Search Immortality Topics:

Page 40«..1020..39404142..5060..»


Category Archives: Nano Medicine

New Approaches in Breast Cancer Therapy Through Green Nanotechnology a | IJN – Dove Medical Press

Menka Khoobchandani, 1, 2 Kavita K Katti, 1, 2 Alice Raphael Karikachery, 1, 2 Velaphi C Thipe, 1, 2 Deepak Srisrimal, 3 Darsha Kumar Dhurvas Mohandoss, 3 Rashmi Dhurvas Darshakumar, 3 Chintamani M Joshi, 3 Kattesh V Katti 1, 2, 4

1Department of Radiology, University of Missouri, Columbia, MO 65212, USA; 2Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65212, USA; 3Dhanvantari Nano Ayushadi Pvt Ltd, Chennai 600017, India; 4Department of Physics, Department of Pharmacology, Department of Biological Engineering, University of Missouri Research Reactor (MURR), University of Missouri, Columbia, MO 65212, USA

Correspondence: Kattesh V KattiDepartment of Radiology, University of Missouri, One Hospital Drive, Columbia, MO 65212 USATel +1 573 882-5656Email KattiK@health.missouri.edu

Purpose: The overarching objective of this investigation was to investigate the intervention of green nanotechnology to transform the ancient holistic Ayurvedic medicine scientifically credible through reproducible formulations and rigorous pre-clinical/clinical evaluations.Methods: We provide, herein, full details: (i) on the discovery and full characterization of gold nanoparticles-based Nano Swarna Bhasma (henceforth referred to as NSB drug); (ii) In vitro anti-tumor properties of NSB drug in breast tumor cells; (iii) pre-clinical therapeutic efficacy studies of NSB drug in breast tumor bearing SCID mice through oral delivery protocols and (iv) first results of clinical translation, from mice to human breast cancer patients, through pilot human clinical trials, conducted according to the Ayurveda, Yoga and Naturopathy, Unani, Siddha and Homoeopathy (abbreviated as AYUSH) regulatory guidelines of the Government of India in metastatic breast cancer patients.Results: The preclinical in vitro and in vivo investigations, in breast tumor bearing mice, established unequivocally that the NSB Nano-Ayurvedic medicine-gold nanoparticles-based drug is highly effective in controlling the growth of breast tumors in a dose dependent fashion in vivo. These encouraging pre-clinical results prompted us to seek permission from the Indian Governments holistic medicine approval authority, AYUSH, for conducting clinical trials in human patients. Patients treated with the NSB drug capsules along with the standard of care treatment (Arm B) exhibited 100% clinical benefits when compared to patients in the treatment Arm A, thus indicating the tremendous clinical benefits of NSB drug in adjuvant therapy.Conclusion: We have succeeded in clinically translating, from mice to humans, in using proprietary combinations of gold nanoparticles and phytochemicals to develop the Nano-Ayurvedic drug: Nano Swarna Bhasma (NSB), through innovative green nanotechnology, for treating human metastatic breast cancer patients.

Keywords: gold nanoparticles, mangiferin, mango peel, Nano Swarna Bhasma, NSB, triple negative breast tumor, pilot clinical

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

See the original post here:
New Approaches in Breast Cancer Therapy Through Green Nanotechnology a | IJN - Dove Medical Press

Posted in Nano Medicine | Comments Off on New Approaches in Breast Cancer Therapy Through Green Nanotechnology a | IJN – Dove Medical Press

Controlled phage therapy hints at future alternative to antibiotics – New Atlas

Phages, viruses that thrive by infecting bacteria, have long been mooted as a potential replacement for antibiotics. But where antibiotics pose the problem of the bacteria they target mutating into dangerous resistant strains, phages pose risks due to their own fast-paced evolution, though those risks are poorly understood.

But new research suggests it may be possible to mitigate those risks. Left to nature, particular phages are able to seek out and destroy particular types of bacteria. But here its only the seeking that the researchers are interested in, using the phages to deliver a payload of gold nanorods which, with the help of light, destroy both the target bacteria and their phages at once. If youll forgive the grim analogy, you can think of the phage as the guidance system and the nanorods the warhead of this particular antibacterial guided missile.

What we did was to conjugate the phages to gold nanorods, UC Santa Barbaras Irene Chen explains in a press release. If you thought conjugation was something that happened only to verbs, dont panic: it can also simply mean to join or couple. When these nanorods are photo-excited, they translate the energy from light to heat, and that creates very high local temperatures.

The so-called phanorod combinations of nanorods and phages were added to in-vitro cultures of mammal cells with an added bacteria biofilm. They were then exposed to light in near-infrared wavelengths to cause the all-important photo-excitement. The resulting heat kills both the bacteria and the phage.

In experiments, the phanorods successfully destroyed the potent human pathogens E. coli, P. aeruginosa and V. cholerae. Its important to note that the phanorods also destroyed 20 percent of the mammal cells in the culture, which the research categorizes as a low rate of damage.

This issue of whether it damages mammalian tissues is very important, Chen explains. Work in nanotechnology and nanomedicine treating bacterial infections indicates that when its non-targeted, it really does burden the surrounding tissues.

As well as the unpredictable nature of unchecked phage evolution, there are other issues with their historical use. They can potentially carry toxins, and its hard to gauge the success of the treatment. You might see it completely work or you might see it completely fail, but you dont have the kind of dose response you want, Chen explains. But this new controlled approach to phage therapy could potentially mitigate these issues as well.

The teams research will go on to look at more phages to target more types of bacteria, as well as exploring photothermal methods to treat several bacterial infections at once. However, the work is very much at the research stage, and theres no suggestion of clinical use at this stage.

The teams research was published Monday in Proceedings of the National Academy of Sciences. Its free to read online.

Sources: UC Santa Barbara, Proceedings of the National Academy of Sciences

View post:
Controlled phage therapy hints at future alternative to antibiotics - New Atlas

Posted in Nano Medicine | Comments Off on Controlled phage therapy hints at future alternative to antibiotics – New Atlas

Clene Nanomedicine Announces First Patient Dosed in the REPAIR-MS Clinical Trial for the Treatment of Multiple Sclerosis with Lead Nanocatalytic…

SALT LAKE CITY, Jan. 9, 2020 /PRNewswire/ --Clene Nanomedicine, Inc., a clinical-stage biopharmaceutical company, today announcedthe dosing of the first patient enrolled in the Phase 2 REPAIR-MS study with its lead nanocatalytic therapy, CNM-Au8, for the treatment of Multiple Sclerosis (MS).

"The objective of the open-label, investigator-blinded REPAIR-MS study is to demonstrate improvements in brain bioenergetic metabolism in multiple sclerosis patients treated with CNM-Au8. Participants will undergo 31phosphorous magnetic resonance spectroscopy (31P-MRS) imaging to show how treatment with CNM-Au8 results in bioenergetic improvement of impaired neuronal redox state," said Robert Glanzman, MD, FAAN, Clene's Chief Medical Officer.

"We are excited to advance CNM-Au8 clinically into our second Phase 2 study for MS patients," said Rob Etherington, President and CEO of Clene. "Our preclinical data with CNM-Au8 demonstrated improvements in cellular bioenergetics, specifically within neurons and oligodendrocytes, which led to the initiation of the VISIONARY-MS Phase 2 study and now the REPAIR-MS Phase 2 trial. Currently, there are no therapies approved for remyelination and we believe CNM-Au8 has the strong potential for myelin repair and protection of neurons in patients with MS, which affects more than 2.5 million individuals worldwide and is one of the most common neurological disorders."

About REPAIR-MS

REPAIR-MS is Phase 2 single-center open label, sequential group, investigator blinded study examining the brain metabolic effects, safety, pharmacokinetics, and pharmacodynamics of CNM-Au8 in patients who have been diagnosed with MS within 15 years of screening. Participants drink about 2 oz. dose (60 mL) of the nanocrystal suspension daily each morning for 12 weeks. The objective of this study is to advance pharmacologic understanding of CNM-Au8 treatment effects on central nervous system biomarkers related to bioenergetics, neuronal metabolism, and oxidative stress, as indicators of target engagement for CNM-Au8 in patients with MS. The study is taking place at University of Texas Southwestern Medical Center and is being led by Benjamin Greenberg, MD, an internationally recognized expert in treating rare autoimmune disorders of the central nervous system.

About CNM-Au8

CNM-Au8 is a concentrated, aqueous suspension of clean-surfaced faceted nanocrystalline gold (Au) that acts catalytically to support important intracellular biological reactions. CNM-Au8 consists solely of gold atoms organized into faceted, geometrical crystals held in suspension in sodium bicarbonate buffered, pharmaceutical grade water. CNM-Au8 has demonstrated safety in Phase 1 studies in healthy volunteersand both remyelination and neuroprotection effects in multiple preclinical models. Preclinical data presented at scientific congresses demonstrated treatment with CNM-Au8 in neuronal cultures improved survival of dopaminergic neurons, protected neurite networks, decreased intracellular levels of reactive oxygen species, and improved mitochondrial capacity in response to cellular stress, induced by multiple disease-relevant neurotoxins. Oral treatment with CNM-Au8 restored functional behaviors in a rodent model of Parkinson's disease. CNM-Au8 has received regulatory approval to proceed to clinical studies for the treatment of remyelination failure in patients with multiple sclerosis and neuroprotection in patients with amyotrophic lateral sclerosis(ALS) and Parkinson's disease.

About Multiple Sclerosis

Multiple sclerosis is an unpredictable, often disabling disease of the central nervous system that disrupts the flow of information within the brain, and between the brain and body. Symptoms vary from person to person and range from numbness and tingling, to walking difficulties, fatigue, dizziness, pain, depression, blindness and paralysis. The progress, severity and specific symptoms of MS in any one person cannot yet be predicted, but advances in research and treatment are leading to better understanding and moving us closer to a world free of MS. Most people with MS are diagnosed between the ages of 20 and 50, with three times more women than men being diagnosed with the disease. A recent study led by the National MS Society estimates that nearly 1 million people are living with MS in the United States; twice as many than previously thought.

About Clene

Clene Nanomedicine, Inc. is a privately-held, clinical-stage biopharmaceutical company, focused on the development of unique therapeutics for neurodegenerative diseases. Clene has innovated a novel nanotechnology drug platform for the development of a new class of orally-administered neurotherapeutic drugs. Founded in 2013, the company is based in Salt Lake City, Utah with R&D and manufacturing operations located in North East, Maryland. For more information, please visit http://www.clene.com.

Investor ContactKaitlyn BroscoThe Ruth Group646-536-7032kbrosco@theruthgroup.com

Media Contact Kirsten ThomasThe Ruth Group508-280-6592kthomas@theruthgroup.com

SOURCE Clene Nanomedicine, Inc.

Home

The rest is here:
Clene Nanomedicine Announces First Patient Dosed in the REPAIR-MS Clinical Trial for the Treatment of Multiple Sclerosis with Lead Nanocatalytic...

Posted in Nano Medicine | Comments Off on Clene Nanomedicine Announces First Patient Dosed in the REPAIR-MS Clinical Trial for the Treatment of Multiple Sclerosis with Lead Nanocatalytic…

God Willing, He Will Cure Cancer, and Shrimp – CTech

Avi Schroeders lab at the Technion Israel Institute of Technology is tiny but mighty. Thirty researchers crowd it daily, covering areas such as biology, chemistry, medicine, pharmaceuticals, and even mechanical engineering. The lab is part of the chemical engineering faculty, but the researchers here were handpicked from different departments to serve the labs interdisciplinary mission. The content of the multitude of test tubes here could one day result in life-saving medication for a variety of conditions. Until then, the lab has already birthed several innovations that matured into business ventures: Schroeder and his team are involved in four such companies based on the labs scientific breakthroughs, ranging from using elephant protein to cure cancer to personalizing chemotherapy.

View post:
God Willing, He Will Cure Cancer, and Shrimp - CTech

Posted in Nano Medicine | Comments Off on God Willing, He Will Cure Cancer, and Shrimp – CTech

How Kyoto Is Rebuilding Itself As A Nanotech And Regenerative Medicine Powerhouse – Forbes

As humans continue to pump more and more carbon dioxide into the atmosphere, concerns about global warming and climate change continue to grow. But what if that CO2 could be turned into a source of energy? One startup in Kyoto has developed cutting-edge nano-materials that could trap atmospheric CO2 and harness it as a power source. Its one way that Japans ancient capital is harnessing its large scientific and biomedical potential to address environmental and social problems.

Panning for invisible gold

Porous coordination polymers can be a form of carbon-capture technology, says discoverer Susumu Kitagawa, second from left, with (left to right) Atomis CTO Masakazu Higuchi, CEO Daisuke Asari, R&D officer Kenji Sumida, and COO Dai Kataoka.

Atomis is a new materials company that was spun off from Kyoto University Institute for Integrated Cell-Material Sciences (iCeMS). Founded in 2015 following government-supported research, its business is based on studies led by Susumu Kitagawa, a professor and the director of iCeMS.

Its core technology is the production of materials comprising extremely small void spaces that can trap gases, including CO2. A breakthrough discovery in 1997 by Kitagawa, who has been considered a contender for the Nobel Prize in Chemistry, these porous coordination polymers (PCPs, aka metal-organic frameworks) have enormous potential as tools to precisely control gases.

Humans have used the principle behind PCPs for thousands of years. They work the same way that a hunk of charcoal traps ambient odor molecules in its large surface area, but PCPs are many times more powerful. To the naked eye, PCPs look like powders, pellets or granules of various colors, shapes and sizes. But if you were to zoom in, you would see that PCPs are sponge-like materials with pores the size of a nanometer, or one billionth of a meter. They can be designed as scaffoldlike 3D structures from metals and organic ligands, and can be used for storage, separation and conversion of molecules.

These materials are unique in that we can design the shapes and chemical properties of the pores to suit specific applications, and some of the materials have flexible structures, which can potentially provide them with even more advanced features, says Daisuke Asari, president and CEO of Atomis. The company is basically the only business in Japan working with these materials in an industrial context. Collaborating with Kitagawa is a big advantage over foreign rivals, adds Kenji Sumida, executive officer for R&D.

One challenge related to these nanomaterials is that its difficult and costly to produce more than a few kilograms per day. Massively scaling production so that PCPs can be used to fight climate change is one reason that Atomis was founded, says Atomis founder and CTO Masakazu Higuchi, one of Kitagawas collaborators. The firm is developing solid-state techniques and making capital investments to increase PCP production capacity. Meanwhile, Atomis has developed products that harness the groundbreaking potential of PCPs, including Cubitan, a compact and lightweight gas cylinder for industrial and consumer use packed with smart features, such as the ability to notify users when the amount of reserve gas becomes low.

When viewed without special equipment, PCPs look like powders, pellets or granules of various colors, shapes and sizes, but they are sponge-like materials with countless pores the size of a nanometer.

Kitagawa has his sights on the bigger picture. He believes PCPs can be used as a form of carbon-capture technology, allowing the synthesis of methanol, an energy source. Thats why he calls CO2 invisible gold.

In ancient China, Taoist mystics were said to live in the mountains and survive simply on mist, which consists of water, oxygen and CO2, says Kitagawa. They were taking something valueless and using it for energy. Similarly, PCPs can control gases that humans cannot use and turn them into something beneficial, for instance absorbing CO2 in the air and turning into methanol and other hydrocarbon materials.

Building a regenerative medicine Silicon Valley

Atomis is one of many science startups in Kyoto that have benefitted from collaborative research between industry and government. Its part of a growing startup industry in Japan, where total funding for new companies reached a record high of 388 billion yen in 2018, up from 64.5 billion yen in 2012, according to Japan Venture Research. One driver for this expansion is science and technology discoveries.

While it may be known for its traditional culture, Kyoto has a strong pedigree in scientific research. It is home to 38 universities and about 150,000 students, which form a large pool of institutional knowledge, experience and talent. Many recent Nobel laureates either graduated from or taught at Kyoto University, including professors Tasuku Honjo and Shinya Yamanaka, who won the Nobel Prize for Physiology or Medicine in 2018 and 2012, respectively. Working on discoveries by Yamanaka, Megakaryon has become a world leader in creating artificial blood platelets made from synthetic stem cells.Theres also a large group of high-tech companies that have carved out niches for themselves internationally.

Kyoto is a unique city in that it has an independent spirit that is similar to the U.S. West Coast, says Eiichi Yamaguchi, a professor at Kyoto University who has founded four companies.

Kyoto companies like Murata Manufacturing, Horiba, Shimadzu, and Kyocera have a global market and theyre competing with China, says Eiichi Yamaguchi, a professor at Kyoto University who has founded four companies. Thats the difference with companies in Tokyo, which are more domestically oriented.

Yamaguchi has authored several books on innovation, and says there is a growing awareness of the importance of collaborative research and entrepreneurship in Kyoto. He cites a recently formed cooperative group of seven university chairpersons and presidents from leading materials and biosciences companies that meets to discuss issues such as fostering new technologies, for instance building high-speed hydrogen fueling systems.

Kyoto is a unique city in that it has an independent spirit that is similar to the U.S. West Coast, says Yamaguchi. Kyoto is only a fraction of the size of Tokyo, but if you take a stand here, people will pay attention.

Another group that is promoting local high-tech business is Innovation Hub Kyoto. Its an open innovation facility based in the Kyoto University Graduate School of Medicine aimed at commercializing research from the university. Steps away from Kyotos historic Kamo River, its geared to researchers, investors, startups, and established companies working in the field of medical innovation including device development and drug discovery. This is where Japanese researchers are trying to build a Silicon Valley of regenerative medicine.

Tenants at Innovation Hub Kyoto can use this wet lab for research.

Part of the Kyoto University Medical Science and Business Liaison Organization, the hub was established about 15 years ago and opened a new building in 2017 with the support of the Ministry of Education, Culture, Sports, Science and Technology. The structure has a variety of labs, including ones meeting biosafety level P2 and for animal experiments.

Its tough for startups in Japan to access to animal laboratories like the one we have, says hub leader Yutaka Teranishi, a professor in the Graduate School of Medicine who estimates that some 50% of university researchers want to work with industry, up from 10% a few years ago. Were focused on university startups because its very difficult for them to develop drugs from just an alliance between companies and universities.

About 28 companies are tenants at Innovation Hub Kyoto. They include major brands such as Shimadzu and Nippon Boehringer Ingelheim as well as younger businesses. One is AFI, founded in 2013 and focused on fluid, electric filtering and sorting (FES) technology that can be used for applications ranging from food safety inspections to rapid diagnosis of disease to regenerative medicine.

Tomoko Bylund heads the Japan office of CELLINK, a Swedish bioprinting and bioink company that is a tenant at Innovation Hub Kyoto.

Another tenant is CELLINK, a Swedish bioprinting and bioink company headed in the Japan by Tomoko Bylund. Using its products, researchers can print body parts with human cells for drug and cosmetics testing. In 2019, the first 3D print of a human cornea in the U.S. was accomplished with the companys BIO X Bioprinter.

iHeart Japan is also a tenant. It was established in 2013 as a regenerative medicine business and is aiming to address a major shortage in the Japanese medical system: only about 40 out of 200,000 people on national waiting lists can receive donor hearts every year. The company is developing innovative medical products such as multi-layered cardiac cell sheets derived from synthetic stem cells. The Hub basis its success in fostering companies on its diversity and the business environment in Kyoto.

We have people from different backgrounds here who are exchanging cultures and experimental results, and this diversity is powering innovation here, says Teranishi. There are many traditional industries in Kyoto, and though people say its a conservative city, these companies have survived because theyre open to new technologies and have taken the time to choose which ones can help them. Thats how this city and its businesses have lasted for more than 1,000 years.

Diversity is powering innovation here, says Yutaka Teranishi, center, head of Innovation Hub Kyoto, with Kyoto University professor Hirokazu Yamamoto, left, and Graduate School of Medicine lecturer Taro Yamaguchi, right.

To learn more about Atomis, click here.

To learn more about Innovation Hub Kyoto, click here.

Read more here:
How Kyoto Is Rebuilding Itself As A Nanotech And Regenerative Medicine Powerhouse - Forbes

Posted in Nano Medicine | Comments Off on How Kyoto Is Rebuilding Itself As A Nanotech And Regenerative Medicine Powerhouse – Forbes

Triple Negative Breast Cancer Treatment Market Combining Therapies – Communal News

Ongoing advancements in cancer research continue to lead to the introduction of newer and better treatment options including drug therapies. The provision of newer drugs and treatments is expected to improve the diagnostic and treatment rate for triple-negative breast cancer.

Some of the recent clinical efforts are being targeted at the molecular level characterization of triple-negative breast cancer across emerging therapeutic targets such as epigenetic proteins, PARP1, androgen receptors, receptor and non-receptor tyrosine kinases, and immune checkpoints.

These initiatives are anticipated to boost revenue growth of the triple-negative breast cancer treatment market. In a new research study, Persistence Market Research estimates the global triple-negative breast cancer treatment market revenue to cross $720 Million by 2026 from an estimated valuation of just under $505 Million in 2018. This is indicative of a CAGR of 4.7% during the period 2018 to 2026.

Development of generics is another key opportunity area in the triple-negative breast cancer treatment market. With the rapidly expanding number of cancer cases across the world, there is a need for effective cancer management, including the provision of better and more efficient drugs. Developing economies are faced with challenges on several fronts including paucity of funds and lack of proper treatment options, calling for more innovative approaches to affordable healthcare.

The availability of biosimilars and affordable generic anti-cancer drugs in developing regions is expected to significantly reduce the burden of cancer care. A projected cost reduction to the tune of more than 30% 40% and extended use of generic drugs is expected to reduce overall cancer treatment costs, thereby increasing the treatment rate for triple-negative breast cancer. This is further anticipated to create lucrative growth opportunities in the global triple-negative breast cancer treatment market.

To Remain Ahead Of Your Competitors, Request a Sample Here

Advances in Cancer Treatment and Introduction of Innovative Cancer Treatment Drugs to Boost Revenue Growth of the Triple-Negative Breast Cancer Treatment Market

Breast cancer is one of the most common types of cancer in women, and over the years, pharmaceutical and life sciences companies have been conducting advanced research and development activities to devise newer treatment options and drugs to treat breast cancer. Several new drug formulations are currently in the pipeline in different stages of clinical development and this is expected to bode well for the triple-negative breast cancer treatment market.

Innovation in oncology therapeutics has shifted focus towards an outcome based approach to cancer care, with an increasing emphasis on combination drugs and newer therapeutic modalities. This is further likely to put the global triple-negative breast cancer treatment market on a positive growth trajectory in the coming years.

Combination Therapy and Advancements in Nano Medicine Research Trending the Triple-Negative Breast Cancer Treatment Market

One of the biggest trends being observed in the global market for triple-negative breast cancer treatment is the shift towards combination therapy.

Companies in the global triple-negative breast cancer treatment market are conducting clinical trials for combination therapies by collaborating with other players in the market. Combination therapies are the latest innovation in the field of oncology and the combination of therapeutic drugs with chemotherapy is said to be an effective protocol for the treatment of triple-negative breast cancer.

Company Profiles

For Critical Insights on Market, Request For Methodology of Report @

Another huge trend in the triple-negative breast cancer treatment market is the emergence of nanotechnology as an efficient tool in the clinical management of critical diseases such as triple-negative breast cancer. It has been observed that the combination of gold nanoparticles and folic acid results in higher cell entry rate in both in-vitro and in-vivo models, indicative of the fact that folate receptors are effective targeted therapies for the treatment of triple-negative breast cancer.

Nanoparticles facilitate systematic and efficient delivery of drugs and agents to the site of the tumor. Advanced R&D in nanotechnology and nano medicine is one of the top trends likely to impact the global triple-negative breast cancer treatment market in the years to come.

Related

More here:
Triple Negative Breast Cancer Treatment Market Combining Therapies - Communal News

Posted in Nano Medicine | Comments Off on Triple Negative Breast Cancer Treatment Market Combining Therapies – Communal News