Search Immortality Topics:

Page 41«..1020..40414243..5060..»


Category Archives: Nano Medicine

Examine Triple Negative Breast Cancer Treatment Market expected to reach US$ 720 mn by 2026 – WhaTech Technology and Markets News

Ongoing advancements in cancer research continue to lead to the introduction of newer and better treatment options including drug therapies. The provision of newer drugs and treatments is expected to improve the diagnostic and treatment rate for triple-negative breast cancer.

Some of the recent clinical efforts are being targeted at the molecular level characterization of triple-negative breast cancer across emerging therapeutic targets such as epigenetic proteins, PARP1, androgen receptors, receptor and non-receptor tyrosine kinases, and immune checkpoints.

These initiatives are anticipated to boost revenue growth of the triple-negative breast cancer treatment market. In a new research study, Persistence Market Research estimates the globaltriple-negative breast cancer treatment marketrevenue to crossUS$ 720 Mn by 2026from an estimated valuation of just underUS$ 505 Mn in 2018.

This is indicative of aCAGR of 4.7%during the period2018 to 2026.

Development of generics is another key opportunity area in the triple-negative breast cancer treatment market. With the rapidly expanding number of cancer cases across the world, there is a need for effective cancer management, including the provision of better and more efficient drugs.

Developing economies are faced with challenges on several fronts including paucity of funds and lack of proper treatment options, calling for more innovative approaches to affordable healthcare.

The availability of biosimilars and affordable generic anti-cancer drugs in developing regions is expected to significantly reduce the burden of cancer care. A projected cost reduction to the tune of more than 30% 40% and extended use of generic drugs is expected to reduce overall cancer treatment costs, thereby increasing the treatment rate for triple-negative breast cancer.

This is further anticipated to create lucrative growth opportunities in the global triple-negative breast cancer treatment market.

Advances in Cancer Treatment and Introduction of Innovative Cancer Treatment Drugs to Boost Revenue Growth of the Triple-Negative Breast Cancer Treatment Market

Breast cancer is one of the most common types of cancer in women, and over the years, pharmaceutical and life sciences companies have been conducting advanced research and development activities to devise newer treatment options and drugs to treat breast cancer. Several new drug formulations are currently in the pipeline in different stages of clinical development and this is expected to bode well for the triple-negative breast cancer treatment market.

Innovation in oncology therapeutics has shifted focus towards an outcome based approach to cancer care, with an increasing emphasis on combination drugs and newer therapeutic modalities. This is further likely to put the global triple-negative breast cancer treatment market on a positive growth trajectory in the coming years.

For Critical Insights On The Triple Negative Breast Cancer Treatment Market, Request For Customization Here @www.persistencemarketresearch.com/requesttion/14305

Combination Therapy and Advancements in Nano Medicine Research Trending the Triple-Negative Breast Cancer Treatment Market

One of the biggest trends being observed in the global market for triple-negative breast cancer treatment is the shift towards combination therapy.

Companies in the global triple-negative breast cancer treatment market are conducting clinical trials for combination therapies by collaborating with other players in the market. Combination therapies are the latest innovation in the field of oncology and the combination of therapeutic drugs with chemotherapy is said to be an effective protocol for the treatment of triple-negative breast cancer.

Company Profiles

For In-Depth Competitive Analysis, AccessNow @www.persistencemarketresearch.com/checkout/14305

Another huge trend in the triple-negative breast cancer treatment market is the emergence of nanotechnology as an efficient tool in the clinical management of critical diseases such as triple-negative breast cancer. It has been observed that the combination of gold nanoparticles and folic acid results in higher cell entry rate in both in-vitro and in-vivo models, indicative of the fact that folate receptors are effective targeted therapies for the treatment of triple-negative breast cancer.

Nanoparticles facilitate systematic and efficient delivery of drugs and agents to the site of the tumor. Advanced R&D in nanotechnology and nano medicine is one of the top trends likely to impact the global triple-negative breast cancer treatment market in the years to come.

This email address is being protected from spambots. You need JavaScript enabled to view it.

Continue reading here:
Examine Triple Negative Breast Cancer Treatment Market expected to reach US$ 720 mn by 2026 - WhaTech Technology and Markets News

Posted in Nano Medicine | Comments Off on Examine Triple Negative Breast Cancer Treatment Market expected to reach US$ 720 mn by 2026 – WhaTech Technology and Markets News

A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Thera | IJN – Dove Medical Press

Yaser H Gholami, 1 4 Lee Josephson, 3 Eman A Akam, 5 Peter Caravan, 5 Moses Q Wilks, 3 Xiang-Zuo Pan, 3, 6 Richard Maschmeyer, 1 Aleksandra Kolnick, 3, 7 Georges El Fakhri, 3 Marc D Normandin, 3 Zdenka Kuncic, 1, 4, 8Hushan Yuan 3

1The University of Sydney, Faculty of Science, School of Physics, Sydney, NSW, Australia; 2Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, Australia; 3Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; 4Sydney Vital Translational Cancer Research Centre, St Leonards, NSW, Australia; 5The Institute for Innovation in Imaging and the A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; 6Bouve College of Health Sciences, CaNCURE Program, Northeastern University, Boston, MA, USA; 7Internal Medicine Residency Program, Lahey Hospital and Medical Center, Burlington, MA, USA; 8The University of Sydney Nano Institute, Sydney, NSW, Australia

Correspondence: Hushan YuanGordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 th Street, Charlestown, MA 02129, USATel +1 617-643-1963Email hyuan@mgh.harvard.edu

Purpose: Using our chelate-free, heat-induced radiolabeling (HIR) method, we show that a wide range of metals, including those with radioactive isotopologues used for diagnostic imaging and radionuclide therapy, bind to the Feraheme (FH) nanoparticle (NP), a drug approved for the treatment of iron anemia.Material and methods: FH NPs were heated (120C) with nonradioactive metals, the resulting metal-FH NPs were characterized by inductively coupled plasma mass spectrometry (ICP-MS), dynamic light scattering (DLS), and r 1 and r 2 relaxivities obtained by nuclear magnetic relaxation spectrometry (NMRS). In addition, the HIR method was performed with [ 90Y]Y 3+, [ 177Lu]Lu 3+, and [ 64Cu]Cu 2+, the latter with an HIR technique optimized for this isotope. Optimization included modifying reaction time, temperature, and vortex technique. Radiochemical yield (RCY) and purity (RCP) were measured using size exclusion chromatography (SEC) and thin-layer chromatography (TLC).Results: With ICP-MS, metals incorporated into FH at high efficiency were bismuth, indium, yttrium, lutetium, samarium, terbium and europium (> 75% @ 120 oC). Incorporation occurred with a small (less than 20%) but statistically significant increases in size and the r 2 relaxivity. An improved HIR technique (faster heating rate and improved vortexing) was developed specifically for copper and used with the HIR technique and [ 64Cu]Cu 2+. Using SEC and TLC analyses with [ 90Y]Y 3+, [ 177Lu]Lu 3+ and [ 64Cu]Cu 2+, RCYs were greater than 85% and RCPs were greater than 95% in all cases.Conclusion: The chelate-free HIR technique for binding metals to FH NPs has been extended to a range of metals with radioisotopes used in therapeutic and diagnostic applications. Cations with f-orbital electrons, more empty d-orbitals, larger radii, and higher positive charges achieved higher values of RCY and RCP in the HIR reaction. The ability to use a simple heating step to bind a wide range of metals to the FH NP, a widely available approved drug, may allow this NP to become a platform for obtaining radiolabeled nanoparticles in many settings.

Keywords: nanomedicine, radiolabeling, radionuclide therapy, HIR, Feraheme

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Continued here:
A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Thera | IJN - Dove Medical Press

Posted in Nano Medicine | Comments Off on A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Thera | IJN – Dove Medical Press

What are the Upcoming Trends of Nanotechnology in Medicine? – Medical Tech Outlook

Nanotechnology is a rapidly expanding area of research with massive potential in many sectors ranging from healthcare to construction, and electronics.

FREMONT, CA: In the field of medicine, nanotechnology has revolutionized drug delivery, gene therapy, diagnostics, and various other areas of research, development and clinical application. Nanotechnology is a leading technology in medicine, bettering the potential of nanotechnology to target specific cells or tissues is a popular area of interest for the companies producing nanomedicines. Numerous registered clinical trials are in progress and involve nanotechnology; many of these studies are related to oncology and other therapy areas such as autoimmune diseases, anti-fungal agents and rare diseases. Playing a significant role in the transformation of medicine, identifying the trends in nanotechnology industry is essential.

Target Specification

The area of medicinal research involves attaching nanoparticles into drugs or liposomes to enhance specific localization. Different cell types have remarkable properties, and nanotechnology can be used to recognize cells of interest. This method enables associated drugs and therapeutics to reach diseased tissue while bypassing healthy cells.

Controlled Drug Release

The capability to control the discharge of a drug or therapeutic compound from its associated nanotechnology is benefitting a lot of interest from the industry. This triggered release can be gained from inside the body or from outside the body. The internal system consists of changes in the ecosystem of tumours in comparison with the surrounding tissues, while external stimuli comprise temperature change, ultrasound, or light. At present, the research efforts are dedicated to trying to understand how to release diagnostic molecules and drugs from liposomes with heat, and microbubbles using ultrasound.

Understanding Varied Patient Populations

Generally, there is a need for a better understanding of what makes patients distinctive from each other in terms of lack of ubiquitous drug efficacy. This raises a question, why nanotechnologies are not always able to improve the therapeutic output of drugs for an individual patient. Understanding the behaviour of nanomedicines when encountering different physiological characteristics of the patients and their disease states is significant.

Production of Nanomedicine

When compared to standard drug compounds, synthesizing and producing nanomedicine is primarily believed to be more complicated. In a few cases, this can limit the potential of drug manufacturers or pharmaceutical companies to deliver large quantities of nanomedicines. Not addressing the issues related to production may make the companies less interested in investing resources in this industry.

Read the original here:
What are the Upcoming Trends of Nanotechnology in Medicine? - Medical Tech Outlook

Posted in Nano Medicine | Comments Off on What are the Upcoming Trends of Nanotechnology in Medicine? – Medical Tech Outlook

NANOBIOTIX Announces Plan for Global Phase III Head and Neck Cancer Registration Trial Along With Overall Development Update – BioSpace

After the achievement of major development milestones in 2019, 2020 offers great opportunity for Nanobiotix and NBTXR3 to fulfill unmet patient needs across oncology. Given NBTXR3s universal mode of action, our proof-of-concept in soft tissue sarcoma, and promising results from our phase I trial in head and neck cancers, we are confident that NBTXR3 activated by radiation therapy has the potential to significantly improve treatment outcomes for head and neck cancer patients. Beyond head and neck, we will continue to expand into additional indications and combination therapies. Ultimately, we aim to change the oncology treatment paradigm for millions of patients around the world. Laurent Levy, CEO of Nanobiotix

NANOBIOTIX (Euronext : NANO ISIN : FR0011341205 the Company) today announced its global development strategy for 2020 and beyond, following proof-of-concept (POC) and European market approval for NBTXR3 in locally advanced soft tissue sarcoma of the extremities and trunk wall (Brand Name: Hensify) in 2019. The Company will continue to prioritize its registration pathway in the US and EU for the treatment of head and neck cancers, while also working to advance the Nanobiotix immuno-oncology (I/O) program and evaluate NBTXR3 in other indications such as lung, pancreatic, esophageal, hepatocellular carcinoma (HCC), prostrate, and rectal cancers. To execute this plan, Nanobiotix will focus on H&N cancers while its collaborators (i.e. The University of Texas MD Anderson Cancer Center (MD Anderson) in the US and PharmaEngine in Asia) are working on other indications.

Global Development Plan Visualization

TRIAL

STATUS

ANTICIPATED NEXT STEPS

Development in Head and Neck Moving Forward

Phase III Registration Trial for NBTXR3 in head and neck patients ineligible for cisplatin

TRIAL NAME: STUDY 312

Nanobiotix trial

Design completed based on last interactions with FDA and European payers (EUnetHTA)

Jan 2020 - Submission of final protocol to FDA and other global regulatory bodies

Phase I and Phase I Expansion Trial for NBTXR3 in head and neck patients ineligible for cisplatin or intolerant to cetuximab

TRIAL NAME: Study 102/ 102 Expansion

Nanobiotix trial

Phase I dose escalation completed / data reported 19 patients

Dose Expansion 38 of 44 patients recruited

Q1 2020 - Update of dose escalation patients follow-up

Mid 2020 - First expansion phase data on efficacy and safety of dose expansion

Phase I/II Trial for NBTXR3 combined with cisplatin for head and neck patients

TRIAL NAME: PEP503-HN-1002

PharmaEngine trial

3rd dose level recruiting

H2 2020- Last patient in for 5th (last) dose level

Immuno-Oncology Program with NBTXR3

Phase I Basket Trial for NBTXR3 combined with pembrolizumab or nivolumab in H&N, lung metastasis, liver metastasis patients

TRIAL NAME: Study 1100

Nanobiotix trial

First patients treated

Protocol extended to include patients with lung and liver metastases from any primary tumor. Recruitment ongoing

Mid-year 2020 - first data reported

Phase II Trial of reirradiation with NBTXR3 combined with anti-PD-1/L1 for inoperable, locally advanced HN cancer

Phase II Trial for NBTXR3 combined with anti-PD-1 or anti-PD-L1 in Stage IV lung cancer

Phase I Trial for NBTXR3 combined with anti- CTLA4 and anti-PD-1 or PD-L1 in patients with advanced solid tumors and lung or liver mets

Phase II Trial for NBTXR3 for recurrent/metastatic HNSCC patients with limited PD-L1 expression

MD Anderson trials

Final stage of protocol development

Q2-Q3 2020 - Submission of protocols to FDA

Development Across Other Indications

Phase I Trial for NBTXR3 in hepatocellular carcinoma and liver metastasis patients

TRIAL NAME: Study 103

Nanobiotix trial

Recruitment of the last patient at the 5th (last) dose level (one patient left to be treated)

Q1 2020 - Update on results

Phase I Trial for NBTXR3 in prostate cancer patients

TRIAL NAME: Study 104

Nanobiotix trial

2nd dose level recruiting

Q4 2020 - Update on results

Phase I Trial for NBTXR3 in pancreatic cancer

Phase I Trial for NBTXR3 in lung cancer patients in need of reirradiation

Phase I Trial for NBTXR3 in esophageal cancer patients

MD Anderson trials

Pancreas Regulatory process ongoing

Lung re-irradiation / Esophageal Submission of final protocol to regulatory process

Q2 2020 - First patient treated in pancreas

Q3 2020 - Lung re-irradiation / Esophageal first patient treated

Phase I/II Trial for NBTXR3 combined with chemotherapy in rectal cancer patients

TRIAL NAME: PEP503-RC-1001

PharmaEngine trial

4th (last) dose level recruiting

H2 2020 - Report phase I results

Next Steps in Soft Tissue Sarcoma

Phase III Trial for NBTXR3 in soft tissue sarcoma of the extremities and trunk wall patients

TRIAL NAME: Act.In.Sarc

Nanobiotix trial

Trial completed / data reported

H2 2020- Further follow up of the patients

Post-Approval Trial for NBTXR3 in soft tissue sarcoma of the extremities and trunk wall patients

TRIAL NAME: TBD

Nanobiotix trial

Design established (100 patients)

H2 2020 - Trial authorization by the relevant regulatory bodies expected

Development in Head and Neck Moving Forward

There are approximately 700,000 new head and neck cancer patients worldwide each year300,000 of these patients reside in the US and the European Union (EU) 1. Of these patients at diagnosis, 90% suffer from local disease and the remaining 10% have metastatic disease. 70-80% of all Head and Neck patients will receive radiation therapy, but significant unmet medical needs remain regarding either local control, systemic control, toxicity, or some combination of the three2. This is especially challenging for patients ineligible for platinum-based chemotherapy (cisplatin).

Global Registration Trial for NBTXR3 in Head and Neck Patients Ineligible for Cisplatin

As previously announced, Nanobiotix has begun interacting with the US Food and Drug Administration (FDA) on its regulatory pathway and met with the agency in October 2019 to refine the design elements of Study 312a phase III investigators choice, dual-arm, randomized (1:1) global registration trial including elderly head and neck cancer patients who are ineligible for platinum-based chemotherapy (cisplatin).

More than half of head and neck cancers include large primary tumors which may invade underlying structures and/or spread to regional nodes. Treatment of these locally advanced forms of the disease ordinarily requires aggressive, concerted measures. Due to potential comorbidities and toxicities associated with treatment, elderly and frail patients suffer from limited therapeutic options. Study 312 aims to target the unmet needs of this population.

Patients in the control arm will receive radiation therapy with or without cetuximab (investigators choice), and patients in the treatment arm will receive NBTXR3 activated by radiation therapy with or without cetuximab (investigators choice). The trial will recruit around 500 patients, the initial readout will be based on event-driven progression-free survival (PFS), and the final readout will be based on PFS and overall survival (OS). The study will be powered to demonstrate the OS superiority of NBTXR3 activated by radiation therapy. In addition, quality of life (QoL) will be measured as a key secondary outcome.

The Companys next step is to submit the final trial design to FDA and other global regulatory bodies within the month. A futility analysis is expected 18 months after the first patient is randomized, the interim analysis for PFS superiority is expected at 24-30 months, and final analysis will report on PFS and OS. In the event of favorable data from the initial readout, Nanobiotix plans to apply for conditional registration in the US.

Confirming Efficacy with Phase I (Study 102) Expansion

Nanobiotix has already reported promising early signs of efficacy for patients with head and neck cancer through Study 1023 a phase I trial of NBTXR3 nanoparticles activated by intensity-modulated radiation therapy (IMRT) in the treatment of advanced-stage head and neck squamous cell carcinoma (HNSCC). The patient population for Study 102 includes elderly and frail patients who are ineligible for cisplatin or intolerant to cetuximab.

As a result of this report, the Company launched an expansion cohort with 44 additional patients to strengthen preliminary efficacy data. Recruitment for the expansion cohort has reached 38 of 44 patients and the initial readout is expected by mid-2020. Depending on the favorability of the final expansion phase data, the Company may seek to expedite the regulatory process in the EU.

Additional Development in Head and Neck with Collaborators

To serve as many head and neck cancer patients as possible and as mentioned above, the Company has engaged in ongoing clinical collaborations with MD Anderson in the US and PharmaEngine in Asia.

The Company is collaborating with MD Anderson on nine (9) clinical trials across multiple indications, three (3) of which are expected to evaluate head and neck cancer in patient populations outside of the trials Nanobiotix is executing alone (e.g. borderline resectable, inoperable and neck cancer (re-irradiation), etc.)

Follow this link:
NANOBIOTIX Announces Plan for Global Phase III Head and Neck Cancer Registration Trial Along With Overall Development Update - BioSpace

Posted in Nano Medicine | Comments Off on NANOBIOTIX Announces Plan for Global Phase III Head and Neck Cancer Registration Trial Along With Overall Development Update – BioSpace

What is the Role of Nanomedicine in Treating Melanoma? – Medical Tech Outlook

Nanomedicine involves smaller particles, yet their capabilities are tremendous, playing a more significant part in the diagnosis and treatment of cancer.

Fremont, CA: Nanomedicine uses particles and technology that is one-billionth of a meter in medicine for diagnosis and treatment of disease. Irrespective of their smaller size, these nanoparticles play a significant role in the medical field. According to cancer.net, nearly 96,480 cases of invasive melanoma of the skin will be diagnosed in 2019 in the US. Even though it is not the most common type of skin cancer, an estimation of 7,230 deaths will occur this year. In recent research, nanomedicine has been employed to help with improving detection, prevention and treatment of a severe form of skin cancer, melanoma.

The disease begins in the melanocytes, which are the cells responsible for the synthesis of a dark pigment called melanin. And when the skin is exposed to the sun for a long time, melanocytes start producing more pigment as a protective response causing the skin to darken more. When these cells grow out of control, it can result in melanoma.

Tel Aviv researchers have developed a nano-vaccine for melanoma. The vaccine was tested in mice, and it turned out to be useful as it prevents the development of melanoma. It also treats both primary tumors and disease that has spread throughout the body. It was observed by administering with immunotherapy that activates the immune system to fight against the foreign cells. Meanwhile, these cells learn to identify the melanoma cells and will start attacking cells of this specific cancer.

The researchers also examined the vaccine in different conditions. They injected the vaccine into healthy mice and then placed the melanoma cells in the mice where the vaccine halted the development of the disease. In another scenario, the vaccine and immunotherapy together were used to treat the mice already infected by melanoma. Here a significant delay in the progression of the disease was observed. Also, peptides which are the short amino acid chains used in the vaccine were present in the samples of melanoma tissue from different sites in the mice's body other than the one where melanoma had been injected initially. This proves that the vaccine is also suitable for patients affected severely for whom melanoma has spread beyond the primary site.

View post:
What is the Role of Nanomedicine in Treating Melanoma? - Medical Tech Outlook

Posted in Nano Medicine | Comments Off on What is the Role of Nanomedicine in Treating Melanoma? – Medical Tech Outlook

Tiny zaps used to kill stubborn warts – New Atlas

Although it's possible to remove warts by freezing them with liquid nitrogen, they often grow back, requiring multiple treatments. New research, however, suggests that ultra-short electrical pulses could be much more effective at eliminating warts and other skin lesions.

Combining the findings from multiple previous studies, scientists from California-based Pulse Biosciences recently evaluated a type of therapy known as nano-pulse stimulation (NPS). In a nutshell, it involves subjecting lesions to a series of electrical pulses, each one lasting just one nanosecond (one one-billionth of a second).

The electrical pulses create nanometer-wide pores within the cells of the lesions, through which sodium, potassium and calcium ions can enter. This in turn disrupts the flow of those same types of ions in and out of the cells, ultimately resulting in cell death.

In one test of the procedure, 174 seborrheic keratosis lesions each received a single treatment that lasted less than one minute. A few weeks later, over 82 percent of those lesions crusted over and peeled off. Because the collagen and fibrin that make up healthy skin are not affected by NPS, however, the skin that was revealed beneath the lesion sites was not scarred.

In another trial, a single NPS treatment was found to clear 99 percent of facial sebaceous gland hyperplasia lesions within 60 days. Eighteen of the lesions required a second treatment, which was most often due to the target being missed on the initial treatment.

And when NPS was used to treat 23 warts that were resistant to liquid nitrogen treatment, "a majority" of those warts died and fell off within 60 days.

"NPS technology has been shown to be very effective in the clearance of many types of cellular skin lesions while sparing the noncellular components of the dermis," states the lead scientist, Dr. Richard Nuccitelli. "The proper energies can provide scarless lesion elimination with short treatment times and very high efficacy."

A paper on the research was recently published in the journal Bioelectricity.

Source: Mary Ann Liebert, Inc.

Original post:
Tiny zaps used to kill stubborn warts - New Atlas

Posted in Nano Medicine | Comments Off on Tiny zaps used to kill stubborn warts – New Atlas