Search Immortality Topics:

Page 2,240«..1020..2,2392,2402,2412,242..2,2502,260..»


IBM has Joined with the University of Tokyo to Create the Quantum Innovation Initiative Consortium to Accelerate Research and Development – WFMZ…

Posted: August 18, 2020 at 1:58 pm

DUBLIN, Aug. 17, 2020 /PRNewswire/ -- ResearchAndMarkets.com published a new article on the quantum computing industry "IBM has Joined with the University of Tokyo to Create the Quantum Innovation Initiative Consortium"

Quantum computing startup Rigetti Computing announced that it has closed a $79 million Series C funding round. The company currently offers cloud based access to its quantum machines. Quantum computers are built around the concept of quantum bits or qbits which give them the potential to be much faster and much more powerful than classical computers. While quantum computers may not yet be ready for real world use cases, the industry has made significant progress in recent years.

Microsoft and ETH Zurich recently developed a quantum algorithm that can simulate catalytic processes extremely quickly which could help to develop an efficient method for carbon fixation. This process reduces carbon dioxide in the atmosphere by turning it into useful compounds. IBM has joined with the University of Tokyo to create the Quantum Innovation Initiative Consortium (QIIC) to accelerate quantum computing research and development in Japan. QIIC members will have cloud access to the IBM Quantum Computation Center as well as access to a dedicated quantum system planned for installation in Japan in 2021.

To see the full article and a list of related reports on the market, visit "IBM has Joined with the University of Tokyo to Create the Quantum Innovation Initiative Consortium"

About ResearchAndMarkets.comResearchAndMarkets.com is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Research and MarketsLaura Wood, Senior Managerpress@researchandmarkets.com

For E.S.T Office Hours Call +1-917-300-0470For U.S./CAN Toll Free Call +1-800-526-8630For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907Fax (outside U.S.): +353-1-481-1716

Go here to read the rest:
IBM has Joined with the University of Tokyo to Create the Quantum Innovation Initiative Consortium to Accelerate Research and Development - WFMZ...

Recommendation and review posted by Ashlie Lopez

This Twist on Schrdinger’s Cat Paradox Has Major Implications for Quantum Theory – Scientific American

Posted: August 18, 2020 at 1:58 pm

What does it feel like to be both alive and dead?

That question irked and inspired Hungarian-American physicist Eugene Wigner in the 1960s. He was frustrated by the paradoxes arising from the vagaries of quantum mechanicsthe theory governing the microscopic realm that suggests, among many other counterintuitive things, that until a quantum system is observed, it does not necessarily have definite properties. Take his fellow physicist Erwin Schrdingers famous thought experiment in which a cat is trapped in a box with poison that will be released if a radioactive atom decays. Radioactivity is a quantum process, so before the box is opened, the story goes, the atom has both decayed and not decayed, leaving the unfortunate cat in limboa so-called superposition between life and death. But does the cat experience being in superposition?

Wigner sharpened the paradox by imagining a (human) friend of his shut in a lab, measuring a quantum system. He argued it was absurd to say his friend exists in a superposition of having seen and not seen a decay unless and until Wigner opens the lab door. The Wigners friend thought experiment shows that things can become very weird if the observer is also observed, says Nora Tischler, a quantum physicist at Griffith University in Brisbane, Australia.

Now Tischler and her colleagues have carried out a version of the Wigners friend test. By combining the classic thought experiment with another quantum head-scratcher called entanglementa phenomenon that links particles across vast distancesthey have also derived a new theorem, which they claim puts the strongest constraints yet on the fundamental nature of reality. Their study, which appeared in Nature Physics on August 17, has implications for the role that consciousness might play in quantum physicsand even whether quantum theory must be replaced.

The new work is an important step forward in the field of experimental metaphysics, says quantum physicist Aephraim Steinberg of the University of Toronto, who was not involved in the study. Its the beginning of what I expect will be a huge program of research.

Until quantum physics came along in the 1920s, physicists expected their theories to be deterministic, generating predictions for the outcome of experiments with certainty. But quantum theory appears to be inherently probabilistic. The textbook versionsometimes called the Copenhagen interpretationsays that until a systems properties are measured, they can encompass myriad values. This superposition only collapses into a single state when the system is observed, and physicists can never precisely predict what that state will be. Wigner held the then popular view that consciousness somehow triggers a superposition to collapse. Thus, his hypothetical friend would discern a definite outcome when she or he made a measurementand Wigner would never see her or him in superposition.

This view has since fallen out of favor. People in the foundations of quantum mechanics rapidly dismiss Wigners view as spooky and ill-defined because it makes observers special, says David Chalmers, a philosopher and cognitive scientist at New York University. Today most physicists concur that inanimate objects can knock quantum systems out of superposition through a process known as decoherence. Certainly, researchers attempting to manipulate complex quantum superpositions in the lab can find their hard work destroyed by speedy air particles colliding with their systems. So they carry out their tests at ultracold temperatures and try to isolate their apparatuses from vibrations.

Several competing quantum interpretations have sprung up over the decades that employ less mystical mechanisms, such as decoherence, to explain how superpositions break down without invoking consciousness. Other interpretations hold the even more radical position that there is no collapse at all. Each has its own weird and wonderful take on Wigners test. The most exotic is the many worlds view, which says that whenever you make a quantum measurement, reality fractures, creating parallel universes to accommodate every possible outcome. Thus, Wigners friend would split into two copies and, with good enough supertechnology, he could indeed measure that person to be in superposition from outside the lab, says quantum physicist and many-worlds fan Lev Vaidman of Tel Aviv University.

The alternative Bohmian theory (named for physicist David Bohm) says that at the fundamental level, quantum systems do have definite properties; we just do not know enough about those systems to precisely predict their behavior. In that case, the friend has a single experience, but Wigner may still measure that individual to be in a superposition because of his own ignorance. In contrast, a relative newcomer on the block called the QBism interpretation embraces the probabilistic element of quantum theory wholeheartedly (QBism, pronounced cubism, is actually short for quantum Bayesianism, a reference to 18th-century mathematician Thomas Bayess work on probability.) QBists argue that a person can only use quantum mechanics to calculate how to calibrate his or her beliefs about what he or she will measure in an experiment. Measurement outcomes must be regarded as personal to the agent who makes the measurement, says Ruediger Schack of Royal Holloway, University of London, who is one of QBisms founders.According to QBisms tenets, quantum theory cannot tell you anything about the underlying state of reality, nor can Wigner use it to speculate on his friends experiences.

Another intriguing interpretation, called retrocausality, allows events in the future to influence the past. In a retrocausal account, Wigners friend absolutely does experience something, says Ken Wharton, a physicist at San Jose State University, who is an advocate for this time-twisting view. But that something the friend experiences at the point of measurement can depend upon Wigners choice of how to observe that person later.

The trouble is that each interpretation is equally goodor badat predicting the outcome of quantum tests, so choosing between them comes down to taste. No one knows what the solution is, Steinberg says. We dont even know if the list of potential solutions we have is exhaustive.

Other models, called collapse theories, do make testable predictions. These models tack on a mechanism that forces a quantum system to collapse when it gets too bigexplaining why cats, people and other macroscopic objects cannot be in superposition. Experiments are underway to hunt for signatures of such collapses, but as yet they have not found anything. Quantum physicists are also placing ever larger objects into superposition: last year a team in Vienna reported doing so with a 2,000-atom molecule. Most quantum interpretations say there is no reason why these efforts to supersize superpositions should not continue upward forever, presuming researchers can devise the right experiments in pristine lab conditions so that decoherence can be avoided. Collapse theories, however, posit that a limit will one day be reached, regardless of how carefully experiments are prepared. If you try and manipulate a classical observera human, sayand treat it as a quantum system, it would immediately collapse, says Angelo Bassi, a quantum physicist and proponent of collapse theories at the University of Trieste in Italy.

Tischler and her colleagues believed that analyzing and performing a Wigners friend experiment could shed light on the limits of quantum theory. They were inspired by a new wave of theoretical and experimental papers that have investigated the role of the observer in quantum theory by bringing entanglement into Wigners classic setup. Say you take two particles of light, or photons, that are polarized so that they can vibrate horizontally or vertically. The photons can also be placed in a superposition of vibrating both horizontally and vertically at the same time, just as Schrdingers paradoxical cat can be both alive and dead before it is observed.

Such pairs of photons can be prepared togetherentangledso that their polarizations are always found to be in the opposite direction when observed. That may not seem strangeunless you remember that these properties are not fixed until they are measured. Even if one photon is given to a physicist called Alice in Australia, while the other is transported to her colleague Bob in a lab in Vienna, entanglement ensures that as soon as Alice observes her photon and, for instance, finds its polarization to be horizontal, the polarization of Bobs photon instantly syncs to vibrating vertically. Because the two photons appear to communicate faster than the speed of lightsomething prohibited by his theories of relativitythis phenomenon deeply troubled Albert Einstein, who dubbed it spooky action at a distance.

These concerns remained theoretical until the 1960s, when physicist John Bell devised a way to test if reality is truly spookyor if there could be a more mundane explanation behind the correlations between entangled partners. Bell imagined a commonsense theory that was localthat is, one in which influences could not travel between particles instantly. It was also deterministic rather than inherently probabilistic, so experimental results could, in principle, be predicted with certainty, if only physicists understood more about the systems hidden properties. And it was realistic, which, to a quantum theorist, means that systems would have these definite properties even if nobody looked at them. Then Bell calculated the maximum level of correlations between a series of entangled particles that such a local, deterministic and realistic theory could support. If that threshold was violated in an experiment, then one of the assumptions behind the theory must be false.

Such Bell tests have since been carried out, with a series of watertight versions performed in 2015, and they have confirmed realitys spookiness. Quantum foundations is a field that was really started experimentally by Bells [theorem]now over 50 years old. And weve spent a lot of time reimplementing those experiments and discussing what they mean, Steinberg says. Its very rare that people are able to come up with a new test that moves beyond Bell.

The Brisbane teams aim was to derive and test a new theorem that would do just that, providing even stricter constraintslocal friendliness boundson the nature of reality. Like Bells theory, the researchers imaginary one is local. They also explicitly ban superdeterminismthat is, they insist that experimenters are free to choose what to measure without being influenced by events in the future or the distant past. (Bell implicitly assumed that experimenters can make free choices, too.) Finally, the team prescribes that when an observer makes a measurement, the outcome is a real, single event in the worldit is not relative to anyone or anything.

Testing local friendliness requires a cunning setup involving two superobservers, Alice and Bob (who play the role of Wigner), watching their friends Charlie and Debbie. Alice and Bob each have their own interferometeran apparatus used to manipulate beams of photons. Before being measured, the photons polarizations are in a superposition of being both horizontal and vertical. Pairs of entangled photons are prepared such that if the polarization of one is measured to be horizontal, the polarization of its partner should immediately flip to be vertical. One photon from each entangled pair is sent into Alices interferometer, and its partner is sent to Bobs. Charlie and Debbie are not actually human friends in this test. Rather, they are beam displacers at the front of each interferometer. When Alices photon hits the displacer, its polarization is effectively measured, and it swerves either left or right, depending on the direction of the polarization it snaps into. This action plays the role of Alices friend Charlie measuring the polarization. (Debbie similarly resides in Bobs interferometer.)

Alice then has to make a choice: She can measure the photons new deviated path immediately, which would be the equivalent of opening the lab door and asking Charlie what he saw. Or she can allow the photon to continue on its journey, passing through a second beam displacer that recombines the left and right pathsthe equivalent of keeping the lab door closed. Alice can then directly measure her photons polarization as it exits the interferometer. Throughout the experiment, Alice and Bob independently choose which measurement choices to make and then compare notes to calculate the correlations seen across a series of entangled pairs.

Tischler and her colleagues carried out 90,000 runs of the experiment. As expected, the correlations violated Bells original boundsand crucially, they also violated the new local-friendliness threshold. The team could also modify the setup to tune down the degree of entanglement between the photons by sending one of the pair on a detour before it entered its interferometer, gently perturbing the perfect harmony between the partners. When the researchers ran the experiment with this slightly lower level of entanglement, they found a point where the correlations still violated Bells bound but not local friendliness. This result proved that the two sets of bounds are not equivalent and that the new local-friendliness constraints are stronger, Tischler says. If you violate them, you learn more about reality, she adds. Namely, if your theory says that friends can be treated as quantum systems, then you must either give up locality, accept that measurements do not have a single result that observers must agree on or allow superdeterminism. Each of these options has profoundand, to some physicists, distinctly distastefulimplications.

The paper is an important philosophical study, says Michele Reilly, co-founder of Turing, a quantum-computing company based in New York City, who was not involved in the work. She notes that physicists studying quantum foundations have often struggled to come up with a feasible test to back up their big ideas. I am thrilled to see an experiment behind philosophical studies, Reilly says. Steinberg calls the experiment extremely elegant and praises the team for tackling the mystery of the observers role in measurement head-on.

Although it is no surprise that quantum mechanics forces us to give up a commonsense assumptionphysicists knew that from Bellthe advance here is that we are a narrowing in on which of those assumptions it is, says Wharton, who was also not part of the study. Still, he notes, proponents of most quantum interpretations will not lose any sleep. Fans of retrocausality, such as himself, have already made peace with superdeterminism: in their view, it is not shocking that future measurements affect past results. Meanwhile QBists and many-worlds adherents long ago threw out the requirement that quantum mechanics prescribes a single outcome that every observer must agree on.

And both Bohmian mechanics and spontaneous collapse models already happily ditched locality in response to Bell. Furthermore, collapse models say that a real macroscopic friend cannot be manipulated as a quantum system in the first place.

Vaidman, who was also not involved in the new work, is less enthused by it, however, and criticizes the identification of Wigners friend with a photon. The methods used in the paper are ridiculous; the friend has to be macroscopic, he says. Philosopher of physics Tim Maudlin of New York University, who was not part of the study, agrees. Nobody thinks a photon is an observer, unless you are a panpsychic, he says. Because no physicist questions whether a photon can be put into superposition, Maudlin feels the experiment lacks bite. It rules something outjust something that nobody ever proposed, he says.

Tischler accepts the criticism. We dont want to overclaim what we have done, she says. The key for future experiments will be scaling up the size of the friend, adds team member Howard Wiseman, a physicist at Griffith University. The most dramatic result, he says, would involve using an artificial intelligence, embodied on a quantum computer, as the friend. Some philosophers have mused that such a machine could have humanlike experiences, a position known as the strong AI hypothesis, Wiseman notes, though nobody yet knows whether that idea will turn out to be true. But if the hypothesis holds, this quantum-based artificial general intelligence (AGI) would be microscopic. So from the point of view of spontaneous collapse models, it would not trigger collapse because of its size. If such a test was run, and the local-friendliness bound was not violated, that result would imply that an AGIs consciousness cannot be put into superposition. In turn, that conclusion would suggest that Wigner was right that consciousness causes collapse. I dont think I will live to see an experiment like this, Wiseman says. But that would be revolutionary.

Reilly, however, warns that physicists hoping that future AGI will help them home in on the fundamental description of reality are putting the cart before the horse. Its not inconceivable to me that quantum computers will be the paradigm shift to get to us into AGI, she says. Ultimately, we need a theory of everything in order to build an AGI on a quantum computer, period, full stop.

That requirement may rule out more grandiose plans. But the team also suggests more modest intermediate tests involving machine-learning systems as friends, which appeals to Steinberg. That approach is interesting and provocative, he says. Its becoming conceivable that larger- and larger-scale computational devices could, in fact, be measured in a quantum way.

Renato Renner, a quantum physicist at the Swiss Federal Institute of Technology Zurich (ETH Zurich), makes an even stronger claim: regardless of whether future experiments can be carried out, he says, the new theorem tells us that quantum mechanics needs to be replaced. In 2018 Renner and his colleague Daniela Frauchiger, then at ETH Zurich, published a thought experiment based on Wigners friend and used it to derive a new paradox. Their setup differs from that of the Brisbane team but also involves four observers whose measurements can become entangled. Renner and Frauchiger calculated that if the observers apply quantum laws to one another, they can end up inferring different results in the same experiment.

The new paper is another confirmation that we have a problem with current quantum theory, says Renner, who was not involved in the work. He argues that none of todays quantum interpretations can worm their way out of the so-called Frauchiger-Renner paradox without proponents admitting they do not care whether quantum theory gives consistent results. QBists offer the most palatable means of escape, because from the outset, they say that quantum theory cannot be used to infer what other observers will measure, Renner says. It still worries me, though: If everything is just personal to me, how can I say anything relevant to you? he adds. Renner is now working on a new theory that provides a set of mathematical rules that would allow one observer to work out what another should see in a quantum experiment.

Still, those who strongly believe their favorite interpretation is right see little value in Tischlers study. If you think quantum mechanics is unhealthy, and it needs replacing, then this is useful because it tells you new constraints, Vaidman says. But I dont agree that this is the casemany worlds explains everything.

For now, physicists will have to continue to agree to disagree about which interpretation is best or if an entirely new theory is needed. Thats where we left off in the early 20th centurywere genuinely confused about this, Reilly says. But these studies are exactly the right thing to do to think through it.

Disclaimer: The author frequently writes for the Foundational Questions Institute, which sponsors research in physics and cosmologyand partially funded the Brisbane teams study.

See original here:
This Twist on Schrdinger's Cat Paradox Has Major Implications for Quantum Theory - Scientific American

Recommendation and review posted by Ashlie Lopez

Scientists Have Shown There’s No ‘Butterfly Effect’ in the Quantum World – VICE

Posted: August 18, 2020 at 1:58 pm

Of all the reasons for wanting to time-travelsaving someone from a fatal mistake, exploring ancient civilizations, gathering evidence about unsolved crimesrecovering lost information isnt the most exciting. But even if a quest to recover the file that didnt auto-save doesn't sound like a Hollywood movie plot, weve all had moments when weve longed to go back in time for exactly that reason.

Theories of time and time-travel have highlighted an apparent stumbling block: time travel requires changing the past, even simply by adding in the time traveller. The problem, according to chaos theory, is that the smallest of changes can cause radical consequences in the future. In this conception of time travel, it wouldnt be advisable to recover your unsaved document since this act would have huge knock-on effects on everything else.

New research in quantum physics from Los Alamos National Laboratory has shown that the so-called butterfly effect can be overcome in the quantum realm in order to unscramble lost information by essentially reversing time.

In a paper published in July, researchers Bin Yan and Nikolai Sinitsyn write that a thought experiment in unscrambling information with time-reversing operations would be expected to lead to the same butterfly effect as the one in the famous Ray Bradburys story A Sound of Thunder In that short story, a time traveler steps on an insect in the deep past and returns to find the modern world completely altered, giving rise to the idea we refer to as the butterfly effect.

In contrast," they wrote, "our result shows that by the end of a similar protocol the local information is essentially restored.

"The primary focus of this work is not 'time travel'physicists do not have an answer yet to tell whether it is possible and how to do time travel in the real world, Yan clarified.

[But] since our protocol involves a 'forward' and a 'backward' evolution of the qubits, achieved by changing the orders of quantum gates in the circuit, it has a nice interpretation in terms of Ray Bradbury's story for the butterfly effect. So, it is an accurate and useful way to understand our results."

What is the butterfly effect?

The world does not behave in a neat, ordered way. If it did, identical events would always produce the same patterns of knock-on effects, and the future would be entirely predictable, or deterministic. Chaos theory claims that the opposite: total randomness is not our situation either. We exist somewhere in the middle, in a world that often appears random but in fact obeys rules and patterns.

Patterns within chaos are hidden because they are highly sensitive to tiny changes, which means similar but not identical situations can produce wildly different outcomes. Another way of putting it is that in a chaotic world, effects can be totally out of proportion to their causes, like the metaphor of a flap of butterfly wings causing a tornado on the other side of the world. On the tornado side of the world, the storm would seem random, because the connection between the butterfly-flap and the tornado is too complex to be apparent. While this butterfly effect is the classic poetic metaphor illustrating chaos theory, chaotic dynamics also play out in real-world contexts, including population growth in the Canadian lynx species and the rotation of Plutos moons.

Another feature of chaos is that, even though the rules are deterministic, the future is not predictable in the long-term. Since chaos is so sensitive to small variations, there are near-infinite ways the rules could play out and we would need to know an impossible amount of detail about the present and past to map out exactly how the world will evolve.

Similarly, you cant reverse-engineer some piece of information about the past simply by knowing the current and even future situations; time-travel doesnt help retrieve past information, because even moving backwards in time, the chaotic system is still in play and will produce unpredictable effects.

Information scrambling

Unscrambling information which has previously been scrambled is not straightforward in a chaotic system. Yan and Sinitsyns key discovery is that it is nonetheless possible in quantum computing to get enough information via time-reversal which will then enable information unscrambling.

According to Yan, the fact that the butterfly effect does not occur in quantum realms is not a surprising result, but demonstrating information unscrambling is both novel and important.

In quantum information theory, scrambling occurs when the information encoded in each quantum particle is split up and redistributed across multiple quantum particles in the same quantum system. The scrambling is not random, since information redistribution relies on quantum entanglement, which means that the states of some quantum particles are dependent on each other. Although the scrambled result is seemingly chaotic, the information can be put back together, at least in principle, using the entangled relationships.

Importantly, information scrambling is not the same as information loss. To continue the earlier analogy: information loss occurs when a document is permanently deleted from your computer. For information scrambling, imagine cutting and pasting tiny bits of one computer file into every other file on your machine. Each file now contains a mess of information snippets. You could reconstruct the original files, if you remembered exactly which bits were cut and pasted, and did the entire process in reverse.

Physicists are interested in information scrambling for two main reasons. On the theoretical side, its been proposed as a way to explain what happens to information sucked into a black hole. On the more applied side, it could be an important mechanism for quantum computers to store and hide information, and could produce fast and efficient quantum simulators, which are used already to perform complex experiments including new drug discovery.

Yan and Sinitsyn fall into the second camp, and construct what they call a practically accessible scenario to test unscrambling by time-travel. This scenario is still hypothetical, but explores the mathematics of the actual quantum processor used by Google to demonstrate quantum supremacy in 2019.

Yan says: Another potential application is to use this effect to protect information. A random evolution on a quantum circuit can make the qubit robust to perturbations. One may further exploit the discovered effect to design protocols in quantum cryptography.

The set-up

In Yan and Sinitsyn's quantum thought experiment, Alice and Bob are the protagonists. Alice is using a simplified version of Googles quantum processor to hide just one part of the information stored on the computer (called the central qubit) by scrambling this qubits state across all the other qubits (called the qubit bath). Bob is cast as the intruder, much like a malicious computer hacker. He wants the important information originally stored on the central qubit, now distributed across entangled quantum particles in the bath.

Unfortunately, Bobs hack, while successful in getting the information he wanted, leaves a trail of destruction.

If her processor has already scrambled the information, Alice is sure that Bob cannot get anything useful, the authors write. However, Bobs measurement changes the state of the central qubit and also destroys all quantum correlations between this qubit and the rest of the system.

Bob's method of information theft has altered the computer state so that Alice can also no longer access the hidden information. In this case, the damage occurs because quantum states contain all possible values they could have, with assigned probabilities of each value, but these possibilities (represented by the wave function) collapse down to just one value when a measurement is taken. Quantum computing relies on unmeasured quantum systems to store even more information in multiple possible states, and Bobs intrusion has totally altered the computer system.

Reversing time

Theoretically, the behaviour of a quantum system moving backwards in time can be demonstrated mathematically using whats called a time-reversed evolution operator, which is exactly what Alice uses to de-scramble the information.

Her time-reversal is not actually time travel the way we understand it from science fiction, it is literally a reversal of times direction; the system evolves backwards following whatever dynamics are in play, rather than Alice herself revisiting an earlier time. If the butterfly effect held in the quantum world, then this backwards evolution would actually increase the damage Bob had caused, and Alice would only be able to retrieve the hidden information if she knew exactly what that damage was and could correct her calculations accordingly.

Luckily for Alice, quantum systems behave totally differently to non-quantum (classical or semiclassical) chaotic systems. What Yan and Sinitsyn found is that she can apply her time-reversal operation and end up at an "earlier" state which will not be identical with the initial system she set up, but it will also not have increased the damage which occurred later. Alice can then reconstruct her initial system using a method of quantum unscrambling called quantum state tomography.

What this means is that a quantum system can effectively heal and even recover information that was scrambled in the past, without the chaos of the butterfly effect.

Classical chaotic evolution magnifies any state damage exponentially quickly, which is known as the butterfly effect, explain Yan and Sinitsyn. The quantum evolution, however, is

linear. This explains why, in our case, the uncontrolled damage to the state is not magnified by the subsequent complex evolution. Moreover, the fact that Bobs measurement does not damage the useful information follows from the property of entanglement correlations in the scrambled state.

Hypothetical though this scenario may be, the result already has a practical use: verifying whether a quantum system has achieved quantum supremacy. Quantum processors can simulate time-reversal in a way that classical computers cannot, which could provide the next important test for the quantum race between Google and IBM.

So, while time travel is still not in the cards, the quantum world continues to mess with our classical conception of how the world evolves in time, and pushes the limits of computing information.

See more here:
Scientists Have Shown There's No 'Butterfly Effect' in the Quantum World - VICE

Recommendation and review posted by Ashlie Lopez

What’s the point: Ansible, Datadog, Amazon, Lens, Rust, and DeepMind DEVCLASS – DevClass

Posted: August 18, 2020 at 1:57 pm

The team behind Red Hats IT automation tool Ansible is on track for the 2.10 release on September 22nd, and has just finished work on the base component for the upcoming version. Ansible 2.10 is the first to have the Ansible engine, which is made up of some core programs (ansible-galaxy, ansible-test, etc), a subset of modules and plugins, and some documentation, in a separate ansible-base repository.

The rest of the plugins and modules have been pushed into a variety of collections, a format for bundling Ansible artifacts. Collections are independently developed and updated, with some sought out ones becoming bundled with ansible-base for the final Ansible package. To make sure moved components wont break setups, Ansible 2.10 comes with appropriate routing data.

At Datadogs yearly user conference last week, the monitoring company introduced some additions to its portfolio that are well worth a look. One of the most sought after enhancements seems to be the Datadog mobile app for iOS and Android devices. The application is meant to provide on-call workers with dashboard and alert access. It also allows users to check the new Incidents UI, which grants a central overview of the state of all incidents. Other enhancements to the Datadog platform include investigation dashboards and threat intelligence for Security Monitoring, and compliance monitoring.

A good eight month after introducing devs interested in quantum computing to its Braket service, AWS has decided its time to make it generally available. The product aims to support researchers by providing them with a development environment to explore and build quantum algorithms, test them on quantum circuit simulators, and run them on different quantum hardware technologies. Amazon Braket comes packed with pre-built quantum computing algorithms, though implementing some from scratch is promised to be an option as well, and simulators for testing and troubleshooting different approaches.

Mirantis, recent home of Docker Enterprise, has continued on its cloud native acquisition journey by buying Kubernetes integrated development environment Lens from its authors. Lens is a MIT-licensed project which was launched in March 2020 and is supposed to run on MacOS, Windows, and Linux. It was originally developed by Kontena, whose team also became part of Mirantis earlier this year. In its announcement, Mirantis promised to keep Lens free and open source and invest in the future development of the tool.

Lovers of programming language Rust might have started to worry given the string of Mozilla layoffs announced last week. The language team therefore took to Twitter to assure users that Rust isnt in existential danger, ensuring to share more information on the topic in the coming weeks.

Developers working with just-in-time compiler JAX in their machine learning projects can now add two more helpers to their open-source toolbelt. Optax and Chex both stem from Googles DeepMind team and are meant to support users in properly using JAX, which funnily enough is also a Google research project.

Chex includes utils to instrument, test, and debug JAX code in order to make it more reliable. Meanwhile Optax was dreamt up to provide simple, well-tested, efficient implementations of gradient processing and optimisation approaches. Both projects can be found on GitHub, where the projects are protected under a Apache-2.0 License.

Original post:
What's the point: Ansible, Datadog, Amazon, Lens, Rust, and DeepMind DEVCLASS - DevClass

Recommendation and review posted by Ashlie Lopez

Designing the computers of tomorrow – The Science Show – ABC News

Posted: August 18, 2020 at 1:57 pm

Robyn Williams: The Science Show on RN, and time once more for some quantum guitar.

[Music]

Professor David Reilly with one of his pieces, and we'll hear about his diamonds in a minute. And from Donna Strickland, who was only the third woman in the world to win a Nobel Prize for physics.

But, before we do, something from The Money, the program presented by Richard Aedy, which last week confirmed what we've just heard from Jayne Thompson.

Phil Morle: For one reason or another this country has a concentration of some of the most talented, globally in-demand quantum computing experts, and there is an opportunity right now today to build the Silicon Valley of quantum computing and to do that here in Australia, and that's truly the next generation of computing, which will unfold over the next ten years and live for decades after that.

And the other side of that same equation is the great migration out of Silicon Valley, which is happening. My brother, for example, works at Facebook where everyone has been told they don't need to come back and work in the office, and so he doesn't live in Silicon Valley anymore. That's one result of the pandemic. So I think the world of innovation is afoot, it's in motion, it's going to land different to where it was in 2019.

Richard Aedy: Yes, how big is your fund? Are you able to give me a kind of dollar amount?

Phil Morle: Yes, our first fund is $240 million.

Richard Aedy: The implication is first fund. Are there going to be more?

Phil Morle: That's right, we are getting close to closing our second fund and that will be the same sort of quantum.

Richard Aedy: So, overall, Phil, you actually sound not buoyant but definitely optimistic, despite what we've been going through with the pandemic.

Phil Morle: I suppose I am. I am worried, nevertheless, and let's say vigilant. I'm vigilant, I'm watching very, very carefully. I meet with our start-up founders, the CEOs of our companies every week or two to say what's happening, what's changing, what do we need to know, how do we adapt. So there's very real-time adapting happening, and anything could happen in the weeks and months to come, but there is still a massive planet with lots of people on it with an endless amount of problems to solve which companies can solve, and there is no reason why the venture supported start-up world can't be bigger than it has ever been.

Richard Aedy: Phil Morle is a partner with Main Sequence Ventures.

Robyn Williams: Richard Aedy from The Money program on RN every Thursday, 5:30. Yes, Australia certainly has a reputation for quantum work and needs to prepare a qualified workforce.

Now let's meet that guitarist at the University of Sydney, David Reilly. He also works with diamonds and has a position with Microsoft.

First of all, you haven't brought a guitar with you.

David Reilly: I should have done so.

Robyn Williams: You should have done so because you remind me of the kind of Brian May of Australian physics.

David Reilly: Not quite as tall or as talented.

Robyn Williams: He's amazing, isn't he. What do you play?

David Reilly: At the moment I really can't get the Fender Stratocaster out of my hand, but it depends on the style of music.

Robyn Williams: I remember your playing in fact at the opening of this department, the nano research outfit five years ago or four years ago, whatever it was. But have you brought any tiny diamonds with you?

David Reilly: I have not. Although, they are probably around on the floor and in the air to some very small amount.

Robyn Williams: They are that small?

David Reilly: Yes, they're tiny, nanometres in size. The ones that we focus on are synthetic.

Robyn Williams: And these are ones that are in the body and they are spotted by the MRI, in other words the machine that looks through you to see what's going on inside the body. But what do they tell you as a person who wants to find out what's wrong with the body or not?

David Reilly: Well, the motivation is really trying to track something in the body. We wanted to make a lighthouse, and what you attach that lighthouse to, well, that's really at the discretion of medical research. But, for instance, if you wanted to know where certain drugs went, maybe chemotherapy drugs, anyone who has been in a very challenging circumstance of having to undergo chemotherapy knows that it's a horrific process, in part because those drugs go everywhere and they attack healthy tissue as much as they do cancerous tissue. A lot of the reason for that just blanket approach to treatment is because there are still a lot of open fundamental questions about how do we target certain types of pharmaceuticals to certain particular functions or parts in the body. And from a physics point of view, I mean, I'm obviously a physicist not a medical researcher, but it's a physics problem, how do you create a beacon or a lighthouse that is going to be useful in MRI, not require you to be opened up, not require us to go and biopsy an organ but just to take a somewhat regular MRI, and then have certain regions light up where the drugs are or where they aren't or cancer is or cancer isn't. So that was the long-term motivation, a really challenging physics problem, how to make diamond effectively light up in an MRI.

Robyn Williams: Does it work?

David Reilly: Yeah, it does, we've developed the technique to the point it works in mice, and it is now really moving out of the physics lab into that wider area where it's going to have impact in biomedical research.

Robyn Williams: Normally with various machines you can tell whether there is a tumour there, how extensive it is. You're looking at something rather small, but what kind of things are you being able to spot that the normal X-ray-type investigation can't?

David Reilly: The history of where this came from maybe gives you a better understanding of what we're trying to do. I read a paper justI remember I think I was waiting somewhere, it wasn't to see a doctor, it was something like that, I was reading something and I came across an article that said that chemotherapy drugs ferried around the body on a substrate, like on a raft, and that raft happened to be nano-diamond because it's relatively inert and doesn't react and is somewhat safe in small concentrations. And I thought that's really interesting, they're just using diamond purely for the reason that it's inert and it doesn't react with anything. Physics point of view tells you that diamond has other remarkable properties to be optically active, and it's also possible to basically program its nuclear spins, the little tiny bar-magnets that live in the inside of the atom, orient them such that it can give you an image and a signature in an MRI. So it's all about then attaching to something else, goes along for the ride, it's a big lightbulb that will light up whatever it is that it's attached to.

Robyn Williams: This nano outfit that you are in also of course works on quantum computing. Now, without making you cross I hope, I usually think of quantum computing not just at the University of New South Wales and Michelle Simmons, but also with silicon. In what way is your investigation different?

David Reilly: Yes, silicon is a very interesting material, and the effort that you're describing has been around now for over 20 years, and in fact my PhD is from that activity at the University of New South Wales, in fact before it just started back in the late '90s. Silicon is in many ways a very obvious choice in which to make what we call qubits, the fundamental building blocks of quantum information. And the reason that they are an obvious choice is because the name of the game when it comes to quantum information is trying to protect it. It's very fragile, it wants to become regular, boring classical information all the time.

And to preserve these exotic or almost very counterintuitive properties, one has to preserve the quantum nature. So the name of the game is protect it. And silicon is a material that when it comes to the electron spin or the nuclear spin, again that is the little bar-magnet goes along with the electron or the nucleus in an atom, silicon is a material that is extremely free of uncontrolled bar-magnets, uncontrolled spin. So if you then intentionally put a spin in silicon, that's great because that spin can encode information and there is no other spins in the system that can lead to a loss of quantum information.

However, the challenge is, and this is something I think over the last 20 years we've realised, is that if you think of a line where you can choose between really protected systems where the information is stored in a way that is isolated, like silicon, and up the other end of the line is controllable, I can manipulate it really quickly, I can interact with it very strongly, and the challenge is how do you create systems that are both highly protected from the environment but not highly protected from the control because I want to be able to manipulate it. And that did my head in, thinking about that problem. You realise that there is no escaping it.

You can choose your flavour of qubit, it could be spins in silicon, highly protected, but a bit challenging to control, pretty slow and so on, or qubits that want to interact with everything, including the environment, but they can also be controlled very effectively and very quickly. You know, how do you break out of that double-edged sword? That was what inspired me to start to work on very different systems. And the work that's happening here at the University of Sydney is really about trying to explore new types of qubits that break free of this limitation.

Robyn Williams: In different materials?

David Reilly: Different materials, but totally different principles, totally fundamentally different ways of storing and manipulating quantum information. So we are trying to build what we call a topological qubit, that is a system that uses topology, the branch of mathematics associated with global properties of shapes, we want to use those principles to protect the information and break free of this challenge of protected but controllable. So, very different.

Robyn Williams: The president of the Academy of Technological Sciences and Engineering Hugh Bradlow is the president, and he famously said, and we broadcast this on The Science Show, that there are many ways of tackling this gigantic field of quantum computing. And if you imagine a horse race, it's one where you will have not just one winner, there will be a whole stream. And what you're doing is being supported by Microsoft, which shows that they've got tremendous faith in what you are accomplishing with your search for qubits. What's the relationship built on, what does it mean?

David Reilly: There's a whole range of interesting things to unpack there. The first is I would agree with Hugh that we don't havewe, the world, humankind does not yet, in my view, possess a technology that's going to allow us to build a quantum computer, not one of scale that's going to be significant enough to do impactful things, we don't have that technology yet.

We need to go back to the drawing board and really now we understand a lot of these ideas better, that's Microsoft's view, and in some ways it's actually a little bit pessimistic because I think we as a group within the company over a number of years are working on these different systems. You know, many of the people that are part of Microsoft's effort, including myself, started in spin qubits, in silicon or in other materials, or superconducting technology, the different flavours of qubit, and after a decade or so in that, you realise there needs to be other ways of doing it.

And so it's a collection of people who are actually a little bit pessimistic about the approaches that are out there, let's figure out how to do it right, that's going to allow us to scale, build a machine of sufficient complexity and size that it can go after. In some ways Microsoft is not interested in building a quantum computer, it's interested in the applications and the impact of such a machine. So we want to build a useful machine.

Robyn Williams: And it's going to change the world, it's a big deal.

David Reilly: Exactly, and that's what our sights are set on, it's not about for us a physics experiment. For me personally that's very interesting but I recognise if you're going to touch people in the street, if you're going to make an impact in people's lives beyond a physics experiment, then you have to build a very different machine, one that is sufficiently complex and large-scale that it can solve really hard problems.

Robyn Williams: I'm sure in your late-night thoughts you've had dreams about the ways in which it's going to be if everything goes right. What are some of those dreams are made of, what would kind of speculation can you have, not simply just, if you like, more secure bankcards, but our lives, how will they be affected?

David Reilly: You can spend a lot of time dreaming about that. There are things we see right now with the technology as we understand it, even though it doesn't exist at the level that you can actually start to use it. One can imagine using it for obviously a range of things in what people call quantum chemistry, a lot of designing of, again, pharmaceuticals, catalysts, chemicals that are needed in manufacturing, dyes and so on, carbon capture. Many of those types of applications will benefit I think from having a machine of sufficient scale, a quantum computer that can really solve some of the intricacies of quantum chemistry problems.

But the truth is we really don't know, and that sounds bizarre because people think why would you put such a huge effort into building something you don't even know what it's good for. And the answer to that I think is a little bit subtle. On the one hand we can identify applications, but for me a quantum computer changes the fundamental logic, it's totally different logic to how the machines that we carry around in our pockets work. And I think when you change that underlying fundamental aspect of how computing works, it would be very surprising if that didn't also open up all kinds of other applications. I think we can look back in history and see that many, many times. I think the most exciting applications will be the ones we can't dream about and envisage.

Robyn Williams: Just to give you a tiny bit of story which you can bounce off, once I was at a conference and a little old man was looking at an exercise machine, and he thought it would be good for his back and he went off to get his credit card. And I said to the woman running the booth, I said, 'Do you know who that was? That was one of the three guys who got the Nobel prize for inventing lasers. And this was something for which apparently there was no use, laser, organised light. Okay, his credit card is going to be read by you by a laser beam.' In other words, you have something which is so huge, like computers have become so huge, transformed the world. In other words, jobs, in other words who knows what.

David Reilly: Yes, that's exactly right, and transistors are also another story that there are still many people alive who lived through that era and know firsthand about the discussions where people said; what are we going to do with this stuff? The transistor, the original motivation was to make a repeater, telephone repeater stations more robust, serviceable, less frequentlyget away from vacuum tubes that were always blowing. But as they realised they were holding something that was also very small; what are we going to do with that? And here we are, and it's not that long ago, 30, 40, 50 years, and now we are carrying 10 billion of these things around in everybody's pocket and doing things that we could never imagine.

So humans are pretty bad I think at predicting the future, but you've got to believe if you change the fundamental way in which you're doing logic, the logic that you learn in kindergarten, in preschool, whatever, one plus one equals two. Imagine if, well, actually there is some other laws here, some other fundamental mathematics that you can tap into, of course that's going to lead to many other applications, and we are getting a glimpse of those now but I think it's really going to be exciting over the next 10, 20 years to just see how the world changes because we've changed the fundamental logic.

Robyn Williams: A final question, a very short one; have you recorded an album, as they used to call it, done live gigs?

David Reilly: Not for some time. I do have fun recording at home, and in this day and age you can easily do that and plug in. Your laptop is a recording studio, it's a fascinating thing to me actually because talking about vacuum tubes and transistors, I've got to tell you this, this really does amuse me more than keep me up at night, but the idea that for aficionados of sound and music and guitars and amplifiers, it's the vacuum tube that sounds so good, and people spend huge amounts of money to buy amplifiers built from vacuum tubes, as opposed to transistors. But today you can take your laptop with 10 billion transistors, run an operating system and a whole range of high-level applications and software, and then you can dial up the sound with those 10 billion transistors in your CPU, you can dial up the sound of one vacuum tube. So here we are emulating with all of this complex software the sound of 50 years ago, and it's remarkable how history repeats itself in some very weird way like that.

Robyn Williams: Professor David Reilly at the University of Sydney's Nano Centre.

Read the original here:
Designing the computers of tomorrow - The Science Show - ABC News

Recommendation and review posted by Ashlie Lopez

Quantum Computing Market Size and Growth By Leading Vendors, By Types and Application, By End Users and Forecast to 2027 – Bulletin Line

Posted: August 18, 2020 at 1:57 pm

New Jersey, United States,- This detailed market research covers the growth potential of the Quantum Computing Market, which can help stakeholders understand the key trends and prospects of the Quantum Computing market and identify growth opportunities and competitive scenarios. The report also focuses on data from other primary and secondary sources and is analyzed using a variety of tools. This will help investors better understand the growth potential of the market and help investors identify scope and opportunities. This analysis also provides details for each segment of the global Quantum Computing market.

The report was touted as the most recent event hitting the market due to the COVID-19 outbreak. This outbreak brought about a dynamic change in the industry and the overall economic scenario. This report covers the analysis of the impact of the COVID-19 pandemic on market growth and revenue. The report also provides an in-depth analysis of the current and future impacts of the pandemic and post-COVID-19 scenario analysis.

The report covers extensive analysis of the key market players in the market, along with their business overview, expansion plans, and strategies. The key players studied in the report include:

The market is further segmented on the basis of types and end-user applications. The report also provides an estimation of the segment expected to lead the market in the forecast years. Detailed segmentation of the market based on types and applications along with historical data and forecast estimation is offered in the report.

Furthermore, the report provides an extensive analysis of the regional segmentation of the market. The regional analysis covers product development, sales, consumption trends, regional market share, and size in each region. The market analysis segment covers forecast estimation of the market share and size in the key geographical regions.

The report further studies the segmentation of the market based on product types offered in the market and their end-use/applications.

Quantum Computing Market, By Offering

Consulting solutions Systems

Quantum Computing Market, By Application

Machine Learning Optimization Material Simulation

Quantum Computing Market, By End-User

Automotive Healthcare Space and Defense Banking and Finance Others

On the basis of regional segmentation, the market is bifurcated into major regions ofNorth America, Europe, Asia-Pacific, Latin America, and the Middle East & Africa.The regional analysis further covers country-wise bifurcation of the market and key players.

The research report offered by Verified Market Research provides an updated insight into the global Quantum Computing market. The report covers an in-depth analysis of the key trends and emerging drivers of the market likely to influence industry growth. Additionally, the report covers market characteristics, competitive landscape, market size and growth, regional breakdown, and strategies for this market.

Highlights of the TOC of the Quantum Computing Report:

Overview of the Global Quantum Computing Market

Market competition by Players and Manufacturers

Competitive landscape

Production, revenue estimation by types and applications

Regional analysis

Industry chain analysis

Global Quantum Computing market forecast estimation

This Quantum Computing report umbrellas vital elements such as market trends, share, size, and aspects that facilitate the growth of the companies operating in the market to help readers implement profitable strategies to boost the growth of their business. This report also analyses the expansion, market size, key segments, market share, application, key drivers, and restraints.

Key Questions Addressed in the Report:

What are the key driving and restraining factors of the global Quantum Computing market?

What is the concentration of the market, and is it fragmented or highly concentrated?

What are the major challenges and risks the companies will have to face in the market?

Which segment and region are expected to dominate the market in the forecast period?

What are the latest and emerging trends of the Quantum Computing market?

What is the expected growth rate of the Quantum Computing market in the forecast period?

What are the strategic business plans and steps were taken by key competitors?

Which product type or application segment is expected to grow at a significant rate during the forecast period?

What are the factors restraining the growth of the Quantum Computing market?

Thank you for reading our report. The report is available for customization based on chapters or regions. Please get in touch with us to know more about customization options, and our team will ensure you get the report tailored according to your requirements.

About us:

Verified Market Research is a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Research provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals, and critical revenue decisions.

Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyze data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise, and years of collective experience to produce informative and accurate research.

Contact us:

Mr. Edwyne Fernandes

US: +1 (650)-781-4080UK: +44 (203)-411-9686APAC: +91 (902)-863-5784US Toll-Free: +1 (800)-7821768

Email: [emailprotected]

More:
Quantum Computing Market Size and Growth By Leading Vendors, By Types and Application, By End Users and Forecast to 2027 - Bulletin Line

Recommendation and review posted by Ashlie Lopez


Page 2,240«..1020..2,2392,2402,2412,242..2,2502,260..»