the biotech entrepreneur who in the 1990s conducted a dramatic race against government laboratories to sequence the human genome, also founded a start-up that seeks ways to slow aging.

Should research find a life-span breakthrough, the proportion of the U.S. population that is elderlyfated to rise anyway, considering declining fertility rates, the retirement of the Baby Boomers, and the continuing uplift of the escalatormay climb even more. Longer life has obvious appeal, but it entails societal risks. Politics may come to be dominated by the old, who might vote themselves ever more generous benefits for which the young must pay. Social Security and private pensions could be burdened well beyond what current actuarial tables suggest. If longer life expectancy simply leads to more years in which pensioners are disabled and demand expensive services, health-care costs may balloon as never before, while other social needs go unmet.

With each passing year, the newly born live about three months longer than those born the prior year.

But the story might have a happy ending. If medical interventions to slow aging result in added years of reasonable fitness, life might extend in a sanguine manner, with most men and women living longer in good vigor, and also working longer, keeping pension and health-care subsidies under control. Indeed, the most-exciting work being done in longevity science concerns making the later years vibrant, as opposed to simply adding time at the end.

Postwar medical research has focused on specific conditions: there are heart-disease laboratories, cancer institutes, and so on. Traditional research assumes the chronic later-life diseases that are among the nations leading killerscardiovascular blockage, stroke, Alzheimersarise individually and should be treated individually. What if, instead, aging is the root cause of many chronic diseases, and aging can be slowed? Not just life span but health span might increase.

Drugs that lengthen health span are becoming to medical researchers what vaccines and antibiotics were to previous generations in the lab: their grail. If health-span research is successful, pharmaceuticals as remarkable as those earlier generations of drugs may result. In the process, society might learn the answer to an ancient mystery: Given that every cell in a mammals body contains the DNA blueprint of a healthy young version of itself, why do we age at all?

Here in our freezers we have 100 or so compounds that extend life in invertebrates, says Gordon Lithgow, a geneticist at the Buck Institute. He walks with me through labs situated on a campus of modernistic buildings that command a dreamlike view of San Pablo Bay, and encourage dreamlike thoughts. The 100 compounds in the freezer? What we dont know is if they work in people.

The Buck Institute bustles with young researchers. Jeans and San Francisco 49ers caps are common sightsthis could be a Silicon Valley software start-up were not microscopes, cages, and biological-isolation chambers ubiquitous. The institute is named for Leonard and Beryl Buck, a Marin County couple who left oil stocks to a foundation charged with studying why people age, among other issues. When the institute opened, medical research aimed at slowing aging was viewed as quixoticthe sort of thing washed-up hippies talk about while sipping wine and watching the sunset. A mere 15 years into its existence, the Buck Institute is at the bow wave of biology.

In one lab, researchers laboriously tamper with yeast chromosomes. Yeast is expedient as a research subject because it lives out a lifetime before an analysts eyes, and because a third of yeast genes are similar to human genes. Deleting some genes kills yeast; deleting others causes yeast to live longer. Why deleting some genes extends life isnt knownBuck researchers are trying to figure this out, in the hope that they might then carry the effect over to mammals. The work is painstaking, with four microscopes in use at least 50 hours a week.

Buck employs Lilliputian electrocardiogram machines and toy-size CT scanners to examine the internal organs of mice, since the goal is not just to make them live longer but to keep them healthy longer, with less cancer or heart disease. Researchers curious about aging mainly work with mice, worms, flies, and yeast, because they are small and easily housed, and because they dont live long, so improvements to life expectancy are quickly observable. Twenty years ago it was a really big deal to extend the life span of worms. Now any postdoc can do that, says Simon Melov, a Buck geneticist. Experiments funded by the National Institute on Aging have shown that drugs can extend a mouses life span by about a quarter, and Buck researchers have been able to reverse age-related heart dysfunction in the same animal. Think how the world would be upended if human longevity quickly jumped another 25 percent.

The rubber will meet the road with human trials. We hope to find five to 10 small molecules that extend healthy life span in mice, then stage a human trial, says Brian Kennedy, the Buck Institutes CEO. A drug called rapamycinbeing tested at the institute and elsewhereseems closest to trial stage and has revolutionary potential. But in addition to being ethically fraught, human trials of a life-extension substance will be costly, and might take decades. The entry of Googles billions into the field makes human trials more likely. Calico is tight-lipped about its plansthe company agreed to let me visit, then backed out.

Anti-aging research is not without antecedents, some of which offer notes of caution. A generation ago, Linus Pauling, a winner of the Nobel Prize in chemistry, proposed that megadoses of vitamin C would retard aging. It turned out that at megadoses, vitamins can become toxic. If you take vitamins, swallow the amounts recommended by the Food and Drug Administration.

A decade ago, a biotech start-up called Sirtris sought to devise drugs that mimic the supposed health-giving properties of red wine. GlaxoSmithKline bought Sirtris for $790 million in todays dollars, money the company may wish it had back: Sirtris experiments have yet to lead to any practical product.

About 15 years ago, Bruce Ames, an accomplished scientist at the University of California at Berkeley, proposed that acetylcarnitine, which regulates the mitochondria of cells, combined with an antioxidant, might retard aging while treating mild Alzheimers. Antioxidant has become a buzzword of supplement marketing and Dr. Ozstyle quackery. Too much antioxidant would be unhealthy, since oxidation is essential to the bodys respiration. Ames thought he had found a compound that safely moderates the pace at which cells use themselves up. He began dosing himself with acetylcarnitine, and continues to work at Berkeley, at age 85; whether he would have enjoyed such longevity anyway is unknowable. Pharmaceutical companies have shown little interest in Amess ideabecause it occurs naturally, acetylcarnitine cannot be patented, and, worse from Big Pharmas standpoint, the substance is inexpensive.

Today, lab results show a clear relationship between a restricted-calorie diet and longevity in mice. That eating less extends the life spans of small mammals is the strongest finding of anti-aging research to this point. A restrictive diet seems to put mouse cells into a state vaguely similar to hibernation; whether caloric restriction would work in people isnt known. A campaign against calories might seem to possess broad practical appeal, since whats recommendedeating lesscosts nothing. But if the mice are any indication, one would need to eat a lot less, dropping caloric intake to the level at which a person feels hunger pangs throughout the day. Caloric restriction is a fad diet in Northern California, Melov told me. We had a caloric-restriction group come in to visit the institute. They did not look at all healthy.

Recently, separate teams at Harvard, Stanford, and UC San Francisco reported that transferring the blood of adolescent mice into old, declining mice had a rejuvenating effect on the latter. The thought of the old rich purchasing blood from the young poor is ghoulish on numerous levels. The research goal is to determine what chemical aspect of youthful blood benefits mature tissue. Perhaps compounds in adolescent blood excite dormant stem cells, and a drug could be developed that triggers the effect without transfusion.

The Buck Institute and other labs have been looking for health-span DNA that may exist in other mammals. Whales are a lot less likely than people are to get cancer. Polar bears consume an extremely high-fat diet yet dont develop arterial plaque. If the biological pathways for such qualities were understood, a drug might be designed to trigger the effect in people. Mimicking what nature has already developed seems more promising than trying to devise novel DNA.

In worms, genes called daf-2 and daf-16 can change in a way that causes the invertebrates to live twice as long as is natural, and in good vigor. A molecular biologist named Cynthia Kenyon, among the first hires at Calico, made that discovery more than two decades ago, when she was a researcher at UC San Francisco. By manipulating the same genes in mice, Kenyon has been able to cause them to live longer, with less cancer than mice in a control group: that is, with a better health span. The daf-16 gene is similar to a human gene called foxo3, a variant of which is linked to exceptional longevity. A drug that mimics this foxo3 variant is rumored to be among Calicos initial projects.

A long time has passed since Kenyons eureka moment about worm genes, and shes still far from proving that this insight can help people. But the tempo of the kind of work she does is accelerating. Twenty years ago, genetic sequencing and similar forms of DNA research were excruciatingly time-consuming. New techniques and equipment have altered that: for instance, one Silicon Valley lab-services firm, Sequetech, advertises, Go from [cell] colony to sequence in a day. The accelerating pace of genetic-information gathering may come in handy for health-span research.

The Buck Institute became cautiously optimistic about rapamycin when its life-extension properties were noticed in yeast. Lab mice dosed with rapamycin are dying off more slowly than they would naturally, and many of the old mice appear energetic and youthful. Devised to prevent rejection of transplanted organs, rapamycin seems to alter some chemistry associated with cellular senescence. (More on that later.) If the drug turns out to delay aging in people, it would be the greatest off-label pharmaceutical use ever. But dont ask your doctor for a prescriptionhealth-span therapy based on rapamycin is years away, if it ever happens. Kennedy, the Buck Institute CEO, does not dose himself with rapamycin, whose side effects are not understood.

Researchers at the Buck Institute are lean: societys obesity problems are not in evidence there. Everyone takes the stairs; elevators are viewed as strictly for visitors. If there is a candy machine on the 488-acre grounds, it is well hidden. I met some researchers for lunch in a glass-and-chrome conference room (Bucks buildings were designed by I. M. Pei and fairly shout Give me an architecture award!). Lunch was an ascetic affair: water and a small sandwich with greens; no sides, soda, or cookies. Kennedy says he seldom eats lunch, and runs up to 20 miles weekly. Yet, even doing everything right by the lights of current assumptions about how to stave off aging, at age 47, Kennedy has wrinkle lines around his eyes.

Except with regard to infectious diseases, medical cause and effect is notoriously hard to pin down. Coffee, salt, butter: good, bad, or neither? Studies are inconclusive. Why do some people develop heart disease while others with the same habits dont? The Framingham Heart Study, in its 66th year and following a third generation of subjects, still struggles with such questions. You should watch your weight, eat more greens and less sugar, exercise regularly, and get ample sleep. But you should do these things because they are common sensenot because there is any definitive proof that they will help you live longer.

The uncertainty inherent in the practice of medicine is amplified when the subject is longevity, because decades might pass before anyone knows whether a particular drug or lifestyle modification does any good. Scrutinizing the very old has not been the gold mine some researchers hoped it would be. Lifestyle studies of centenarians can be really puzzling, Kennedy says. They smoke more and drink less than we might guess. Few are vegetarians. Nothing jumps out as a definitive cause of their long lives.

Among the first wide-scale efforts to understand gerontology was the Baltimore Longitudinal Study of Aging, begun by federal researchers in 1958 and ongoing. Its current director, Luigi Ferrucci, says, The study has determined that disabilities among the elderly often have warning signs that can be detected in youth, and this insight might lead to early-life interventions that decrease late-life chronic disease. But on some of the big questions, such as whether longevity is caused mainly by genes or mainly by lifestyle and environment, we just have no idea at all.

Studies of twins suggest that about 30 percent of longevity is inherited. This is one of the factors that make researchers optimisticif 30 percent of longevity is inherited, perhaps laboratories can design a compound that causes anyones blood chemistry to mimic what happens in the bodies of those who were born with the DNA for long life. But when we sequence the genome, only 1 percent seems linked to longevity, Ferrucci told me. The other 99 percent of the presumed genetic effect is unexplained.

At medical conferences, Ferrucci likes to show physicians and researchers an elaborate medical profile of an anonymous patient, then ask them to guess her age. Guesses are off by as much as 20 years too high or low, he says. This is because medically, we do not know what age is. The sole means to determine age is by asking for date of birth. Thats what a basic level this research still is at.

Aging brings with it, of course, senescence. Cellular senescence, a subset of the overall phenomenon, is a subject of fascination in longevity research.

The tissues and organs that make up our bodies are prone to injury, and the cells are prone to malfunctions, cancer being the most prominent. When an injury must be healed, or cancerous tissue that is dividing must be stopped, nearby cells transmit chemical signals that trigger the repair of injured cells or the death of malignant ones. (Obviously this is a simplification.) In the young, the system works pretty well. But as cells turn senescent, they begin to send out false positives. The bodys healing ability falters as excess production of the repair signal leads to persistent inflammation, which is the foundation of heart disease, Alzheimers, arthritis, and other chronic maladies associated with the passage of time. Cars wear out because they cannot repair themselves; our bodies wear out because they lose the ability to repair themselves. If the loss of our ability to self-repair were slowed down, health during our later years would improve: a longer warranty, in the auto analogy.

If we can figure out how to eliminate senescent cells or switch off their secretions, says Judith Campisi, who runs the Buck Institutes research on this topic, then we could prevent or lessen the impact of many chronic diseases of aging. Its not a coincidence that incidence of these chronic diseases increases sharply after the age of 50, a time when senescent cells also increase in number. If you believe, as many scientists do, that aging is a prime cause of many chronic diseases, it is essential that we understand the accumulation of senescent cells. Rapamycin excites longevity researchers because it seems to switch off the repair signal mistakenly sent by senescent cells. Mayo Clinic researchers are studying other substances that dampen the effects of cellular senescence; some have proved to keep mice fit longer than normal, extending their health span. Many elderly people decline into years of progressive disability, then become invalids. If instead most people enjoyed reasonable vigor right up to the end, that would be just as exciting for society as adding years to life expectancy.

Big medical efforts tend to be structured as assaults on specific conditionsthe war on cancer and so on. One reason is psychological: a wealthy person who survived a heart attack, or lost a parent to one, endows a foundation to study the problem. Another reason is symbolic: we tend to view diseases as challenges thrown at us by nature, to be overcome one by one. If the passage of time itself turns out to be the challenge, interdisciplinary study of aging might overtake the disease-by-disease approach. As recently as a generation ago, it would have seemed totally crazy to suppose that aging could be cured. Now curing aging seems, well, only somewhat crazy.

The life-expectancy escalator has for nearly two centuries risen about three months a year, despite two world wars, the 1918 influenza pandemic, the AIDS epidemic, and the global populations growing sevenfoldthe latter deceptively important, because crowded conditions are assumed to more readily communicate disease. Will life-span increases continue regardless of what may happen in biotech? The yea position is represented by James Vaupel, the founder of Germanys Max Planck Institute for Demographic Research; the nay by Jay Olshansky, a professor of public health at the University of Illinois at Chicago.

In 2002, Vaupel published an influential article in Science documenting the eerily linear rise in life expectancy since 1840. Controversially, Vaupel concluded that reductions in mortality should not be seen as a disconnected sequence of unrepeatable revolutions but rather as a regular stream of continuing progress. No specific development or discovery has caused the rise: improvements in nutrition, public health, sanitation, and medical knowledge all have helped, but the operative impetus has been the stream of continuing progress.

Vaupel called it a reasonable scenario that increases will continue at least until life expectancy at birth surpasses 100. His views havent changed. The data still support the conclusions of the 2002 paper. Linear rise in life expectancy has continued, Vaupel told me earlier this year. In a recent report, the Centers for Disease Control and Prevention found that the age-adjusted U.S. death rate declined to a record low in 2011. Today the first four causes of death in the United States are chronic, age-related conditions: heart disease, cancer, chronic lower-respiratory diseases, and stroke. As long as living standards continue to improve, Vaupel thinks, life expectancy will continue to increase.

On the opposite side of this coin, Olshansky told me the rise in life expectancy will hit a wall soon, if it hasnt already. He noted, Most of the 20th-century gains in longevity came from reduced infant mortality, and those were onetime gains. Infant mortality in the United States trails some other nations, but has dropped so muchdown to one in 170that little room for improvement remains. Theres tremendous statistical impact on life expectancy when the young are saved, Olshansky says. A reduction in infant mortality saves the entire span of a persons life. Avoiding mortality in a young personsay, by vaccinesaves most of the persons life. Changes in medicine or lifestyle that extend the lives of the old dont add much to the numbers. Olshansky calculates that if cancer were eliminated, American life expectancy would rise by only three years, because a host of other chronic fatal diseases are waiting to take its place. He thinks the 21st century will see the average life span extend another 10 years or so, with a bonus of more health span. Then the increase will slow noticeably, or stop.

Whether human age may have a biological limit does not factor into this debate. A French woman who lived from 1875 to 1997, Jeanne Calment, had the longest confirmed life span, at 122. Shes obviously an outlier, and while outliers dont tell us much, they do hint at whats possible. Her age at death was well beyond the average life span that either Vaupel or Olshansky are contemplating in their analyses. And in any case, various experts, at various times across the past century, have argued that life span was nearing a ceiling, only to be proved wrong.

Diminishing smoking and drunk driving have obviously contributed to declining mortality. Homicide has fallen so muchshootings arent necessarily down, but improved trauma response saves more victimsthat murder is no longer among the top 15 causes of death in the United States. Other health indicators seem positive as well. All forms of harmful air and water emissions except greenhouse gases are in long-term decline. Less smog, acid rain, and airborne soot foster longevitythe old are sensitive to respiratory diseasewhile declining levels of industrial toxins may contribute to declining cancer rates. Life expectancy can be as much as 18 years shorter in low-income U.S. counties than in high-income counties, but Obamacare should correct some of that imbalance: Romneycare, enacted in 2006 and in many ways Obamacares precursor, reduced mortality in low-income Massachusetts counties. These and many other elements of Vaupels stream of continuing progress seem to favor longevity. So does climate change: people live longer in warm climates than cold, and the world is warming.

Popular attention tends to focus on whether what we gulp down determines how long we live: Should people take fish oil and shop for organic probiotic kefir? The way our homes, families, and friendships are organized may matter just as much. Thomas Perls, a professor at Boston Medical Center who analyzes the genomes of centenarians, notes that Seventh-Day Adventists enjoy about a decade more life expectancy than peers of their birth years: They dont drink or smoke, most are vegetarians, they exercise regularly even when old, and take a true weekly day of rest. But what really strikes Perls about Seventh-Day Adventists is that they maintain large social groups. Constant interaction with other people can be annoying, but overall seems to keep us engaged with life.

For years, the American social trend has been away from constant interaction with other peoplefewer two-parent homes, fewer children per home, declining participation in religious and community activities, grandparents living on their own, electronic interaction replacing the face-to-face in everything from work to dating. Prosperity is associated with smaller households, yet the large multigeneration home may be best for long life. There are some indications that the Great Recession increased multigeneration living. This may turn out to boost longevity, at least for a time.

The single best yardstick for measuring a persons likely life span is education. John Rowe, a health-policy professor at Columbia University and a former CEO of Aetna, says, If someone walked into my office and asked me to predict how long he would live, I would ask two things: What is your age, and how many years of education did you receive?

Jay Olshanskys latest research suggests that American women with no high-school diploma have experienced relatively small life-span increases since the 1950s, while the life expectancy of highly educated women has soared since then. Today the best-educated Americans live 10 to 14 years longer than the least educated, on average. Nothing pops out of the data like the link between education and life expectancy, Olshansky says. The good news is that the share of the American population that is less educated is in gradual decline. The bad news is that lack of education seems even more lethal than it was in the past.

Education does not sync with life expectancy because reading Dostoyevsky lowers blood pressure; college is a proxy for other aspects of a persons life. Compared with the less educated, people with a bachelors degree have a higher income, smoke less, are less likely to be overweight, and are more likely to follow doctors instructions. College graduates are more likely to marry and stay married, and marriage is good for your health: the wedded suffer fewer heart attacks and strokes than the single or divorced.

Many of the social developments that improve longevitybetter sanitation, less pollution, improved emergency roomsare provided to all on an egalitarian basis. But todays public high schools are dreadful in many inner-city areas, and broadly across states including California. Legislatures are cutting support for public universities, while the cost of higher education rises faster than inflation. These issues are discussed in terms of fairness; perhaps health should be added as a concern in the debate. If education is the trump card of longevity, the top quintile may pull away from the rest.

Society is dominated by the oldold political leaders, old judges. With each passing year, as longevity increases, the intergenerational imbalance worsens. The old demand benefits for which the young must pay, while people in their 20s become disenchanted, feeling that the deck is stacked against them. National debt increases at an alarming rate. Innovation and fresh thinking disappear as energies are devoted to defending current pie-slicing arrangements.

This isnt a prediction about the future of the United States, but rather a description of Japan right now. The Land of the Rising Sun is the worlds grayest nation. Already the median age is 45 (in the U.S., by comparison, it is 37), and it will jump to 55 by 2040. As Nicholas Eberstadt, a demographer at the American Enterprise Institute, has noted, median age in the retirement haven of Palm Springs, California, is currently 52 years. Japan is on its way to becoming an entire nation of Palm Springs residents.

The number of Americans 65 or older could reach 108 million in 2050. Thats like adding three more Floridas, inhabited entirely by seniors.

Japans grayness stems from a very low fertility ratenot enough babies to bring down the average ageand strict barriers against immigration. The United States remains a nation of immigrants, and because of the continual inflow of young people, the U.S. median age wont go haywire even as life expectancy rises: the United Nations World Population Prospects estimates that the U.S. median age will rise to 41 by mid-century.

Nonetheless, that Japan is the first major nation to turn gray, and is also the deepest in debt, is not encouraging. Once, Japan was feared as the Godzilla of global trade, but as it grayed, its economy entered a long cycle of soft growth. In 2012 the centrist Democratic Party of Japan, then holding the Diet, backed a tax whose goal was not to pay down what the country owes but merely to slow the rate of borrowing. The party promptly got the heave-ho from voters. Last year Japans public debt hit $10 trillion, twice the nations GDP.

Sheila Smith, a Japan specialist at the Council on Foreign Relations, told me, Young people in Japan have some of the worlds worst voter-participation rates. They think the old have the system so rigged in their favor, theres no point in political activity. The young dont seem excited by the future. News accounts of young Japanese becoming so apathetic that theyve lost interest in having sex sound hard to believe, but may bear some truth.

Young urban Japanese surely are aware that their elders are ringing up bills to be handed to them, but theyre also aware that if funding for the retired is cut, Grandma may want to move into their very small apartment. As life expectancy rises, a Japanese person entering the happy-go-lucky phase of early adulthood may find that parents and grandparents both expect to be looked after. Because the only child is common in Japans newest generation, a big cast of aging people may turn to one young person for financial support or caregiving or both. Acceding to public borrowing may have become, to young Japanese, a way to keep older generations out of the apartmenteven if it means crushing national debt down the road.

That America may become more like Japansteadily older, with rising debt and declining economic growthis unsettling. From the second half of the George W. Bush administration until 2013, U.S. national debt more than doubled. The federal government borrowed like there was no tomorrow. The debt binge, for which leaders of both political parties bear blame, was a prelude to the retirement of the Baby Boomers. Tomorrow has a way of coming.

Suppose the escalator slows, and conservative assumptions about life expectancy prevail. In a 2009 study, Olshansky projected future demographics under the hit a wall scenario. The number of Americans 65 or older, 43 million today, could reach 108 million in 2050that would be like adding three more Floridas, inhabited entirely by seniors. The oldest old cohort, those 85 and older, may increase at least fivefold, to more than 6 percent of the U.S. citizenry. Olshansky projected that by 2050, life expectancy will extend three to eight years past the age used by the Social Security Administration to assess the solvency of its system, while forecasting that by 2050, Medicare and Social Security will rack up between $3.2 trillion and $8.3 trillion in unfunded obligations. (State and local governments have at least another $1 trillion in unfunded pension liabilities.) These disconcerting numbers flow from the leading analyst who thinks that the life-span increase is slowing down.

When President Obama took office, Social Securitys trustees said the current benefits structure was funded until 2037. Now the Congressional Budget Office says the year of reckoning may come as soon as 2031. States may be funding their pension obligations using fuzzy math: New York issues promissory notes; Illinois and New Jersey sell debt instruments distressingly similar to junk bonds. Many private pension plans are underfunded, and the Pension Benefit Guaranty Corporation, which on paper appears to insure them, is an accident looking for a place to happen. Twice in the past three years, Congress has voted to allow corporations to delay contributions to pension plans. This causes them to pay more taxes in the present year, giving Congress more to spend, while amplifying problems down the road. Social Securitys disability fund may fail as soon as late 2016. Medicare spending is rising faster than Social Security spending, and is harder to predict. Projections show the main component of Medicare, its hospital fund, failing by 2030.

The Congressional Budget Office estimates that over the next decade, all federal spending growth will come from entitlementsmainly Social Security and Medicareand from interest on the national debt. The nonpartisan think tank Third Way has calculated that at the beginning of the Kennedy presidency, the federal government spent $2.50 on public investmentsinfrastructure, education, and researchfor every $1 it spent on entitlements. By 2022, Third Way predicts, the government will spend $5 on entitlements for every $1 on public investments. Infrastructure, education, and research lead to economic growth; entitlement subsidies merely allow the nation to tread water.

If health span can be improved, the costs of aging-related disability may be manageable. Not that long ago, vast sums were spent on iron lungs and sanitariums for treatment of polio: preventing the disease has proved much less expensive than treating it. If chronic ailments related to aging can be prevented or significantly delayed, big-ticket line items in Medicare might not go off the rails.

But if health span does not improve, longer life could make disability in aging an economic crisis. Today, Medicare and Medicaid spend about $150 billion annually on Alzheimers patients. Absent progress against aging, the number of people with Alzheimers could treble by 2050, with society paying as much for Alzheimers care as for the current defense budget.

Many disabilities associated with advanced years cannot be addressed with pharmaceuticals or high-tech procedures; caregivers are required. Providing personal care for an aged invalid is a task few wish to undertake. Already many lists of careers with the most job openings are headed by caregiver or nurses aide, professions in which turnover is high.

As longevity increases, so too does the number of living grandparents. Families that once might have had one oldest old relative find themselves with three or four, all expecting care or money. At the same time, traditional family trees are being replaced with diagrams that resemble maps of the London Underground. Will children of blended families feel the same obligation to care for aging stepparents as they feel for biological parents? Just the entry of the phrase birth parent into the national lexicon suggests the magnitude of the change.

With Japan at the leading edge of lengthening life expectancy, its interest in robotics can be eerie. Foxconn, the Asian electronics giant, is manufacturing for the Japanese market a creepy mechanized thing named Pepper that is intended to provide company for the elderly. More-sophisticated devices may be in store. A future in which large numbers of very old, incapacitated people stare into the distance as robot attendants click and hum would be a bad science-fiction movie if it didnt stand a serious chance of happening.

As the population ages, so do the political powers that beand theyre aging in place. Computerized block-by-block voting analysis and shameless gerrymanderingMarylands new sixth congressional district is such a strange shape, it would have embarrassed Elbridge Gerrylock incumbents into power as never before. Campaign-finance laws appear to promote reform, but in fact have been rigged to discourage challengers. Between rising life expectancy and the mounting power of incumbency, both houses of Congress are the oldest theyve ever been: the average senator is 62 years old; the average representative, 57.

A graying Congress would be expected to be concerned foremost with protection of the status quo. Government may grow sclerotic at the very time the aging of the populace demands new ideas. Theres already a tremendous advantage to incumbency, one experienced political operative told me. As people live longer, incumbents will become more entrenched. Strom Thurmond might not be unusual anymore. Many from both parties could cling to power too long, freezing out fresh thinking. It wont be good for democracy. The speaker was no starry-eyed radical: he was Karl Rove.

Now think of the Supreme Court as life expectancy increases. The nine justices on the first Court sat an average of nine years; the last nine to depart, an average of 27 years. John Paul Stevens, the most recent to retire, was a justice for 35 years. If Clarence Thomas lives to the actuarial life expectancy of a male his current age, he could be a Supreme Court justice for 40 years.

The Framers would be aghast at the idea of a small cadre of unelected potentates lording it over the body politic for decades. When the Constitution was written, no one could have anticipated how much life span would increase, nor how much power the Supreme Court would accrue. If democracy is to remain vibrant as society ages, campaign laws must change to help challengers stand a chance versus incumbents, and the Constitution must be amended to impose a term limit on the Supreme Court, so confirmation as a justice stops being a lifetime appointment to royalty.

In 1940, the typical American who reached age 65 would ultimately spend about 17 percent of his or her life retired. Now the figure is 22 percent, and still rising. Yet Social Security remains structured as if longevity were stuck in a previous century. The early-retirement option, added by Congress in 1961start drawing at age 62, though with lower benefitsis appealing if life is short, but backfires as life span extends. People who opt for early Social Security may reach their 80s having burned through savings, and face years of living on a small amount rather than the full benefit they might have received. Polls show that Americans consistently underestimate how long they will livea convenient assumption that justifies retiring early and spending now, while causing dependency over the long run.

James Vaupel has warned that refusing to acknowledge longevitys steady march distorts peoples decisions about how much to save and when to retire and gives license to politicians to postpone painful adjustments to Social Security. Ronald Reagan was the last president to push through legislation to account for life-span changes. His administration increased the future eligible age of full Social Security benefits from 65 to 66 or 67, depending on ones birth year. Perhaps 99 percent of members of Congress would agree in private that retirement economics must change; none will touch this third rail. Generating more Social Security revenue by lifting the payroll-tax cap, currently $117,000, is the sole politically attractive option, because only the well-to-do would be impacted. But the Congressional Budget Office recently concluded that even this soak-the-rich option is insufficient to prevent insolvency for Social Security. At least one other change, such as later retirement or revised cost-of-living formulas, is required. A fair guess is that the government will do nothing about Social Security reform until a crisis strikesand then make panicked, ill-considered moves that foresight might have avoided.

Americans may decry government gridlock, but they cant blame anyone else for their own decisions. Peoples retirement savings simply must increase, though this means financial self-discipline, which Americans are not known for. Beyond that, most individuals will likely need to take a new view of what retirement should be: not a toggle switchno work at all, after years of full-time laborbut a continuum on which a person gradually downshifts to half-time, then to working now and then. Lets call it the retirement track rather than retirement: a phase of continuing to earn and save as full-time work winds down.

Widespread adoption of a retirement track would necessitate changes in public policy and in employers attitudes. Banks dont think in terms of smallish loans to help a person in the second half of life start a home-based business, but such lending might be vital to a graying population. Many employers are required to continue offering health insurance to those who stay on the job past 65, even though they are eligible for Medicare. Employers premiums for these workers are much higher than for young workers, which means employers may have a logical reason to want anyone past 65 off the payroll. Ending this requirement would make seniors more attractive to employers.

Many people may find continuing to work but under the lower-stress circumstances of part-time employment to be preferable to a gold watch, then idleness. Gradual downshifting could help ease aging people into volunteer service roles, where theres never any end of things to do. The retirement track could be more appealing than traditional retirement. A longer health span will be essential to making it possible.

Understanding the evolutionary biology of aging might help the quest for improved health span. Each cell of the body contains DNA code for a fresh, healthy cell, yet that blueprint is not called on as we grow old. Evolutionists including Alfred Russel Wallace have toyed with the idea of programmed deaththe notion that natural selection wants old animals to die in order to free up resources for younger animals, which may carry evolved genetic structures. Current thinking tends to hold that rather than trying to make older animals die, natural selection simply has no mechanism to reward longevity.

Felipe Sierra, a researcher at the National Institute on Aging, says, Evolution doesnt care about you past your reproductive age. It doesnt want you either to live longer or to die, it just doesnt care. From the standpoint of natural selection, an animal that has finished reproducing and performed the initial stage of raising young might as well be eaten by something, since any favorable genetic quality that expresses later in life cannot be passed along. Because a mutation that favors long life cannot make an animal more likely to succeed at reproducing, selection pressure works only on the young.

A generation ago, theorists suspected that menopause was an evolutionary adaptation exclusive to the Homo genuswomen stop expending energy to bear children so they can care longer for those already born, as mothers and grandmothers. This, the theory goes, increases childrens chances of survival, allowing them to pass along family genes. Yet recent research has shown that animals including lions and baboons also go through menopause, which increasingly looks more like a malfunction of aging cells than a quality brought about by selection pressure. As for the idea that grandparents help their grandchildren prosper, favoring longevitythe grandmother effectthis notion, too, has fared poorly in research.

The key point is: if nothing that happens after a person reproduces bears on which genes flourish, then nature has never selected for qualities that extend longevity. Evolution favors strength, intelligence, reflexes, sexual appeal; it does not favor keeping an organism running a long time. For example, a growing body needs calcium, so nature selected for the ability to metabolize this element. In later life, calcium causes stiffening of the arteries, a problem that evolution has no mechanism to correct, since hardened arteries do not occur until its too late for natural selection to side with any beneficial mutation. Testosterone is essential to a youthful man; in an aging man, it can be a factor in prostate cancer. Evolution never selected for a defense against that.

Similar examples abound; the most important may be senescent cells. Natural selection probably favors traits that reduce the risk of cancer, because cancer can strike the young before reproductive age is reached. Senescence doesnt occur until evolution is no longer in play, so natural selection has left all mammal bodies with a defect that leads to aging and death.

If senescence could be slowed, men and women hardly would become immortal. Violence, accidents, and contagious disease still would kill. Even if freed of chronic conditions, eventually our bodies would fail.

But it is not credulous futurism to suppose that drugs or even genetic therapy may alter the human body in ways that extend longevity. Brian Kennedy, of the Buck Institute, notes, Because natural selection did not improve us for aging, theres a chance for rapid gains. The latest BMWs are close to perfect. How can an engineer improve on them? But the Model T would be easy to improve on now. When young, genetically we are BMWs. In aging, we become Model Ts. The evolutionary improvements havent started yet.

In the wild, young animals outnumber the old; humanity is moving toward a society where the elderly outnumber the recently arrived. Such a world will differ from todays in many outward aspects. Warm-weather locations are likely to grow even more popular, though with climate change, warm-weather locations may come to include Buffalo, New York. Ratings for football, which is loud and aggressive, may wane, while baseball and theatergoing enjoy a renaissance. The shift back toward cities, initiated by the educated young, may give way to another car-centric suburban and exurban growth phase.

The university, a significant aspect of the contemporary economy, centuries ago was a place where the fresh-faced would be prepared for a short life; today the university is a place where adults watch children and grandchildren walk to Pomp and Circumstance. The university of the future may be one that serves all ages. Colleges will reposition themselves economically as offering just as much to the aging as to the adolescent: courses priced individually for later-life knowledge seekers; lots of campus events of interest to students, parents, and the community as a whole; a pleasant college-town atmosphere to retire near. In decades to come, college professors may address students ranging from age 18 to 80.

Products marketed to senior citizens are already a major presence on television, especially during newscasts and weathercasts. Advertising pitched to the elderly may come to dominate the airwaves, assuming there still is television. But consumerism might decline. Neurological studies of healthy aging people show that the parts of the brain associated with reward-seeking light up less as time goes on. Whether its hot new fashions or hot-fudge sundaes, older people on the whole dont desire acquisitions as much as the young and middle-aged do. Denounced for generations by writers and clergy, wretched excess has repelled all assaults. Longer life spans may at last be the counterweight to materialism.

If health span extends, the nuclear family might be seen as less central. Bearing and raising children would no longer be the all-consuming life event.

Deeper changes may be in store as well. People in their late teens to late 20s are far more likely to commit crimes than people of other ages; as society grays, the decline of crime should continue. Violence in all guises should continue downward, too. Horrible headlines from Afghanistan or Syria are exceptions to an overall trend toward less warfare and less low-intensity conflict. As Steven Pinker showed in the 2011 book Better Angels of Our Nature, total casualties of combat, including indirect casualties from the economic harm associated with fighting, have been declining, even as the global population has risen. In 1950, one person in 5,000 worldwide died owing to combat; by 2010, this measure was down to one person in 300,000. In recent years, far more people have been killed by car crashes than by battle. Simultaneously, per capita military expenditure has shrunk. My favorite statistic about the world: the Stockholm International Peace Research Institute reports that, adjusting to todays dollars, global per capita military spending has declined by one-third in the past quarter century.

The end of the Cold War, and the proxy conflicts it spawned, is an obvious influence on the subsiding of warfare, as is economic interconnectedness. But aging may also be a factor. Counterculture optics notwithstanding, polls showed that the young were more likely to support the Vietnam War than the old were; the young were more likely to support the 2003 invasion of Iraq, too. Research by John Mueller, a political scientist at Ohio State University, suggests that as people age, they become less enthusiastic about war. Perhaps this is because older people tend to be wiser than the youngand couldnt the world use more wisdom?

Older people also report, to pollsters and psychologists, a greater sense of well-being than the young and middle-aged do. By the latter phases of life, material and romantic desires have been attained or given up on; passions have cooled; and for most, a rich store of memories has been compiled. Among the core contentions of the well-being research of the Princeton University psychologist Daniel Kahneman is that in the end, memories are all you keepwhats in the mind matters more than what you own. Regardless of net worth, the old are well off in this sense.

Should large numbers of people enjoy longer lives in decent health, the overall well-being of the human family may rise substantially. In As You Like It, Jaques declares, Man in his time plays many parts, his acts being seven ages. The first five embody promise and powerinfant, schoolboy, lover, soldier, and success. The late phases are entirely negativepantaloon, a period as the butt of jokes for looking old and becoming impotent; then second childishness, a descent into senile dependency. As life expectancy and health span increase, the seven ages may demand revision, with the late phases of life seen as a positive experience of culmination and contentment.

Further along may be a rethinking of life as better structured around friendship than around family, the basic unit of human society since the mists of prehistory. In the brief life of previous centuries, all a man or woman could hope to accomplish was to bear and raise children; enervation followed. Today, life is longer, but an education-based economy requires greater investments in childrencontemporary parents are still assisting offspring well into a childs 20s. As before, when the child-rearing finally is done, decline commences.

But if health span extends, the nuclear family might be seen as less central. For most people, bearing and raising children would no longer be the all-consuming life event. After child-rearing, a phase of decades of friendships could awaitpotentially more fulfilling than the emotionally charged but fast-burning bonds of youth. A change such as this might have greater ramifications for society than changes in work schedules or health-care economics.

Regardless of where increasing life expectancy leads, the direction will be into the unknownfor society and for the natural world. Felipe Sierra, the researcher at the National Institute on Aging, puts it this way: The human ethical belief that death should be postponed as long as possible does not exist in naturefrom which we are now, in any case, diverging.

Continue reading here:
What Happens When We All Live to 100? – The Atlantic

Recommendation and review posted by Guinevere Smith


Page 11234..1020..»