Search Results for: download 21 older

Machine Learning as a Service Market-Industry Analysis with Growth Prospects, Trends, Size, Supply, Share, Pipeline Projects and Survey till 2030 …

United State-Machine learning is a process of data analysis that comprises of statistical data analysis performed to derive desired predictive output without the implementation of explicit programming. It is designed to incorporate the functionalities of artificial intelligence (AI) and cognitive computing involving a series of algorithms and is used to understand the relationship between datasets to obtain a desired output. Machine learning as a service (MLaaS) incorporates range of services that offer machine learning tools through cloud computing services.

The global machine learning as a service market was valued at $571 million in 2016, and is projected to reach $5,537 million by 2023, growing at a CAGR of 39.0% from 2017 to 2023.

Request To Download Sample of This Strategic Report:-https://reportocean.com/industry-verticals/sample-request?report_id=31083

Market Statistics:

The file offers market sizing and forecast throughout 5 primary currencies USD, EUR GBP, JPY, and AUD. It helps corporation leaders make higher choices when foreign money change records are available with ease. In this report, the years 2020 and 2021 are regarded as historic years, 2020 as the base year, 2021 as the estimated year, and years from 2022 to 2030 are viewed as the forecast period.

Increased penetration of cloud-based solutions, growth associated with artificial intelligence and cognitive computing market, and increase in market for prediction solutions drive the market growth. In addition, growth in IT expenditure in emerging nations and technological advancements for workflow optimization fuel the demand for advanced analytical systems driving the machine learning as a service market growth. However, dearth of trained professionals is expected to impede the machine learning as a service market share. Furthermore, increased application areas and growth of IoT is expected to create lucrative opportunities for machine learning as a service market growth.

The global machine learning as a service market is segmented based on component, organization size, end-use industry, application, and geography. The component segment is bifurcated into software and services. Based on organization size, it is divided into large enterprises and small & medium enterprises. The application segment is categorized into marketing & advertising, fraud detection & risk management, predictive analytics, augmented & virtual reality, natural language processing, computer vision, security & surveillance, and others. On the basis of end-use industry, it is classified into aerospace & defense, IT & telecom, energy & utilities, public sector, manufacturing, BFSI, healthcare, retail, and others. By geography, the machine learning as a service market is analyzed across North America, Europe, Asia-Pacific, and LAMEA.

Key players that operate in the machine learning as a service market are Google Inc., SAS Institute Inc., FICO, Hewlett Packard Enterprise, Yottamine Analytics, Amazon Web Services, BigML, Inc., Microsoft Corporation, Predictron Labs Ltd., and IBM Corporation.

Get a Request Sample Report:https://reportocean.com/industry-verticals/sample-request?report_id=31083

KEY BENEFITS FOR STAKEHOLDERS

This report provides an overview of the trends, structure, drivers, challenges, and opportunities in the global machine learning as a service market.Porters Five Forces analysis highlights the potential of buyers & suppliers, and provides insights on the competitive structure of the market to determine the investment pockets.Current and future trends adopted by the key market players are highlighted to determine overall competitiveness.The quantitative analysis of the machine learning as a service market growth from 2017 to 2023 is provided to elaborate the market potential.

According to Statista, as of 2021 data, the United States held over ~36% of the global market share for information and communication technology (ICT). With a market share of 16%, the EU ranked second, followed by 12%, China ranked third. In addition, according to forecasts, the ICT market will reach more than US$ 6 trillion in 2021 and almost US$ 7 trillion by 2027. In todays society, continuous growth is another reminder of how ubiquitous and crucial technology has become. Over the next few years, traditional tech spending will be driven mainly by big data and analytics, mobile, social, and cloud computing.

This report analyses the global primary production, consumption, and fastest-growing countries in the Information and Communications Technology (ICT) market. Also included in the report are prominent and prominent players in the global Information and Communications Technology Market (ICT).

A release on June 8th, 2021, by the Bureau and Economic Analysis and U.S. The Census Bureau reports the recovery of the U.S. market. The report also described the recovery of U.S. International Trade in July 2021.In April 2021, exports in the country reached $300 billion, an increase of $13.4 billion. In April 2021, imports amounted to $294.5 billion, increasing by $17.4 billion. COVID19 is still a significant issue for economies around the globe, as evidenced by the year-over-year decline in exports in the U.S. between April 2020 and April 2021 and the increase in imports over that same period of time. The market is clearly trying to recover. Despite this, it means there will be a direct impact on the Healthcare/ICT/Chemical industries.

Key Market Segments

By Component

SoftwareServicesBy Organization Size

Large EnterprisesSmall & Medium Enterprises

By End-Use Industry

Aerospace & DefenceIT & TelecomEnergy & UtilitiesPublic sectorManufacturingBFSIHealthcareRetailOthers

By Application

Marketing & AdvertisingFraud Detection & Risk ManagementPredictive analyticsAugmented & Virtual realityNatural Language processingComputer visionSecurity & surveillanceOthers

Request full Report-https://reportocean.com/industry-verticals/sample-request?report_id=31083

By Geography

North AmericaU.S.CanadaMexicoEuropeUKFranceGermanyRest of EuropeAsia-PacificChinaJapanIndiaRest of Asia-PacificLAMEALatin AmericaMiddle EastArica

Key players profiled in the report

Google Inc.SAS Institute Inc.FICOHewlett Packard EnterpriseYottamine AnalyticsAmazon Web ServicesBigML, Inc.Microsoft CorporationPredictron Labs Ltd.IBM Corporation

Table of Content:

What is the goal of the report?

Key Questions Answered in the Market Report

How did the COVID-19 pandemic impact the adoption of by various pharmaceutical and life sciences companies? What is the outlook for the impact market during the forecast period 2021-2030? What are the key trends influencing the impact market? How will they influence the market in short-, mid-, and long-term duration? What is the end user perception toward? How is the patent landscape for pharmaceutical quality? Which country/cluster witnessed the highest patent filing from January 2014-June 2021? What are the key factors impacting the impact market? What will be their impact in short-, mid-, and long-term duration? What are the key opportunities areas in the impact market? What is their potential in short-, mid-, and long-term duration? What are the key strategies adopted by companies in the impact market? What are the key application areas of the impact market? Which application is expected to hold the highest growth potential during the forecast period 2021-2030? What is the preferred deployment model for the impact? What is the growth potential of various deployment models present in the market? Who are the key end users of pharmaceutical quality? What is their respective share in the impact market? Which regional market is expected to hold the highest growth potential in the impact market during the forecast period 2021-2030? Which are the key players in the impact market?

Inquire or Share Your Questions If Any Before the Purchasing This Report https://reportocean.com/industry-verticals/sample-request?report_id=31083

About Report Ocean:We are the best market research reports provider in the industry. Report Ocean believes in providing quality reports to clients to meet the top line and bottom line goals which will boost your market share in todays competitive environment. Report Ocean is a one-stop solution for individuals, organizations, and industries that are looking for innovative market research reports.

Get in Touch with Us:Report Ocean:Email:sales@reportocean.comAddress: 500 N Michigan Ave, Suite 600, Chicago, Illinois 60611 UNITED STATESTel:+1 888 212 3539 (US TOLL FREE)Website:https://www.reportocean.com

Read more:
Machine Learning as a Service Market-Industry Analysis with Growth Prospects, Trends, Size, Supply, Share, Pipeline Projects and Survey till 2030 ...

Posted in Machine Learning | Comments Off on Machine Learning as a Service Market-Industry Analysis with Growth Prospects, Trends, Size, Supply, Share, Pipeline Projects and Survey till 2030 …

Europe Plant-Based Food Market Worth $16.7 Billion by 2029 – Exclusive Report by Meticulous Research – Yahoo Finance

Meticulous Market Research Pvt. Ltd.

Europe Plant-based Food Market by Type [Dairy Alternatives, Plant-based Meat, Meals, Confectionery, Beverages, Egg Substitutes, Seafood), Source (Soy, Wheat, Pea, Rice), Distribution Channel (B2B, B2C (Convenience Store, Online Retail)]- Forecast to 2029

Redding, California, March 30, 2022 (GLOBE NEWSWIRE) -- According to a new market research report titled, Europe Plant-based Food Market by Type (Dairy Alternatives, Plant-based Meat, Meals, Confectionery, Beverages, Egg Substitutes, Seafood), Source (Soy, Wheat, Pea, Rice), Distribution Channel (B2B, B2C (Convenience Store, Online Retail) - Forecast to 2029, published by Meticulous Research, the Europe plant-based food market is expected to grow at a CAGR of 10.1% from 2022 to 2029 to reach $16.7 billion by 2029.

Download Free Sample Report Now @ https://www.meticulousresearch.com/download-sample-report/cp_id=5260

Veganism is a contemporary and expanding societal phenomenon that has been lately growing in European countries, which is demonstrated by the steadily growing number of vegans and people following plant-based diets. In recent years, there has been a growing trend toward vegetarianism and veganism in Europe due to growing awareness of health, environmental concerns, and compassion for animals. Within the last four years, the number of vegans in Europe has doubled from 1.3 million to the current estimated figure of 2.6 million, representing 3.2% of the population. Nearly half of all-vegan Europeans (45.5%) say they would like to see more vegan alternatives for sausages and cold cuts, followed by cheese substitutes as the next product on their want-list. There also seems to be strong demand for plant-based baked goods (38.6%) as well as more snacks (32.9%) (Source: Veganz).

In recent years, there has been an increase in the number of lactose-intolerant consumers. Lactose tolerance is exceptionally widespread in Northern European countries like Sweden and Finland. In addition, Turkey, Italy, Germany, and Spain recorded some of the highest numbers of lactose-intolerant consumers. Therefore, the target market for plant-based food and beverage is not limited to vegans but includes a vast majority of consumers, including flexitarians, lactose-intolerant consumers, and even consumers looking for clean-label food and beverage options.

Story continues

The growing vegetarianism, declining meat consumption, increasing preference for plant food, and increasing venture capital investment in animal alternatives are some of the major factors driving the market for plant-based food products in Europe.

Impact of COVID-19 on the Europe plant-based food market

The COVID-19 pandemic created new momentum for plant-based food and drink in Europe. During the pandemic, consumer demand for plant-based diets accelerated in this region. A study published in BMJ Nutrition, Prevention and Health found that vegetarian and vegan diets had a lower risk of developing moderate-to-severe COVID-19. Many food companies are rapidly increasing investments in plant-based products to meet consumer demand for plant-based products and partly to offset risks associated with animal-based products that the COVID-19 pandemic exposed. Few to be listed are:

In June 2021, Heura Food (Spain) raised USD 4.8 million through a crowdfunding campaign to fuel its R&D and launch new plant-based meat products.

In September 2020, The Meatless Farm (U.K.) raised USD 31 million in funding to keep up with post-COVID demand.

In July 2020, Follow Your Heart (U.S.) partnered with U.K.-based Tesco stores. As a part of this development, the companys Vegenaise will be available in just over 550 outlets, and its Smoked Gouda and Medium Cheddar Slices in 300 outlets in the U.K.

In September 2020, Nestl SA introduced a meatier-tasting version of its flagship plant burger and launched an oats-and-peas version of its Nesquik cocoa drink in Europe. In 2020, vegetarian and plant-based sales posted strong double-digit growth, supported by new launches.

In December 2019, Unilever PLC (U.K.) invested EUR 85 million in The Hive, the innovation of a food center at Wageningen University (Netherlands) to support research into plant-based ingredients and meat alternatives, efficient crops, sustainable food packaging, and nutritious food.

Speak to our Analysts to Understand the Impact of COVID-19 on Your Business: https://www.meticulousresearch.com/speak-to-analyst/cp_id=5260

These increased investments during the pandemic to fuel R&D activities and increase plant-based product sales benefit stakeholders in the plant-based product market in Europe.

Plant-based Food Market in Europe - An Overview

The Europe plant-based food market is segmented based on type, source, distribution channel, and country.

Based on type, the Europe plant-based food market is segmented into dairy alternatives, meat substitutes, meals, baked goods, confectionery, RTD beverages, eggs substitutes, seafood substitutes, and others. The dairy alternatives segment is estimated to command the largest share of the European plant-based food market, mainly attributed to increased demand for dairy alternatives from the lactose intolerant population. With the issues like lactose intolerance and milk allergy arising from the consumption of cows milk, there has been an increased demand for plant-based alternative milk in Europe. However, the seafood substitute segment is expected to grow at the highest CAGR during the forecast period.

Based on source, the soy segment is expected to account for the largest share of the overall plant-based food market in Europe in 2022. The dominant position of this segment is mainly attributed to the rising demand for soy ingredients due to its easy availability, high quality, cost-effectiveness, wider application areas, and higher consumer acceptance for soy-based food products. However, the pea segment is expected to grow at the highest CAGR during the forecast period.

Quick Buy Europe Plant-based Food Market by Type [Dairy Alternatives, Plant-based Meat, Meals, Confectionery, Beverages, Egg Substitutes, Seafood), Source (Soy, Wheat, Pea, Rice), Distribution Channel (B2B, B2C (Convenience Store, Online Retail)]- Forecast to 2029 Research Report: https://www.meticulousresearch.com/Checkout/74550253

Based on distribution channel, the B2C segment is estimated to account for the largest share of the overall plant-based food market in Europe in 2022. The large share of this market is mainly attributed to increased shelf space for plant-based products in modern groceries, increased retail sales of plant-based food in supermarkets & hypermarkets, growing preference for shopping from brick-and-mortar grocers due to easy access & availability, and increasing consumer acceptance for vegan & vegetarian food products. This segment is also expected to grow at the highest CAGR during the forecast period.

Geographically, Germany is expected to account for the major share of the European plant-based food market in 2022. This growth can be attributed to the growing vegetarian population, increased consumer awareness, increasing concern about animal welfare, and growth in vegan and vegetarian restaurants. Veganism in Germany is becoming a popular trend.

The key players operating in the plant-based food market in Europe are Beyond Meat Inc. (U.S.), Danone S.A. (France), Amys Kitchen Inc. (U.S.), The Hain Celestial Group, Inc. (U.S.), Daiya Foods Inc. (Canada), Marlow Foods Ltd. (U.K.), Taifun Tofu GmbH (Germany), Vbite Food Ltd (U.K.), Plamil Foods Ltd (U.K.), Plant & Bean Ltd (U.K.), Unilever PLC (U.K.), Berief Food GmbH (Germany), Nestl S.A. (Switzerland), The Meatless Farm (U.K.), and Veganz Group AG (Germany) among others.

To gain more insights into the market with a detailed table of content and figures, click here: https://www.meticulousresearch.com/product/europe-plant-based-food-market-5260

Scope of the Report

Europe Plant-based Food Market, by Type

Dairy Alternatives

Milk

Cheese

Yogurt

Butter

Ice Cream

Creamer

Others

Meat Substitutes

TVP

Burger Patties

Tempeh

Hot Dogs and Sausages

Seitan

Meatballs

Ground Meat

Nuggets

Crumbles

Shreds

Others

Meals

Baked Goods

Confectionery

RTD Beverages

Egg Substitutes

Seafood Substitutes

Others

Europe Plant-based Food Market, by Source

Soy

Almond

Wheat

Pea

Rice

Others

Europe Plant-based Food Market, by Distribution Channel

Business-to-Business

Business-to-Customers

Modern Groceries

Convenience Store

Specialty Store

Online Retail

Others

Europe Plant-based Food Market, by Country

Germany

U.K.

Spain

Italy

France

Netherlands

Belgium

Austria

Poland

Portugal

Rest of Europe (RoE)

Download Free Sample Report Now @ https://www.meticulousresearch.com/download-sample-report/cp_id=5260

Amidst this crisis, Meticulous Research is continuously assessing the impact of COVID-19 pandemic on various sub-markets and enables global organizations to strategize for the post-COVID-19 world and sustain their growth. Let us know if you would like to assess the impact of COVID-19 on any industry here- https://www.meticulousresearch.com/custom-research

Related Reports:

Plant-based Food Market by Type (Dairy Alternatives, Plant-based Meat, Meals, Confectionery, Beverages, Egg Substitutes, Seafood), Source (Soy, Wheat, Pea, Rice), Distribution Channel (B2B, B2C [Convenience Store, Online Retail])Global Forecast to 2029

https://www.meticulousresearch.com/product/plant-based-food-products-market-5108

Meat Substitute Market by Product Type (Tofu, TVP, Burger Patties, Sausages, Meatballs, Nuggets), Source (Soy Protein, Wheat Protein), and Distribution Channel (Business to Business and Business to Customers) - Global Forecast To 2027

https://www.meticulousresearch.com/product/meat-substitute-market-4969

Dairy Alternatives Market by Product Type (Plant Milk, Cheese, Yogurt, Butter, Ice Cream), Source (Almond Protein, Soy Protein, Wheat Protein), and Distribution Channel (Business to Business and Business to Customers) - Global Forecast To 2027

https://www.meticulousresearch.com/product/dairy-alternatives-market-5128

Plant-Based Protein Supplements Market by Type (Soy Protein, Rice Protein), Form (Powder, RTD), Application (Sports Nutrition, Additional Nutrition), and Distribution Channel (Hypermarket/Supermarket, E-Commerce, Pharmacies) Global Forecast To 2027

https://www.meticulousresearch.com/product/plant-based-protein-supplements-market-5143

Plant-based Protein Market by Type (Soy Protein, Wheat Protein, Pea Protein, Potato Protein, Rice Protein, Corn Protein), Crop Type (GMO), Source Process (Organic), Application (Food and Beverages, Animal Feed, Nutritional Supplements) - Global Forecast to 2028

https://www.meticulousresearch.com/product/plant-based-protein-market-5031

Alternative Protein Market by Type (Plant Protein [Soy, Wheat, Pea], Insect Protein [Crickets, BSF], Microbial Protein [Algae Protein, Bacterial Proteins]), Application (Food & Beverages, Animal Feed and Pet Food, Nutraceuticals) - Global Forecast to 2029

https://www.meticulousresearch.com/product/alternative-protein-market-4985

About Meticulous Research

Meticulous Research was founded in 2010 and incorporated as Meticulous Market Research Pvt. Ltd. in 2013 as a private limited company under the Companies Act, 1956. Since its incorporation, the company has become the leading provider of premium market intelligence in North America, Europe, Asia-Pacific, Latin America, and the Middle East & Africa.

The name of our company defines our services, strengths, and values. Since the inception, we have only thrived to research, analyze, and present the critical market data with great attention to details. With the meticulous primary and secondary research techniques, we have built strong capabilities in data collection, interpretation, and analysis of data including qualitative and quantitative research with the finest team of analysts. We design our meticulously analyzed intelligent and value-driven syndicate market research reports, custom studies, quick turnaround research, and consulting solutions to address business challenges of sustainable growth.

Go here to see the original:
Europe Plant-Based Food Market Worth $16.7 Billion by 2029 - Exclusive Report by Meticulous Research - Yahoo Finance

Posted in Vegetarianism | Comments Off on Europe Plant-Based Food Market Worth $16.7 Billion by 2029 – Exclusive Report by Meticulous Research – Yahoo Finance

Immuno In-Vitro Diagnostics (IVD) Market 2022 Growth, Segments, Industry by Size, Share, Demand, Trends and Top Companies Overview to 2029 | F….

The World Class Immuno In-Vitro Diagnostics (IVD) Market Research Report makes knowledgeable about the Immuno In-Vitro Diagnostics (IVD) industry and competitive landscape which supports enhanced decision making, better manage marketing of goods and decide market goals for better profitability. Immuno In-Vitro Diagnostics (IVD) market report has been structured after a thorough study of various key market segments like market size, share, growth, demand, latest trends, market threats and key drivers which drives the market. All the statistical data and information involved in this marketing report is characterized properly by using several charts, graphs or tables. The report provides strategically analyzed market research analysis and observant business insights into the most relevant markets of our clients. The winning Immuno In-Vitro Diagnostics (IVD) market research report helps clients recognize new opportunities and most important customers for their business growth and increased revenue.

Immuno In-Vitro Diagnostics (IVD) Market is expected to gain market growth in the forecast period of 2022 to 2029. Data Bridge Market Research analyses the market to account to USD 23.97 billion by 2029 and will grow at a CAGR of 4.78% in the above mentioned forecast period.

Download Free Exclusive Sample (350 Pages PDF) Report @ https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-immuno-ivd-market

The Immuno In-Vitro Diagnostics (IVD) Market 2022 report brings into focus studies about market definitions, classifications, applications and industry chain structure. Immuno In-Vitro Diagnostics (IVD) Market report is provided for the international markets as well as development trends, competitive landscape analysis, and key regions development status. Development policies and plans are discussed as well as manufacturing processes and cost structures are also analyzed. This report additionally states import/export consumption, supply and demand Figures, cost, price, revenue and gross margins. Third by regions, this report focuses on the sales (consumption), production, import and export of Immuno In-Vitro Diagnostics (IVD) in United States, Europe, China, Japan, and Southeast Asia, India.

On the basis of report- titled segments and sub-segment of the market are highlighted below:

ByProduct Type (Reagents, Instruments, Data Management Software, Services) Immunodiagnostics Technique (Enzyme-Linked Immunosorbent Assay, Rapid Tests, Enzyme-Linked ImmunoSpot Assays, Radioimmunoassay, Western Blotting)

By Application (Infectious Diseases, Diabetes, Oncology, Cardiology, Drug Testing/Pharmacogenomics, HIV/AIDS, Autoimmune Diseases, Nephrology, Others)

By End User (Hospital Laboratories, Clinical Laboratories, Point Of Care Testing, Patient Self-Testing, Academic Institutes, Others)

List of Significant Vendors Operating in this market include:

Global Immuno In-Vitro Diagnostics (IVD) Market providing information such as company profiles, product picture and specification, capacity, production, price, cost, revenue and contact information. Upstream raw materials and instrumentation and downstream demand analysis is additionally dispensed. The Global Immuno In-Vitro Diagnostics (IVD) market development trends and marketing channels are analyzed. Finally, the feasibility of latest investment projects is assessed and overall analysis conclusions offered.

Complete Report is Available (Including Full TOC, List of Tables & Figures, Graphs, and Chart) @ https://www.databridgemarketresearch.com/toc/?dbmr=global-immuno-ivd-market

Global Immuno In-Vitro Diagnostics (IVD) Market Scenario

Immuno in-vitro diagnostics test are generally performed on blood or tissue samples to identify disease or any serious condition. These devices have next generation sequencing tests which can help them to sense genomic variation in person DNA.

The increasing geriatric population and high growth in the prevalence of chronic and infectious diseases is amongst the important factors intensifying the growth and demand of immuno in-vitro diagnostics (IVD) market. In addition, the high adoption of fully automated and POC instruments in emerging regions and increasing geriatric population are also contributing to the growth in the global market over the forecast period of 2021 to 2028. Also the rising awareness regarding disease diagnosis and increasing R&D investments by industry players to launch new IVD products are also enhancing the growth of the market. Furthermore, the higher disposable income and expansion of automated in vitro diagnostic systems for laboratories and hospitals to give resourceful, precise and error-free diagnosis are also one of the significant factors fueling the growth of the immuno in-vitro diagnostics (IVD) market. Increases vulnerability to acquiring various diseaseswill also make sure high industry growth over the forecast period.

Global Immuno In-Vitro Diagnostics (IVD) Market Scope and Market Size

Immuno in-vitro diagnostics (IVD) market is segmented on the basis of product type, immunodiagnostics technique, application and end user. The growth amongst these segments will help you analyze meager growth segments in the industries, and provide the users with valuable market overview and market insights to help them in making strategic decisions for identification of core market applications.

On the basis of product type, the immuno in-vitro diagnostics (IVD) market is segmented into reagents, instruments, data management software and services. Instruments have further been segmented into semi-automated instruments, fully automated instruments and other instruments.

Immuno in-vitro diagnostics (IVD) market is also segmented on the basis of immunodiagnostics technique into enzyme-linked immunosorbent assay, rapid tests, enzyme-linked immunospot assays, radioimmunoassay and western blotting. Enzyme-linked immunosorbent assay have further been segmented into chemiluminescence immunoassays, fluorescence immunoassays and colorimetric immunoassays.

Based on application, the immuno in-vitro diagnostics (IVD) market is segmented into infectious diseases, diabetes, oncology, cardiology, drug testing/pharmacogenomics, HIV/AIDS, autoimmune diseases, nephrology and others.

The end user segment of immuno in-vitro diagnostics (IVD) market is segmented into hospital laboratories, clinical laboratories, point of care testing, patient self-testing, academic institutes and others. Clinical laboratories have further been segmented into large/reference laboratories, medium-sized laboratories and small laboratories.

For stakeholders and business professional for expanding their position in the Immuno In-Vitro Diagnostics (IVD) Market:

Q 1. Which Region offers the most rewarding open doors for the market Ahead of 2022?

Q 2. What are the business threats and Impact of COVID scenario Over the market Growth and Estimation?

Q 3. What are probably the most encouraging, high-development scenarios for Immuno In-Vitro Diagnostics (IVD) movement showcase by applications, types and regions?

Q 4.What segments grab most noteworthy attention in Immuno In-Vitro Diagnostics (IVD) Market in 2022 and beyond?

Q 5. Who are the significant players confronting and developing in Immuno In-Vitro Diagnostics (IVD) Market? Geographically, the detailed analysis of consumption, revenue, market share and growth rate, historic and forecast (2015-2029) of the following regions are covered in Chapter 5, 6, 7, 8, 9, 10, 13:o North America (Covered in Chapter 6 and 13)o Europe (Covered in Chapter 7 and 13)o Asia-Pacific (Covered in Chapter 8 and 13)o Middle East and Africa (Covered in Chapter 9 and 13)o South America (Covered in Chapter 10 and 13)

For More Information or Query or Customization Before Buying, Visit @ https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-immuno-ivd-market

With tables and figures helping analyses worldwide Global Immuno In-Vitro Diagnostics (IVD) market trends, this research provides key statistics on the state of the industry and is a valuable source of guidance and direction for companies and individuals interested in the market.

Table of Content:

Market Overview:The report begins with this section where product overview and highlights of product and application segments of the global Immuno In-Vitro Diagnostics (IVD) Market are provided. Highlights of the segmentation study include price, revenue, sales, sales growth rate, and market share by product.

Competition by Company:Here, the competition in the Worldwide Immuno In-Vitro Diagnostics (IVD) Market is analyzed, By price, revenue, sales, and market share by company, market rate, competitive situations Landscape, and latest trends, merger, expansion, acquisition, and market shares of top companies.

Company Profiles and Sales Data:As the name suggests, this section gives the sales data of key players of the global Immuno In-Vitro Diagnostics (IVD) Market as well as some useful information on their business. It talks about the gross margin, price, revenue, products, and their specifications, type, applications, competitors, manufacturing base, and the main business of key players operating in the global Immuno In-Vitro Diagnostics (IVD) Market.

Market Status and Outlook by Region:In this section, the report discusses about gross margin, sales, revenue, production, market share, CAGR, and market size by region. Here, the global Immuno In-Vitro Diagnostics (IVD) Market is deeply analyzed on the basis of regions and countries such as North America, Europe, China, India, Japan, and the MEA.

Application or End User:This section of the research study shows how different end-user/application segments contribute to the global Immuno In-Vitro Diagnostics (IVD) Market.

Market Forecast:Here, the report offers a complete forecast of the global Immuno In-Vitro Diagnostics (IVD) Market by product, application, and region. It also offers global sales and revenue forecast for all years of the forecast period.

Research Findings and Conclusion:This is one of the last sections of the report where the findings of the analysts and the conclusion of the research study are provided.

Browse Complete Report Details@https://www.databridgemarketresearch.com/reports/global-immuno-ivd-market

Customization Service of the Report:

Data Bridge Market Research provides customization of reports as per your need. This report can be personalized to meet your requirements. Get in touch with our sales team (Corporatesales@databridgemarketresearch.com), who will guarantee you to get a report that suits your necessities.

Top Related Report from DBMR:

Anorexiants Market 2022 by Size Estimation, Demand, Trends, Market Dynamics, Competition by Manufacturers-Bausch Health, Virtus, Lannett, Sun Pharmaceutical

Diabetic Macular Edema (DME) Market Size, Share, Trends 2022, Demand, Growth, Development| F. Hoffmann-La Roche Ltd, Novartis AG, GlaxoSmithKline plc

Antacids Market Size, Share, Growth, Industry Overview, New Opportunities & SWOT Analysis by 2029| Top Key Players: Perrigo Company plc, Johnson & Johnson Services, Salix Pharmaceuticals

Cancer Monoclonal Antibodies Market 2022 Growth, Segments, Industry by Size, Share, Demand, Trends and Top Companies Overview to 2029| Abbvie, Pfizer, Amgen, Novartis AG

Gastritis Market 2022 Global Industry Size, Demand, Growth Analysis, Share, Revenue and Forecast 2029

Acetaminophen (Paracetamol) Market Share, Size- 2022 Industry Trends, Progress Insight, Developing Technologies, Competitive, Regional, And Global Industry Forecast to 2029

Laxative Market 2022 Global Share, Growth, Size, Opportunities, Trends, Regional Overview, Leading Company Analysis, And Key Country Forecast to 2029

Electrostatic Disinfectant Sprayer Industry 2022 Global Market Size, Growth, Share, Emerging Demand, Current Trends, Company Profiles, Competitive Landscape and Forecasts till 2029

Care Management Solutions Market 2022 Share, Size, Regional Trend, Future Growth, Leading Players Updates, Industry Demand, Current and Future Plans by Forecast to 2029

Artificial Intelligence (AI) In Drug Discovery Market 2022 Industry Demand, Share, Statistics, Global Trend, Top Key Players Update and Forecast to 2029

Hospital Electronic Medical Records (EMR) Systems Market 2022 Global Industry Size, Share, Forecasts Analysis, Company Profiles, Competitive Landscape and Key Regions 2029

Why Data Bridge Market Research

An absolute way to forecast what future holds is to comprehend the trend today!

Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

We ponder into the heterogeneous markets in accord with our clients needs and scoop out the best possible solutions and detailed information about the market trends. Data Bridge delves into the markets across Asia, North America, South America, and Africa to name few.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. We are content with our glorious 99.9 % client satisfying rate

Contact Us:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

E-Mail:Corporatsesales@databridgemarketresearch.com

See the original post:
Immuno In-Vitro Diagnostics (IVD) Market 2022 Growth, Segments, Industry by Size, Share, Demand, Trends and Top Companies Overview to 2029 | F....

Posted in Pharmacogenomics | Comments Off on Immuno In-Vitro Diagnostics (IVD) Market 2022 Growth, Segments, Industry by Size, Share, Demand, Trends and Top Companies Overview to 2029 | F….

Solarea Bio Teams up with Hebrew SeniorLife Investigators on a Newly Awarded U.S. National Academy of Medicine Catalyst Grant – Yahoo Finance

Healthy Longevity Initiative Grant Awarded to Study the Mycobiome as a Novel Class of Probiotics to Target Inflammaging

CAMBRIDGE, Mass., Nov. 4, 2021 /PRNewswire/ -- Solarea Bio, a biotechnology company in Cambridge, Mass., and leading researchers at Harvard Medical School affiliated Hebrew SeniorLife, New England's largest nonprofit provider of senior health care and living communities, are co-investigators on a competitive research grant from the U.S. National Academy of Medicine's Healthy Longevity Initiative.

(PRNewsfoto/Solarea Bio)

Solarea Bio, along with Douglas P. Kiel, M.D., M.P.H., Director, Musculoskeletal Research Center, Hinda and Arthur Marcus Institute for Aging Research, and Shivani Sahni, Ph.D., Director, Nutrition Program, Marcus Institute, received the grant.

According to the researchers, "An aging population has led to a significant global increase in age-related diseases including cardiovascular disease, Alzheimer's, and others. At the core of this is chronic low-grade inflammation known as inflammaging, and recent evidence describes the gut microbiome as a key regulator of the inflammaging process through direct impact on immune system development and function."

However, while the impact bacteria have on the immune system and human health is well described, fungi, a major component of the gut microbiome, have been largely overlooked due to multiple factors including fungi's large, complex genomes that require deep sequencing and a hybrid assembly, lack of fungal genome databases for functional gene prediction, and underdeveloped bioinformatic tools to identify fungal metabolites important to human health.

The researchers hypothesize that the "mycobiome" (the collection of fungi that are part of the overall microbiome) could offer a large, untapped reservoir of probiotic fungi with the ability to combat inflammaging. Based on this hypothesis, the team will be working to sequence a subset of a large fungal collection and develop bioinformatic tools to identify fungi with probiotic potential. Lead candidate fungi will be tested using in vitro cell culture systems to identify fungi with anti-inflammatory properties that may then be further tested clinically.

Story continues

About the Healthy Longevity InitiativeThe Healthy Longevity Initiative is designed to kick start innovation to support healthy longevity through a series of monetary awards and prizes. In the tradition of international races to fly across the Atlantic or walk on the moon, the initiative will rally the world's greatest minds to achieve what may at first seem an impossible goal.

About the Hinda and Arthur Marcus Institute for Aging ResearchScientists at the Marcus Institute seek to transform the human experience of aging by conducting research that will ensure a life of health, dignity, and productivity into advanced age. The Marcus Institute carries out rigorous studies that discover the mechanisms of age-related disease and disability; lead to the prevention, treatment, and cure of disease; advance the standard of care for older people; and inform public decision-making.

About Hebrew SeniorLifeHebrew SeniorLife, an affiliate of Harvard Medical School, is a national senior services leader uniquely dedicated to rethinking, researching, and redefining the possibilities of aging. Hebrew SeniorLife cares for more than 3,000 seniors a day across six campuses throughout Greater Boston. Our locations include: Hebrew Rehabilitation Center-Boston and Hebrew Rehabilitation Center-NewBridge in Dedham; NewBridge on the Charles, Dedham; Orchard Cove, Canton; Simon C. Fireman Community, Randolph; Center Communities of Brookline, Brookline; and Jack Satter House, Revere. Founded in 1903, Hebrew SeniorLife also conducts influential research into aging at the Hinda and Arthur Marcus Institute for Aging Research, which has a portfolio of more than $63 million, making it the largest gerontological research facility in the U.S. in a clinical setting. It also trains more than 1,000 geriatric care providers each year. For more information about Hebrew SeniorLife, visit https://www.hebrewseniorlife.org or follow us on our blog, Facebook, Instagram, Twitter, and LinkedIn.

About Solarea BioSolarea Bio is a biotechnology company based in Cambridge, Mass. developing new microbiome-based solutions to some of the world's largest health problems. Solarea was founded in 2017 by a group of scientists and entrepreneurs eager to radically alter our understanding of the human microbiome and utilize its power to improve human health. Solarea's breakthrough came from the combined efforts of the company's co-founders who established a link between the discovery of an untapped source of microorganisms with probiotic potential in healthy foods, and their applications in inflammatory processes including the gut-musculoskeletal axis.

Media Contacts:Margaret BonillaHebrew SeniorLife617-363-8367margaretbonilla@hsl.harvard.edu

Rachel Raymond Solarea Biorraymond@solareabio.com

Logo

Cision

View original content to download multimedia:https://www.prnewswire.com/news-releases/solarea-bio-teams-up-with-hebrew-seniorlife-investigators-on-a-newly-awarded-us-national-academy-of-medicine-catalyst-grant-301416424.html

SOURCE Solarea Bio

View post:
Solarea Bio Teams up with Hebrew SeniorLife Investigators on a Newly Awarded U.S. National Academy of Medicine Catalyst Grant - Yahoo Finance

Posted in Anti-Aging Medicine | Comments Off on Solarea Bio Teams up with Hebrew SeniorLife Investigators on a Newly Awarded U.S. National Academy of Medicine Catalyst Grant – Yahoo Finance

Haematological Indicators of Response to Erythropoietin Therapy in Chr | PGPM – Dove Medical Press

Key Message

Chronic kidney disease (CKD) has a global prevalence of 816%, with serious morbidity and mortality.1 CKD is a direct risk factor for cardiovascular diseases, end-stage renal disease (ESRD)/CRF, and mortality.2 While replacement therapy with regular dialysis represents a temporary solution, renal transplantation is the permanent solution.3 Anaemia is one of the most important CRF complications, which develops early and worsens during the long-term progression of the disease.4 Coresh et al showed the association between lower Hb levels, the severity of anaemia and kidney function reduction.5 Erythropoietin (Epo), iron therapy, and continuous patient response monitoring provide a good tool for treating CKD-associated anaemia6 that helps to minimize transfusions and improve CKD patient survival.7 Although the response to rHuEpo is mostly good, resistance to Epo therapy among these cases ranges from 10% to 20%.8

Many factors may affect patients responses to replacement therapy with rHuEPO, including genetic factors, eg, ACE gene polymorphism that has an important impact on hematopoiesis. ACE gene is located at 17q23. It contains 26 exons and 25 introns.9 It has several single-nucleotide polymorphisms (SNPs). ACE G2350A (rs4343) SNP is located in exon 17 of the ACE gene and results in silent Thr 776 Thr (NP_000780.1) change. ACE gene SNPs may affect the patients response to Epo and could be useful genetic markers in assessing the required dose of Epo in such patients.10 ACE SNPs effect on CKD response to Epo therapy was evaluated with conflicting results. Varagunam et al reported a predictive role for it in determining Epo dosage in continuous ambulatory peritoneal dialysis English patients,11 while in another study in Korean HD patients, it was found to be associated with Epo resistance.10 ACE G2350A (RS4343) was selected for the present study based on a genome-wide-analysis study that reported the ACE G2350A (RS4343) is a good predictor of ACE activity12 due to the absence of wide genomic mapping in Arabian Countries, so our hypothesis that it may affect HD patients response to rHuEPO.

Although it was investigated concerning other clinical conditions, to the best of our knowledge, none of the international reports studied the effect of ACE G2350A (RS4343) gene polymorphisms on haematological markers of response to rHuEpo in CRF patients on HD. The current study aims to study the effect of ACE G2350A (RS4343) I/D gene polymorphisms on the response to rHuEpo, anaemia biomarkers, ACE content, inflammatory biomarkers, serum Epo and soluble Epo receptor (sEpoR) among CRF patients on HD.

Observational cross-sectional study.

Nephrology department and Biochemistry and molecular biology department, faculty of medicine, Cairo University.

Our cross-sectional study enrolled 256 CRF patients on HD for six months receiving rHuEpo therapy. They included 162 males and 103 females and aged 51.3 11.9 years. They were recruited from the nephrology unit, Internal Medicine Department, Cairo University, Cairo, Egypt, from April 2019 to June 2020. Matching 160 normal healthy control subjects were recruited from those accompanying outpatients and comprised 122 males and 38 females ageing 36.1 12.8 years (Table 1). Each participant had a five-minute interview to discuss the current studys objectives and aims before signing the informed consent and enrollment.

Table 1 General Characteristics and Laboratories of HD Patients versus Controls

Patients excluded from the study if age 18 years, acute renal failure, non-CKD-related anaemia, recent blood transfusion within the previous three months, a history of hepatitis B (HBV) or C (HCV) or HIV or other active acute or chronic infections, decompensated liver cirrhosis, pregnancy, and malignancy.

10 mL peripheral venous blood was collected on heparin. The recovered plasma by centrifugation (1000 x g for 10 min at 4 C) was aliquot stored at 40 C till used for assessment of ferritin, Transferrin (TF), soluble transferrin receptor (sTfR), EPO, sEpoR, ACE, and cytokines (IL-1, IL-6, and IL-10) content, iron workup (iron and total iron-binding capacity; TIBC). Iron (g/dL) and TIBC (g/dL) were assayed using colorimetric kits (Stanbio Laboratory, Boerne, TX, USA). Transferrin saturation (%) was calculated from iron and TIBC. Plasma proteins and cytokines were assayed using specific quantitative commercially available ELISA kits as instructed; ferritin in ng/mL and sTfR in nmol/L (Diagnostic Automation/Cortez Diagnostics Inc, CA, USA; cat#1601-16 and 3126-15), TF in mg/dL (Abcam, Cambridge, MA, USA, USA cat#ab187391), ACE in ng/mL and sEpoR in ng/mL (MyBioSource, Inc., San Diego, CA, USA; cat#MBS494753 and MBS702997), IL-1, IL-6, and IL-10 in pg/mL (RayBiotech, Inc., Peachtree Corners, GA, USA; cat# ELH-IL1b, ELH-IL6, and ELH-IL10), and Epo in mIU/mL (BioVision, Inc., Milpitas, CA, USA; cat# E4720-100). An aliquot of whole blood was also used to assess Hb, TLC count using a cell counter (Sysmex XT-4000i Automated Haematology Analyzer Lincolnshire, IL, USA). Hb level was measured in the 6th month three times, one week apart, the mean of these three readings was recorded. Half of the whole blood sample collected was used for genomic DNA extraction and real-time PCR analysis of ACE genes polymorphism.

Total DNA was isolated from whole blood mononuclear cells (MNC) using the extraction kit (Zymo Research, Irvine, CA, USA; cat# D302 Quick-DNA Microprep Kit) instructed. The DNA purity (A260/A280 ratio) and concentration were assessed spectrophotometrically (dual-wavelength Beckman, Spectrophotometer, USA). GAPDH house-keeping gene was assessed in all PCR reactions as an internal control and for DNA integrity. The extracted and purified DNA samples were stored at 80 C till used. ACE polymorphism genotyping and allelic discrimination was assessed using TaqMan Analysis. DNA was genotyped for ACE G/A at rs4343. PCRs were carried out in reaction volumes of 25 L containing 50 ng DNA, 10 L TaqMan Universal PCR Master Mix (Applied Biosystems, ThermoFisher Scientific Inc., Waltham, MA, USA) with the passive reference ROX (Perkin Elmer), 280 nmol/L of each primer and 200 nmol/L VIC-labeled probes for ACE G > A. Primers and minor groove binder probes were synthesized by Applied Biosystems. The primer sequence was forward: 5-GTGAGCTAAGGGCTGGA-3 and reverse: 5-CCAGCCCTCCCATGCCCATAA-3. PCR thermal cycler conditions included an initial incubation at 50 C for 2 minutes, 95 C for 10 minutes, followed by 35 cycles of 15 seconds at 92 C and 1 minute at 6062 C. Allele discrimination was accomplished by running endpoint detection using the StepOne and SDS 2.0 software. ACE AA = ACE Insertion/Insertion (I/I), ACE GA = ACE Insertion/Deletion (I/D) while ACE GG = ACE Deletion/Deletion (D/D).

Data were collected, tabulated, and analyzed using SPSS version 21 (IBM SPSS Statistics for Windows, Armonk, NY: IBM Corp). Deviation of genotype frequencies of the studied group of patients from Hardy-Weinberg equilibrium (HWE) was assessed by Chi-squared test with one degree of freedom (df) using the Michael H. Courts (20052008) calculator.13 If P 0.05, then the population is in HWE. For categorical data like gender was presented as frequency and percentage. Scale data like age, haematological parameters were presented as mean Standard Error of Mean (SEM). ShapiroWilk test was applied to determine the distribution of data. Chi-square test/ Fischer exact test was applied to measure the difference among categories. Independent samples t-test was used to measure the mean difference across two categories. Levenes test was applied to ascertain equal variance among the groups. One-way ANOVA with LSD posthoc analysis was applied to determine the difference in scale data among more than two categories. Correlations between ACE level and haematological parameters were using Pearsons correlation coefficient. The stepwise regression test was used to determine the independent parameters that may affect Hb or Hct values. A p-value < 0.05 was considered significant.

The current study protocol was approved by the Bioethics Committee, Medical College, Cairo University (Approval Number CU III F 40 20) and conducted following the Helsinki declaration.

Comparing HD patients vs healthy controls showed significant differences in plasma potassium, urea, creatinine, iron, TIBC, % TF Saturation, TF, sTfR, Hb, Hct, TLC, platelets count IL-6, IL-10 and IL-1, EPO, ACE and sEpoR (Table 1).

The prevalence of ACE G2350A (rs4343) I/D genotype among HD patients and healthy controls showed that the I/D genotype is the most prevalent while the I/I genotype is the least one. ACE G2350A (rs4343) I/D genotype distribution showed a significant difference in the gene allele distribution between HD patients compared to normal controls: I/D (n = 174 vs 85), I/I (n = 41 vs 6) and D/D (n = 50 vs 69) (p = 0.001). D allele is the most prevalent one either in HD patients (0.52) or among the control group (0.7) (Table 2).

Table 2 Patients and Control Group ACE Rs4343 Genotype and Allele Distributions

The mean Hb was highest in D/D genotype patients (11.120.19), followed by I/I (11.110.2) n I/D (10.470.1).

The effect of ACE G2350A (rs4343) genotypes on different parameters among CRF patients was evaluated using one-way ANOVA; a significant difference between the three categories was found, F= 5.9, P=0.003. Differences were significant between I/I and I/D genotype (mean difference=.63, P = 0.012), D/D and I/D genotype (mean difference =.65, P = 0.005). no significant difference was noted between I/I and D/D (P=0.956) Table 3.

Table 3 Comparison of Hb & Serum Iron in Different HD Patient Genotypes of ACE Gene Rs4343

The mean serum iron was highest in I/D genotype patients (44.53 .87), followed by I/I (40.951.3 n DD (40.61.05). A one-way ANOVA found a significant difference between three categories, F= 4.062, P=0.018. Differences were significant between I/D and II (mean difference=3.58. P =0.045), I/D and D/D (mean difference=3.93, P =0.018). I/I and D/D had not shown a significant difference (P= 0.871) Table 3.

There were insignificant differences among patients with I/I, D/D, or I/D genotypes regarding TLC (Figure 1A) or the inflammatory biomarkers (IL-6, IL-10, and IL-1) (Figure 1B).

Figure 1 Comparison of WBC (A), IL6 & IL10 & IL1 (B) regarding the ACE G2350A (rs4343) genotypes. Data presented as mean SEM. Evaluated by ANOVA test followed by LSD as a post hoc.

Figure 2 Comparison of Transferrin Saturation or sTfR (soluble transferrin receptor) (A), TIBC (Total Iron Binding Capacity), ferritin, and Transferrin (B) regarding the ACE G2350A (rs4343) genotypes. Data presented as mean SEM. Evaluated by ANOVA test followed by LSD as a post hoc.

There were insignificant differences among patients with I/I, D/D, or I/D genotypes regarding % TF Saturation and sTfR (Figure 2A), TIBC, Ferritin, or TF level (Figure 2B).

Figure 3 Comparison of Epo (erythropoietin), ACE (angiotensin-converting enzyme) and sEpoR (Soluble erythropoietin receptors) regarding the ACE G2350A (rs4343) genotypes. Data presented as mean SEM. Evaluated by ANOVA test followed by LSD as a post hoc.

The effect of ACE G2350A (rs4343) genotypes on levels of ACE, EPO, and sEpoR levels was evaluated among CRF patients. Our results showed insignificant differences between patients with different genotypes in that regard (Figure 3).

The D allele is the most prevalent allele among patients in the current study (Table 2). Analysis of the genotype correlation in a recessive mode of inheritance of the risk of D allele between Non-DD (II+ID) vs (DD) was done using an independent t-test. Our results showed a significant difference between the two groups regarding iron status (43.9.7, 40.61.1, respectively, F: 6.946, t: 2.529, CI: 0.7019:5.8004, P=0.013) and Hb level (10.6.1, 11.1.19, respectively, F: 0.261, t: 2.308, CI: 0.9797:0.0776, P=0.013) (Table 4).

Table 4 Comparison of Different Parameters Between Non-DD (ID+II) and DD Genotype Among HD Patients

Using Pearsons correlation coefficient, the correlation between the ACE level and haematological parameters among HD patients showed a significant positive correlation between the ACE level and Epo (r: 0.244, P=0.0001) and a significant negative correlation between the ACE level and HCT (r: 0.131, P=0.033) (Table 5).

Table 5 Correlations Between ACE Level and Haematological Parameters Using Pearsons Correlation Coefficient

Linear regression analysis revealed that among all parameters tested, ACE G2350A (rs4343) (R.194, P=0.001), TLC (R 0.282, P=0.001), and sEpoR (R 0.312, P=0.024) were independent predictors of Hb level (Table 6). While the ACE content (R. 0.292, P= 0.017), TLC (R. 0.255, P=0.015), and iron (R 0.209, P=0.001) were independent predictors of the Hct level (Table 7).

Table 6 Hb Stepwise Regression Test

Table 7 HCT Stepwise Regression Test

The current study is the first report that studied the effect of ACE G2350A (rs4343) gene polymorphism on the haematological indicators of response to rHuEpo therapy. It is well-established that genetic factors play an essential role in determining the efficacy and response to drug treatment.14 Pharmacogenomics analyses such relationships towards the personalization of medicine. Our lab showed the importance of such an approach in predicting the patients response to different drug therapy.15,16

The present study showed that HD patients with the ACE G2350A (rs4343) D/D and I/I genotype respond better to rHuEpo therapy than those with the I/D genotype as evidenced by the higher Hb level among the former group. This higher Hb level among D/D and I/I genotypes were not related to iron level. Our results showed that patients with the I/D allele had higher iron than patients with each of the D/D and I/I genotypes, despite the lower Hb level of the I/D allele holders. The better Hb response was recently partially reasoned to higher plasma angiotensin II (Ang II) levels in D/D and I/D genotypes compared to the II genotype.17

Ang II is the main effector member of the renin-angiotensin system acting through the AT1 receptor and is generated from Ang. I by an ACE-induced proteolytic cleavage.18 The Renin-angiotensin system plays a vital role in hematopoiesis and other diseases.19,20 However, the exact mechanism by which ACE may affect erythropoiesis and Hb level is still not well elucidated. Among the other plausible explanations is ACE inhibition of Ang IIinduced Epo release and prevention of the induction of pluripotent hematopoietic stem cells.21 ACE directs stem cell differentiation to erythroid progenitors synthesis.22 ACE may affect the Ang II level, directly increasing erythroid progenitors in vitro proliferation.23

Savin et al showed that the ACE D/D genotype is associated with higher Hb levels.24 Patients with the D/D genotype were shown to require less Epo dose than the I/I genotype.11

In a study that included 112 ambulatory peritoneal dialysis patients, Sharples et al25 showed that the ACE DD genotype requires less rHuEpo than other ACE genotypes, I/I or I/D. This result seems to be in line with our conclusion, albeit we could not identify the exact ACE SNPs that Sharples and his colleagues had examined. Similarly, Hatano et al26 showed that HD patients with D/D-allele require low rHuEPO.

The ACE rs4646994 D/D genotype was associated with a poor response to rHuEpo in HD Korean patients, suggesting that it could be a useful genetic tool in predicting Epo requirement and responsiveness in HD patients.10 Kiss et al,27 working on Hungarian and Al-Radeef et al,28 working on Iraqi HD patients, reported that ACE polymorphism had a non-significant effect on the Hb level. These variations may arise from the exact SNPs tested; we explored the ACE G2350A (rs4343) effect while they examined rs1799752 and rs4646994, respectively. Also, the small sample size of these studies compared to ours might have affected their conclusions.

Our results showed a higher iron store among the heterozygous ID genotype than II or DD genotype patients assuming a heterozygous advantage for the ACE G2350A (rs4343) ID genotype among HD patients included in the present study.

Heterozygote advantage or overdominant refers to better fitness of heterozygous genotype patients over both homozygous. It firstly appeared in 1922 to maintain polymorphism stability.29 Major histocompatibility complex (MHC) gene represent one of the prominent examples for the heterozygote advantage, in which MHC heterozygotes genetic diversity is abundant. Heterozygote genotype patients have better recognition of pathogen antigen and resist infections effectively than homozygous.30,31 Heterozygote advantage provides a protective effect against malaria for the sickle-cell anaemia allele carriers.32

Recently, A genome-wide association study revealed that heterozygous individuals were significantly healthy-aged compared to other individuals with other genotypes. Moreover, in the same age group population, a 10-year higher survival was associated with individuals with higher heterozygosity rates; the association is more likely to be explained by heterozygote advantage.33 Previous observations noted heterozygous advantages on ACE genotype patients among cardiovascular diseases; because of high linkage disequilibrium (LD) between the polymorphisms, ACE haplotypes needed to be determined in different populations with different evolutionary histories search for additional ancestral breakpoints. The phenotypes complexity also includes the possibility of multiple interactions between genes or genes and environmental factors. The high frequency of I/D, ie, 56.61%, could be because of heterozygote advantages against the two homozygotes D/D and I/I in cardiovascular diseases9 and kidney diseases; individuals with I/D genotype have the least levels of ACE. The DD genotype has the highest levels, followed by I/I34 or having lower plasma ACE levels,35 although these studies may differ from our study in its design, ethnicity, and allele distributions.

A 287-bp insertion/deletion (I/D) polymorphism in intron 16 of the ACE gene (17q22-q24, 26 exons, and 25 introns) in humans may control serum ACE levels. Many SNPs in linkage disequilibrium (LD) with the I/D polymorphism, including T5941C, A262T, T93C, T1237C, C4656T, and A11860G (rs 4343; exon 16),36,37 are known to influence serum ACE.38

Furthermore, rs1799752 is one of four SNPs that may be the most well-studied ACE SNP. It is an insertion/deletion of an Alu repetitive element in an ACE genes intron rather than a single nucleotide polymorphism.

ACE G2350A (rs4343) gene polymorphism is associated with increased ACE enzyme activity in physiological and pathological states.39 It increases ACE levels in subjects with a high-saturated-fat diet that enhances diet-dependent hypertension.40

Our data showed insignificant differences among the tested three ACE G2350A (rs4343) I/I, I/D, and D/D genotypes regarding the circulating ACE protein content. On the contrary, Mizuiri et al and Elshamaa et al demonstrated an opposite conclusion. ACE I/D genotype is associated with renal ACE gene expression in healthy Japanese subjects41 and plasma and tissue ACE levels.42 Nand et al showed D allele positively affects ACE serum level.43

Endogenous or rHuEpo binds to EPOr resulting in stimulation of erythropoiesis.44 sEpoR is generated from mRNA alternative splicing, and since it lacks the transmembrane domain, it is released into extracellular fluids. sEpoR buffers rHuEpo because of its high affinity to EPO; therefore, it acts as a potent antagonist to EPO, resulting in decreased response to rHuEpo treatment. sEpoR high level was correlated to a high need for rHuEpo dose.45,46

In the current work, there was an insignificant difference between ACE G2350A (rs4343) I/I, I/D, or D/D genotypes regarding plasma Epo and sEpoR content in the present study. This notion contradicts the finding of Al-Radeef et al, who showed that another rs1799752 I/D and D/D genotypes had a higher serum Epo level compared to the I/I genotype.28

Our patients were free of active infection, and the measured proinflammatory cytokine levels, IL-6, IL-1, and IL-10, were insignificant differences among the three ACE G2350A (rs4343) genotypes; I/I, I/D, or DD.

Increases in the inflammatory mediator, such as IL-6 and TNF-, lead to increases in the sEpoR level that would hinder erythropoiesis.46 sEpoR stabilizes proinflammatory cytokine ligand and modulates cytokine interaction to its membrane-bound receptor, leading to variation in its concentration.47 Inflammatory cytokines accompanying CRF and HD decrease rHuEpo efficacy. TNF-, IL-1, and IL-6 induce resistance against rHuEpo in erythroid progenitor cells reducing iron release from the reticuloendothelial system and decreasing Hb production.48,49 Betjes et al reported a lack of response to rHuEpo among CKD patients with cytomegalovirus infection mainly due to IFN- and TNF- production.50

Although our HD patients showed higher levels of % TF saturation and sTfR, TIBC, Ferritin, or TF, there were insignificant differences among patients with I/I, D/D, and I/D genotypes regarding these parameters.

Various tissues obtain their iron need via TF binding to its receptor, endocytosis of the complex, and iron download.51,52 The expression rate of the cell surface TF receptor is directly proportional to its iron need.53 The transmembrane glycoprotein TF receptor is formed of two disulfide-linked monomers; each polypeptide subunit comprises three major domains: a large C-terminal extracellular domain and a transmembrane and an N-terminal cytoplasmic domain. sTfR is the cleaved extracellular domain of the high-affinity iron-sensor TF receptor released soluble in extracellular fluids. Circulating levels of sTfR reflect the number of cells with receptors (erythropoietic activity) and the receptor density on cells (tissue iron status).54 Ferritin is used for diagnosing iron deficiency anaemia, but it could be falsely elevated in inflammation giving the erroneous impression of normal iron stores.55 sTfR is insensitive to inflammatory states and inflammatory biomarkers. It could detect anaemia even in subjects with the inflammatory condition; moreover, it could differentiate between anaemia due to iron deficiency or chronic diseases.56

Finally, we tested for independent factors that may affect the patients response to rHuEPO. Among all parameters tested, ACE protein level, TLC, and sEpoR were the independent predictors of Hb level. Simultaneously, ACE protein content, TLC, and iron are the independent predictors for the Hct level.

Previous works measured Hb level at the beginning, 3rd, and 6th months of treatment with rHuEpo [24, 28]. In the present study, we measured the Hb level after six months of the treatment with rHuEpo to allow more precision and avoid fluctuation of patient response to treatment. We took the mean of the three Hb levels in the 6th month. We could not retrieve accurate data considering the use of ACE inhibitors (ACEIs) or ARBs among our patients. We measured circulating ACE level as a protein rather than an activity that revealed insignificant differences among the three genotypes assessed to avoid any related confusion. We did not evaluate angiotensin II (Ang II) level in the current study and iron intake status, but we estimate Hct, iron, ferritin, TF, % TF saturation, sTfR, and TIBC. Many other ACE gene SNPs may affect the HD patients response to rHuEPOs as rs1799752, rs429, and rs4341 which may be in linkage disequilibrium with studied rs4343; however, the only studied here is the ACE G2350A (rs4343). These limitations of the current study are highly acknowledged and will be considered in our future studies.

Patients with either ACE G2350A (rs4343) I/I or D/D genotype showed better response to rHuEpo than those with I/D genotype. ACE protein content, TLC, and sEpoR may represent independent predictors for the HD patients response to rHuEPOs. Screening for ACE G2350A (rs4343) gene polymorphisms in the HD patients on HD before rHuEpo administration may predict patients response.

This project was funded by The Deanship for Scientific Research, Jouf University, Sakaka, Saudi Arabia (Grant # 40/345). The authors express their deepest thanks to Prof. Dr Dina Sabry (The Molecular Biology Lab, Faculty of Medicine, Cairo University, Cairo, Egypt) for facilitating the gene analysis and biochemical investigations.

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

The authors stated that they have no conflicts of interest for this work.

1. Vianna HR, Soares CMBM, Tavares MS, Teixeira MM, Simoes AC. [Inflammation in chronic kidney disease: the role of cytokines]. Jornal Brasileiro de Nefrologia. 2011;33(3):351364. Portuguese. doi:10.1590/S0101-28002011000300012

2. Okada R, Wakai K, Naito M, et al. Pro-/anti-inflammatory cytokine gene polymorphisms and chronic kidney disease: a Cross-Sectional Study. BMC Nephrol. 2012;13(1):2. doi:10.1186/1471-2369-13-2

3. Ramaprabha P, Bhuvaneswari T, Kumar R. Coagulation profiles an indicator of vascular haemostatic function in chronic renal failure patients who are on renal dialysis. Sch J App Med Sci. 2014;2(2B):592595.

4. Ribeiro S, Costa E, Belo L, Reis F, Santos-Silva A. rhEPO for the treatment of erythropoietin resistant anemia in hemodialysis patientsrisks and benefits. In: Hemodialysis. IntechOpen; 2013.

5. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: third national health and nutrition examination survey. Am J Kidney Dis. 2003;41(1):112. doi:10.1053/ajkd.2003.50007

6. OMara NB. Anemia in patients with chronic kidney disease. Diabetes Spectr. 2008;21(1):1219. doi:10.2337/diaspect.21.1.12

7. Thomas R, Kanso A, Sedor JR. Chronic kidney disease and its complications. Prim Care. 2008;35(2):329344. doi:10.1016/j.pop.2008.01.008

8. Hung S-C, Lin Y-P, Tarng D-C. Erythropoiesis-stimulating agents in chronic kidney disease: what have we learned in 25 years? J Formos Med Assoc. 2014;113(1):310. doi:10.1016/j.jfma.2013.09.004

9. Sayed-Tabatabaei F, Oostra B, Isaacs A, Van Duijn C, Witteman J. ACE polymorphisms. Circ Res. 2006;98(9):11231133. doi:10.1161/01.RES.0000223145.74217.e7

10. Jeong K-H, Lee T-W, Ihm C-G, Lee S-H, Moon J-Y. Polymorphisms in two genes, IL-1B and ACE, are associated with erythropoietin resistance in Korean patients on maintenance hemodialysis. Exp Mol Med. 2008;40(2):161. doi:10.3858/emm.2008.40.2.161

11. Varagunam M, McCloskey DJ, Sinnott PJ, Raftery MJ, Yaqoob MM. Angiotensin-converting enzyme gene polymorphism and erythropoietin requirement. Perit Dial Int. 2003;23(2):111115. doi:10.1177/089686080302300203

12. Chung CM, Wang RY, Chen JW, et al. A genome-wide association study identifies new loci for ACE activity: potential implications for response to ACE inhibitor. Pharmacogenomics J. 2010;10(6):537544. doi:10.1038/tpj.2009.70

13. Court M, Michael H. Courts (20052008) Online Calculator. Tuft University Website; 2012.

14. Pare L, Marcuello E, Altes A, et al. Transcription factor-binding sites in the thymidylate synthase gene: predictors of outcome in patients with metastatic colorectal cancer treated with 5-fluorouracil and oxaliplatin? Pharmacogenomics J. 2008;8(5):315320. doi:10.1038/sj.tpj.6500469

15. Mostafa-Hedeab G, Mohamed AA, Thabet G, Sabry D, Salam RF, Hassen ME. Effect of MATE 1, MATE 2 and OCT1 single nucleotide polymorphisms on metformin action in recently diagnosed Egyptian type-2 diabetic patients. Biomed Pharm J. 2018;11(1):149157. doi:10.13005/bpj/1356

16. MostafaHedeab G, SaberAyad MM, Latif IA, et al. Functional G1199A ABCB1 polymorphism may have an effect on cyclosporine blood concentration in renal transplanted patients. J Clin Pharm. 2013;53(8):827833. doi:10.1002/jcph.105

17. Ghafil FA, Mohammad BI, Al-Janabi HS, Hadi NR, Al-Aubaidy HA. Genetic polymorphism of angiotensin converting enzyme and angiotensin II type 1 receptors and their impact on the outcome of acute coronary syndrome. Genomics. 2020;112(1):867872. doi:10.1016/j.ygeno.2019.05.028

18. Ulgen MS, Ozturk O, Yazici M, et al. Association between A/C1166 gene polymorphism of the angiotensin II type 1 receptor and biventricular functions in patients with acute myocardial infarction. Circ J. 2006;70(10):12751279. doi:10.1253/circj.70.1275

19. Vlahakos DV, Marathias KP, Madias NE. The role of the renin-angiotensin system in the regulation of erythropoiesis. Am J Kidney Dis. 2010;56(3):558565. doi:10.1053/j.ajkd.2009.12.042

20. Mostafa-Hedeab G. ACE2 as drug target of COVID-19 virus treatment, simplified updated review. Rep Biochem Mol Biol. 2020;9(1):97105. doi:10.29252/rbmb.9.1.97

21. Kwack C, Balakrishnan VS. Unresolved issues in dialysis: managing erythropoietin hyporesponsiveness. In: Seminars in Dialysis. Wiley Online Library; 2006.

22. Le Meur Y, Lorgeot V, Comte L, et al. Plasma levels and metabolism of AcSDKP in patients with chronic renal failure: relationship with erythropoietin requirements. Am J Kidney Dis. 2001;38(3):510517. doi:10.1053/ajkd.2001.26839

23. Mrug M, Stopka T, Julian BA, Prchal JF, Prchal JT. Angiotensin II stimulates proliferation of normal early erythroid progenitors. J Clin Invest. 1997;100(9):23102314. doi:10.1172/JCI119769

24. Savin M, Hadzibulic E, Damnjanovi T, Santric V, Stankovic S. Association of I/D angiotensin-converting enzyme genotype with erythropoietin stimulation in kidney failure. Arch Biol Sci. 2017;69(1):1522. doi:10.2298/ABS160303051S

25. Sharples EJ, Varagunam M, Sinnott PJ, McCloskey DJ, Raftery MJ, Yaqoob MM. The effect of proinflammatory cytokine gene and angiotensin-converting enzyme polymorphisms on erythropoietin requirements in patients on continuous ambulatory peritoneal dialysis. Perit Dial Int. 2006;26(1):6468. doi:10.1177/089686080602600110

26. Hatano M, Yoshida T, Mimuro T, et al. [The effects of ACE inhibitor treatment and ACE gene polymorphism on erythropoiesis in chronic hemodialysis patients]. Nihon Jinzo Gakkai Shi. 2000;42(8):632639. Japanese.

27. Kiss Z, Ambrus C, Kulcsr I, Szegedi J, Kiss I. Effect of angiotensin-converting enzyme gene insertion/deletion polymorphism and angiotensin-converting enzyme inhibition on erythropoiesis in patients on haemodialysis. J Renin Angiotensin Aldosterone Syst. 2015;16(4):10211027. doi:10.1177/1470320314535276

28. Al-Radeef MY, Fawzi HA, Allawi AA. ACE gene polymorphism and its association with serum erythropoietin and hemoglobin in Iraqi hemodialysis patients. Appl Clin Genet. 2019;12:107112. doi:10.2147/TACG.S198992

29. Fisher RA. XXI.On the dominance ratio. Proc R Soc Edinb. 1923;42:321341. doi:10.1017/S0370164600023993

30. Doherty PC, Zinkernagel RM. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature. 1975;256(5512):5052. doi:10.1038/256050a0

31. Penn DJ, Damjanovich K, Potts WK. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci. 2002;99(17):1126011264. doi:10.1073/pnas.162006499

32. Ferreira A, Marguti I, Bechmann I, et al. Sickle hemoglobin confers tolerance to Plasmodium infection. Cell. 2011;145(3):398409. doi:10.1016/j.cell.2011.03.049

33. Xu K, Kosoy R, Shameer K, et al. Genome-wide analysis indicates association between heterozygote advantage and healthy aging in humans. BMC Genet. 2019;20(1):52. doi:10.1186/s12863-019-0758-4

34. Pincus MR, Abraham NZ Jr, Carty RP. 20 Clinical enzymology. In: Henrys Clinical Diagnosis and Management by Laboratory Methods E-Book. Saunders; 2011:273. ISBN-10:1437709745

35. Kumari S, Sharma N, Thakur S, Mondal PR, Saraswathy KN. Beneficial role of D allele in controlling ACE levels: a study among Brahmins of north India. J Genet. 2016;95(2):291295. doi:10.1007/s12041-016-0649-7

36. Paillard F, Chansel D, Brand E, et al. Genotype-phenotype relationships for the renin-angiotensin-aldosterone system in a normal population. Hypertension. 1999;34(3):423429. doi:10.1161/01.HYP.34.3.423

37. Williams AG, Rayson MP, Jubb M, World M, Woods D, Hayward M. The ACE gene and muscle performance. Nature. 2000;403(6770):614. doi:10.1038/35001141

38. Zhu X, Bouzekri N, Southam L, et al. Linkage and association analysis of angiotensin Iconverting enzyme (ACE)gene polymorphisms with ACE concentration and blood pressure. Am J Hum Genet. 2001;68(5):11391148. doi:10.1086/320104

39. Firouzabadi N, Shafiei M, Bahramali E, Ebrahimi SA, Bakhshandeh H, Tajik N. Association of angiotensin-converting enzyme (ACE) gene polymorphism with elevated serum ACE activity and major depression in an Iranian population. Psychiatry Res. 2012;200(23):336342. doi:10.1016/j.psychres.2012.05.002

40. Schler R, Osterhoff MA, Frahnow T, et al. High-saturated-fat diet increases circulating angiotensin-converting enzyme, which is enhanced by the rs4343 polymorphism defining persons at risk of nutrient-dependent increases of blood pressure. J Am Heart Assoc. 2017;6(1):e004465.

41. Mizuiri S, Hemmi H, Kumanomidou H, et al. Angiotensin-converting enzyme (ACE) I/D genotype and renal ACE gene expression. Kidney Int. 2001;60(3):11241130. doi:10.1046/j.1523-1755.2001.0600031124.x

42. Elshamaa MF, Sabry SM, Bazaraa HM, et al. Genetic polymorphism of ACE and the angiotensin II type1 receptor genes in children with chronic kidney disease. J Inflamm. 2011;8(1):20. doi:10.1186/1476-9255-8-20

The rest is here:
Haematological Indicators of Response to Erythropoietin Therapy in Chr | PGPM - Dove Medical Press

Posted in Gene Medicine | Comments Off on Haematological Indicators of Response to Erythropoietin Therapy in Chr | PGPM – Dove Medical Press

Challenges and Successes of Dealing with COVID-19 in India | RRTM – Dove Medical Press

Introduction

The World Health Organization (WHO) affirmed COVID-19 as a pandemic on 11 March 2020 but earlier to this the Chinese government confirmed the first outbreak of Coronavirus disease 2019 (COVID-19) in Wuhan on 31December 2019. The state-wise lockdown, which was imposed in India due to the second wave of the novel coronavirus pandemic, affected people belonging to every economic stratum. In India, till now (9 July 2021), there have been 30,752,950 confirmed cases of COVID-19 with 405,939 deaths reported to the WHO. COVID-19 cases are rapidly rising globally of which the first case was registered on 21February 2020 in Italy. Meanwhile in India, case numbers have risen, and community transmission was officially declared by government in October 2020. Life is deeply affected by COVID-19 even for the ones who are not infected as isolation, contact restrictions and economic shutdown have changed the social and economic scenario of India. Vast populations and crowded settlements have increased the number of cases in China, Europe, USA and India. Countries with dense populations and robust travel history will increase the problem of decision-making authorities if testing is limited or disproportionate. The WHO has made projections of 3.5 beds per 1000 population1 but many countries have only 1.3 beds per 1000 population in hospitals which is again the concern of government. As the pandemic is growing in stages, this review assesses the prospects these stages might have on the Indian population as it highlights some key challenges for treatment and research related to antiviral drugs.

Cases were initially spread by migrants, overseas visitors, and some others who were in contact with these infected persons, and to control this spread lockdowns were called by various countries including India. The situation seemed to be under control due to the lockdown, but due to a religious gathering in New Delhi, which led to the human-to-human transmission of COVID-19, a sudden horrific increase in COVID-19 cases occurred. Initially, most individuals who came into contact with such infected individuals were unaware of the effects of the virus in their bodies. To sustain the countrys economy, unlocks were called by the Indian Government in multiple phases, therefore, the persons who were unaware that they were carrying the virus spread it many more healthy persons. However, preventive measures including social distancing, quarantine and isolation techniques had been taken globally and have proven effective in the absence of drug treatments and other approaches. Adults (ages 50 and over), and people with comorbidities can have higher chances of becoming severely ill with COVID-19 and contribute to the largest portion of all deaths worldwide among infected cases.2,3

In India, the overall numbers dying constantly increased, amongst them a lot of the demise circumstances pointed to a particular age-group of aged folks.4 In India, among the total COVID-19 cases (30,752,950) and total deaths (405,939) till 9 July 2021, 90% were older than 40 years. Overall, people in the age group of 40 years and greater, have suffered the major impact of the current COVID-19 eruption and are more vulnerable.5,6 The massive loss of people in the workforce is likely to have devastating social and economic consequences.

The basic measures adopted worldwide include maintenance of hand hygiene, avoiding close contact, using face masks, disinfection and monitoring health.7 The ongoing COVID-19 pandemic has once again brought the benefits of appropriate hand hygiene (hand washing and use of alcohol-based hand-sanitizers) to the centre stage. Since hand washing is not a feasible and available option at all times, the use of alcohol-based hand-sanitizers (hand rubs) has been recommended by health organizations, when hands are not visibly soiled. These sanitizers act as a powerful, fast acting and effective solution with broad antimicrobial range.7 Hands act as a medium for exchange of microbes between the organism and its environment. The skin of the hands harbours a variety of organisms ranging from commensal to potential pathogens. Therefore, adequate hand hygiene can greatly reduce disease transmission. The most commonly used agents for hand disinfection are hand-sanitizers. There are two major types of preparations available: alcohol-based and alcohol-free. The alcohol-based ones, known as alcohol-based hand rubs (ABHRs), typically have ethyl alcohol (ethanol), isopropanol, or n-propanol at concentrations between 60 to 95% alcohol.8 The alcohol-free preparations usually contain quaternary ammonium compounds (benzalkonium chloride or benzethonium chloride). However, these have been found to be less effective and have a risk of contributing to antimicrobial resistance (AMR), hence are not recommended by CDC.

The CDC has recommended the use of ABHRs and hand washing to fight the COVID-19 pandemic. This is due to the structural characteristics of coronaviruses, which are enveloped viruses with lipid bilayer and are easily inactivated by alcohol. A combination of factors such as inappropriate formulations, excessive/repeated usage of hand sanitizers during this pandemic will have far reaching consequences. These may range from emergence of situation like alcohol tolerance and antimicrobial resistance (AMR), disturbance of normal microflora, and product toxicity. Similar to antibiotics, excessive or repetitive application of alcohol through hand-sanitizers has the potential to act as a selection pressure for the emergence of new microbial species tolerant to high alcohol concentrations.9

Taking note of the repetitive use of ABHRs, Professor Tim Stinear from the Peter Doherty Institute for Infection and Immunity remarked

Anywhere we repeat a procedure over and over again, whether its in a hospital or at home or anywhere else, youre giving bacteria an opportunity to adapt, because thats what they do, they mutate. The ones that survive the new environment better then go on to thrive.

He further added that the risk increases when appropriate guidelines are not followed.10

Eliminating the normal microflora of the skin by repeated use of hand-sanitizers may eventually deprive the skin of the protection offered by these commensals. Long term use of personal protective equipment along with frequent hand hygiene was responsible for high rate of skin damage in 97% of respondents while frequent hand hygiene was attributed with increased risk of hand skin damage.11

The world has joined hands with parallel efforts for the production of vaccines in opposition to COVID-19 pandemic.

A densely populated area like Ladakh has set an example for implementation in the Guidelines for hygiene and sanitation during the era of COVID-19 pandemic by setting up Foot-Operated Washing Station, implemented at the Indian Astronomical Observatory (IAO), Hanle. Having one of the worlds highest located sites for optical, infrared and gamma-ray telescopes operated by the Indian Institute of Astrophysics (IIA), Bengaluru, IAO12 has one in all the worlds highest set sites for optical, infrared and gamma-ray telescopes.

Antiviral nano-coating and new nano-based material for use in Personal Protective Equipment (PPE) was invited by The Department of Science and Technology (DST) using the Science and Engineering Research Board (SERB) portal, scale up for which could be done by partnering industry or start-up. India could be supported greatly by such nano-coatings technology to fight against COVID-19 pandemic. N-95 respirator, PPEs kits and triple-layer medical masks could be prepared from antiviral nano-coatings for safeguarding healthcare workers.13

Patients that showed flu-like symptoms was screened and detected for COVID-19 through indigenous company Mylab Discovery Solutions through the development of PCR-based molecular diagnostic kit.

TDB will try to boost the production process of kits so that present capacity could increase from 30,000 tests per day to one lakh tests per day. This automation by company could be achieved within the next few months. Considering the national emergency COVID-19 kit will be deployed by ICMR and CDSCO.14

As the demand increased, production of sanitizers have seen a boom amid coronavirus outbreak. Owing to which alcohol-based herbal sanitizer was developed by NBRI under Council of Scientific and Industrial Research (CSIR)-Aroma Mission as per the World Health Organisation (WHO) guidelines. Apart from having 60% of isopropyl alcohol for killing germs it has essential oil from Tulsi as natural antimicrobial agent. It is not only last for 25 minutes but also prevents skin from dehydrating. Herbal sanitizer has been found to be effective against the pathogen (Staphylococcus epidermidis).15

The Council of Scientific and Industrial Research (CSIR) is leaving no stone unturned in the battle against novel coronavirus. Repurposing of existing drugs is one of the strategies deployed by CSIR. The Council is implementing this strategy by evaluating an existing drug (Sepsivac, that available commercially) that is used for treating gram-negative sepsis patients. Both Gram-negative sepsis patients and critically ill COVID-19 patients, exhibit the altered immune response and a massive change in the cytokine profiles. Cytokines are produced in response to an infection and they are essential for host defence against pathogens. There are six types of cytokines, which belong to different families and the mixtures of cytokines, called cytokine profiles. One of the significant contributors to death by COVID-19, has shown the heightened immune response, called a cytokine storm. The immune system starts attacking both infected as well as uninfected cells and unable to discriminate between a friend and a foe, leading to tissue damage which resulting in sepsis. This drug (Sepsivac) modulates the immune system of the body and thereby inhibits the cytokine storm leading to reduced mortality and faster recovery.16

ICMR releases advisory for use of Cartridge-based Nucleic Acid Amplification Test (CBNAAT) using Cepheid Xpert Xpress SARS-CoV-2, effective from 19 April 2020.17

Indias first antibody-based testing kit was developed by NuLife Consultants and Distributors Pvt. Ltd, New Delhi which takes only fifteen minutes to yield accurate results. It is launched in two weeks and regular production has also started it was approved by the Indian Council of Medical Research (ICMR).18 The new finger prick kit will provide adequate access to cost-effective testing.

Home screening test kit for COVID-19 was launched by Bione with easy-to-use kit displays after approval from the requisite medical regulatory authorities.

In a get through development, the Company has devised the screening kit which can provide respite from the impending fear of the contagion. It will foster timely detection of the disease while acting as a preventive tool for others in proximity to the user, by isolating the carrier immediately. The kit is priced between `20003000 depending upon the global supply, to increase its affordability for the masses. Under normal circumstances, the ready-to-use kits can be received within 23 days of placing the order at their platform. To initiate an effective screening tool for mass screening, the organisation is also in talks to provide bulk orders for early detection.19

Against COVID-19 drugs and experimental molecule are being prepared. SARS-CoV-2 is a single stranded RNA enveloped virus. The angiotensin-converting enzyme 2 (ACE2) receptor of the host cell binds to the spike (S) protein of the viral structure. The host type 2 transmembrane serine protease, TMPRSS2 facilitates the S protein.20 Once the virus enters the host, it starts synthesizing RNA through its RNA dependent RNA polymerase enzyme, which is then translated to products. Structural proteins facilitate the assembly and release of viral particles.21,22

During viral life cycle, chemotherapy is available of various potential targets. There are many non-structural protein promising drug targets which resembles with other coronaviruses (SARS-CoV and MERS-CoV) such as 3-chymotrypsin like protease, papain like protease and RNA-dependent RNA polymerase. Various molecules and their targets are represented in Figure 1.

Figure 1 Mechanism of various drugs/molecules on COVID-19 disease.

Chloroquine and hydroxychloroquine used in prevention and treatment of malaria and chronic inflammatory diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA).23 CQ and HCQ are reliable anti-malarial drugs approved by FDA, which shows positive response against SARS-CoV-2 infections and hence used for the treatment of COVID-19 patients by clinicians.2426 It inhibits the entry of the virus by either altering the configuration of structure of cell receptors or by compete to bind with cellular receptors.27 The glycosylation of ACE-2 cellular receptors can amend by CQ/HCQ which is needed for entry of SARS-CoV-2. Apart from that CQ/HCQ can also prevent the attachment of SARS-CoV-2 to the host cells by decrease the synthesis of sialic acid.

The binding affinity of these drugs is better as compared to the S protein of SARS-CoV-2. Therefore it prevents attachment and entry of virus because of competitive binding of sialic acid and gangliosides present on surface pf target cell.28

In addition to the antiviral activity of CQ/HCQ, they have anti-inflammatory activity that may contribute to its efficacy in treating COVID-19 patients. Through the attenuation of cytokine production, these drugs also have immunomodulatory effects and inhibition of lysosomal and autophagy activity in host cells.24,29 In vitro activity of HCQ with lower EC50 for SARS-CoV-2 as compared to CQ after the growth of 24 hours (HCQ: EC50=6.14 M and CQ: EC50=23.90 M).30

A study from China reported which results in improved radiologic findings, enhanced viral clearance, and reduced disease progression by treating successfully with CQ on 100 COVID-19 cases.31 When treatment given to 6 patients, then it is observed that as compared to HCQ monotherapy (8/14, 57%) the combination of azithromycin with HCQ (6/6, 100%) results in numerically superior viral clearance.32

Other than these positive results, this study has many limitations like intolerance of medication, different viral loads between HQC combination and monotherapy and no safety outcomes are reported.

Another study of 30 patients in China shows there was no difference in virologic outcomes to HCQ plus standard of care (supportive care, interferon, and other antivirals). At 7th day virologic clearance was similar with clearance for the HCQ plus standard of care group and standard care group ie 86.7% vs 93.3% respectively, (P>.05).33 Currently, for COVID-19 treatment several RCTs of both CQ and HCQ examining their roles. To treat COVID 19 500 mg dose of CQ orally once or twice daily is advised.8,9

However, there is shortage of data regarding the optical dose to ensure efficiency of CQ For HCQ, daily dose of 400 mg taken orally is recommended.34

Both the agents are well tolerated by patients with SLE and malaria as demonstrated by their experiences and they can cause rare and serious adverse effect (>10%) such as hypoglycemia, neuropsychiatric effects, and retinopathy.

Lopinavir/ritonavir is FDA approved for treating HIV and it shows in vitro activity against coronavirus by inhibiting 3-chymotrypsin like protease.35 The therapy during early peak viral replication phase (initial 710 days) is important because delayed medication with lopinavir/ritonavir had no effective outcomes.36,37

Although many RCTs of lopinavir/ritonavir examine their role, limited role for lopinavir/ritonavir in COVID-19 treatment is suggested through current data.38

Recent RCT shows that approximately 50% of patients experienced an adverse effect under the lopinavir/ritonavir therapy and 14% of patients stop therapy due to adverse effects on gastrointestinal region. In several COVID-19 investigational trials, alanine transaminase elevations are exclusion criterion. Hepatotoxicity induced by lopinavir/ritonavir could limit patients ability to access these drugs.39

The activity of darunavir is demonstrated in vitro cell models against SARS-CoV-2. With these drugs there is no clinical data is available in COVID 19, but in China RCT of darunavir/cobicistat is going on.40,41 Ribavirin is a analogue to guanine which inhibits viral RNA-dependent RNA polymerase and used as best candidate for treatment of COVID 19.

However, it has limited in vitro activity against SARS-CoV and high doses is required to prevent viral replication (e.g., 1.2 g to 2.4 g orally every 8 hours) and combination therapy. For nCoV treatment no evidence exists for inhaled ribavirin..42 Generally ribavirin is used in combination with interferons in the treatment of MERS, no visible effect is shown on clinical outcomes. A lack of clinical data with ribavirin for treatment of COVID 19, means its therapeutic role must be extrapolated from other nCoV data.43,44 The high doses used during trials SARS resulted in hematologic toxicity and hemolytic anemia in more than 60% of patients. Similar safety concerns were seen in MERS trial, with 40% of patients taking ribavirin with interferon requiring blood transfusions. 75% of patients experienced transaminase elevations while taking ribavirin for SARS. Ribavirin is a teratogen and prescribed as not to be used pregnancy.45,46

It is a nucleoside reverse - transcriptase inhibitor that is worthy in clinical trial against COVID-19. It acts as an inhibitor of RNA-dependent RNA polymerase (RdRp)47 and in SARS-CoV and MERS-CoV infections its pharmacokinetics and characteristics have been studied.48 It inhibits the viral genomic replication and production by disturbed reading due to alteration in the function of viral exonuclease.49

Therefore it can suggested for COVID 19 patients to prevent severity of disease progression such patients are taken to phase 3 trials to check the therapeutic efficiency of remdesivir.50

Favipiravir (T705) is considered as RdRp inhibitor as it is an analog to guanine nucleotide (a derivative of pyrazine carboxamide).51 Initially it was used against influenza but because of its large spectrum antiviral properties, it attracted more attention for treatment of COVID 19.52

An in silico study showed that as compared to lopinavir, atazanavir bound more strongly to the active site of SARS-CoV-2 MPro and an in vitro study found that replication of SARS-CoV-2 inhibited by atazanavir.53

Oseltamivir is used for treatment of influenza because it acts as a neuraminidase inhibitor. It has no data against SARS-CoV-2. Initially in China during the COVID-19 outbreak until the discovery of SARS-CoV-2 as the cause of COVID-19 a large proportion of patients were treated with oseltamivir therapy because outbreak occurred in influenza season.

Once influenza has been excluded this agent has no role in the management of COVID-19.54 Umifenovir has a unique mechanism of action targeting the S protein interaction and inhibiting membrane fusion of the viral envelope. This agent is approved for treatment of influenza in Russia and China and treatment of COVID 19 patients started on the basis of in vitro data which shows its activity against SARS.

A study shows that 67 patients treated with Umifenovir for 9 days had a lower mortality rate and higher discharge rate compared with the patients who were not treated with this medication. This data cannot proof the efficiency of umifenovir, but for evaluating this agent further RCTs are going on in China.55.

For SARS-CoV-2 interferon- and - have been studied, due to their demonstrating activity against MERS by interferon-. Some interferons are listed as an alternative for combination therapy by Chinese guidelines. Traditionally other agents are used to demonstrate in vitro activity to inhibit SARS-CoV-2, but not limited to baricitinib, dasatinib, and cyclosporine. However it should be seen whether it provide protection for COVID 19 patients or not.56

Nitazoxanide has in vitro antiviral activity against MERS and SARS-CoV-2. It is used traditionally as an antihelminthic agent. More studies are required to check the antiviral activity and immunomodulatory effects of this agent. For treatment option for SARS-CoV-2 nitazoxanide is recommended.57 In Japan camostat mesylate is used for treatment of pancreatitis, it prevents cell entry through the host serine protease, TMPRSS2. For future research this mechanism provides an additional drug target.58

The ACE2 receptor is used by SARS-CoV-2 for entry into the host cell. This discovery has increased questions about whether ACE inhibitors and/or angiotensin receptor blockers may efficiently treat COVID-19 or either worsen disease. There are some conflicts if these provide protective effect to COVID-19 patients. Further research is pending for recommending therapy for patients already taking one of these agents.59,60

One of the main challenges in this pandemic is to develop multiple technology platforms for evaluation of agents/molecules against SARS-CoV-2 as this virus shows similarity with various other (Figure 1) corona viruses and shares similar binding receptors (ACE2) in humans (host).61 SARS-CoV-2 has ss-RNA genome of approximately 30 Kbp size and exhibits approximately 89% nucleotide similarly to SARS-CoV found in Chinese bats.20

For SARS-CoV 2 various technologies are being developed such as nucleic acid, replicating viral vector and non-replicating viral vector. New methods based on nucleic acid can facilitate rapid production because they do not need to be fermented. Experiments are conducted to ensure vaccination of larger population without any reduction in efficacy but also with improved immune response along with low dosages.62,63

As of January 2021, more than 200 vaccine candidates for COVID-19 are being tested. Among these almost 52 vaccines are approved for human trials and many other vaccines are in phases I/II and will soon enter phase III trials. Certain national regulatory authorities have nine authorized COVID-19 vaccines.

It represents a classic strategy for viral vaccinations. Finally, a codon deoptimization technology to attenuate the viruses is employed by Codagenix64 and is testing to develop vaccine against SARS-CoV-2, CodaVax-COVID. The inherent immunogenicity and ability to stimulate toll-like receptors (TLRs) is a major advantage of whole virus vaccines. This is especially an issue for coronavirus vaccines, given the findings of increased infectivity following immunization with live or killed whole virus SARS coronavirus vaccines.65

Subunit vaccines depend on producing immune response against S protein to inhibit its binding with host ACE2 receptor.65 Immunogenic virus-like nanoparticles produced by Novavax are based on recombinant expression of the S-protein66 while subunit vaccine consisted of a trimerized SARS-CoV-2 S-protein is developed by Clover Biopharmaceuticals by using their patented Trimer-Tag technology.67

For development of COVID-19 vaccines several major biotech industries have advanced nucleic acid vaccine platforms. Some modifications and formulation have improved nucleic acid performance in humans. This approach may lead to the first licensed nucleic acid based vaccine for humans.

Developing vaccine against the SARS-CoV-2 can cause distinct challenges. Various proteins of SARS-CoV-2 are used for developing proteins like S protein, N protein, M protein is the initial challenge. Developing a vaccine is a long process, starting from product development to the completion of phase III and clinical trials before marketing which takes several years.

Vaccine against COVID-19, known as CoroFlu is under process and its development and testing is done by Bharat Biotech in collaboration with international virologists and vaccine makers. One-drop COVID-19 nasal vaccine named CoroFlu, it is well tolerated in human trials during phase I and phase II. On the backbone of FluGens flu vaccine, CoroFlu has built a candidate known as M2SR. M2SR induces an immune response against the flu; it is a self-limiting version of the influenza virus. To induce immunity against the coronavirus in new virus, Kawaokas lab is trying to insert the gene sequences from SARS-CoV-2 into M2SR.68

To develop a vaccine for SARS-CoV-2, Zydus Cadila, an innovation-driven global pharmaceutical company, initiated a research program along with multiple teams. By reverse genetics the recombinant measles virus (rMV) is produced. It would express codon optimised proteins of the SARS-CoV-2 and provide long-term neutralising antibodies for protection from infection. The plasmid DNA vaccine, also has wide ranging capabilities in developing and manufacturing different vaccines for unmet needs. This is under supervision of the groups Vaccine Technology Centre in India.69

To develop a lead vaccine candidate for SARS-CoV-2 the Vaccine manufacturer Indian Immunologicals Ltd (IIL) has a research collaboration agreement with Australias Griffith University. As part of the cross-continental collaboration, using the latest codon de-optimisation technology Live Attenuated SARS-CoV-2 vaccine could be developed by scientists from IIL and the Griffith University. with a single dose administration this vaccine is expected to provide long protection with an anticipated safety profile for active immunization.70

Now the SII (Serum Institute of india) is preparing its mass production against the coronavirus, mixing out doses of the Covishield candidate vaccine which is being developed by the University of Oxford and the international biopharma company AstraZeneca. In India stage III clinical trials of Covishield are continuing. In the US, Brazil and South Africa the candidate vaccine is also being tested in various stages. Two million doses of the vaccine candidate has already produced over for use in testing by the SII. Recently SII announced a deal with Codagenix, US-based Biotech Company to help develop a vaccine candidate and it is expected that its trials starts by the end of 2020. Nasal COVID-19 vaccine candidate developed by Codagenix Inc. Dubbed the DX-005, manufacturing by SII has started.

After completing preclinical animal studies the coronavirus vaccine entered phase I clinical trials in the United Kingdom by the end of 2020. Bharat Biotech, a private firm collaborated with Indian Council of Medical Research (ICMR) is developing Covaxin. Covaxin has shown good efficacy is said by task force scientist Dr. Rajni Kant ICMR-COVID-19. Bharat Biotech is approved by The Drugs Controller General of India (DCGI) to perform Phase III clinical trials of Covaxin with certain conditions.

Russias president Vladimir Putin endorsed approval of SPUTNIK V (COVID-19 vaccine) that has not passed rigorous medical tests and could have numerous consequences. The effectiveness of the vaccine in response to providing active acquired immunity against COVID-19 and its possible adverse effects remain unknown. Therefore, the fear of vaccination in this particular case may be justified. However, endorsement of a potentially harmful vaccine will inevitably fuel public fears of other existing and future, properly developed, controlled and safe vaccines. Current level of public acceptability of immunization is already worrying, putting at serious risk the effectiveness of any future anti-SARS-CoV-2 vaccination programs, as it has been pointed out by Cornwall 2 and the French COCONEL Group 3. Independently from each other these groups provide evidence that it is a transatlantic phenomenon. Regardless of the suggested correlations between vaccination hesitancy and specific socioeconomic factors, it is clear that anti-vaccination movements are increasingly influential.71 Moreover, the problem is internationally valid, and the rise in the number of adults openly hesitant about routine childhood vaccination in many Western countries justifies the concern about public participation once the COVID-19 vaccine is available.72

In terms of collective immunity, vaccination effectiveness is based on its mass implementation; this may seriously undermine the efforts to protect societies against COVID-19 in the near future. High levels of COVID-19 vaccine hesitancy are reported even from countries severely affected by the pandemic. Only 49% of American respondents plan to vaccinate when the vaccine becomes available.73

Polish research confirms the strong COVID-19 vaccination hesitancy and its international character which is not directly related to the level of confidence in vaccination safety in general. Results of this Polish study show that 28% of adults would not vaccinate against SARS-CoV-2 if the vaccine became available. Alarmingly, a majority (51%) of the reluctant respondents indicated that their minds would not be changed if given information regarding vaccine safety or efficacy, or if threatened with heavy fines. Significantly fewer respondents (37%) supported COVID-19 vaccinations specifically than supported childhood vaccinations in Poland in general (78% in 2018).74 The vaccine hesitancy for the anticipated COVID-19 vaccine varied from very low (26% China) to very high (43%, Czechia, and 44%, Turkey). Surprisingly, the level of unwillingness to vaccinate against COVID-19 is in most countries much higher than regular vaccination reluctance, which varies between 3% (Egypt) and 55% (Russia). Such high levels of vaccination hesitancy may be detrimental to public health. According to current estimates, the benefits of herd immunity are achievable if 67% of the population is vaccinated.75,76

The most effective vaccination programs in the past effectively eradicated certain deadly diseases, such as smallpox which was achieved by combining the mandatory preventive vaccination programs with coordinated education efforts.77 Coronaviruses mortality rate is the highest among elders and people with comorbidities or conditions that affect their immune system. Some occupations have been identified as being the riskiest in terms of contracting COVID-19 such as health-care workers (dental hygienists, family practitioners, and nurses), transportation personnel (flying attendants, and school bus drivers), kindergarten, school teachers, fire fighters and restaurant personnel.78 Highest risk of death and highest risk of contraction should constitute the main criteria for mandatory vaccination. Mandatory vaccination will definitely trigger massive opposition especially bearing in mind the massive protests against social distancing measures and face masks. Focusing at the beginning only on some groups with transparent justification may help weaken the opposition to it.79

The high share of the population unwilling to vaccinate along with the number of people who are unable to receive the COVID-19 vaccine due to certain medical reasons suggests herd immunity may be out of reach. Information about the high death tolls and hospital overflows from the COVID-19 pandemic has recently flooded onto online media, but has apparently not convinced much of the worlds population to plan to be vaccinated. If the disturbing images being streamed live on social media cannot convince a fair share of the population to protect themselves from lethal risk, then educational or social campaigns may be limited in their effect. Educational efforts would be further undermined by the lack of trust in public authority figures, which fuels conspiracy theories and validates medical fake news. In this focused review we have discussed the challenges and opportunities faced during the management of COVID-19 in India.

Health-care systems across developed and developing nations are under tremendous pressure. The majority of this responsibility is being shouldered by frontline health-care workers to limit the spread of the novel coronavirus. They put their lives on the line in order to do so. Here we highlight some challenges faced by frontline HCW and propose certain recommendations to reduce the burden.

The exposure to the virus causes severe illness and mortality to a significant extent and also leads to physical and psychological exhaustion. This pandemic leads to health departments calling retired and experienced medical staff and clinical scientist back to work. Deficient supplies of personal protective equipment (PPEs) and other vital necessities is reported in various news channels all over the world. Majorly WHCs are affected and they are working in the emergency, they need PPEs and other vital necessities most.

In this pandemic, battling endless hours, staff shortages and deficient supplies, most are isolated from their families, affecting them physically, mentally, and emotionally, which will increase the morbidity and ill health.80 These mental health problems will not only affect decision making ability, judgement and attention of HCWs, but also affect the understanding the disease and have a long-lasting impact on their overall well-being.80

A few recommendations are proposed which are listed from all the information received around this issue.

Health-care staff/HCWs are also the most important resource as hospitals, equipments and PPEs in this pandemic situation. Post Traumatic Stress Disorder is reported in many health-care workers who have no time to protect themselves as well as their families. If any staff gets infected then they should be quarantined themselves, which leads to a shortage of staff and then healthy workers are stretched further for endless duties with lack of sleep and anxiety. For frontline health workers testing kits must be prioritized, as well as for weak communities (senior citizens) more susceptible to the virus and those who have many pre-existing diseases.81,82

Health-care workers face a high risk of getting infected as they take care of patients who are already infected. Protective clothing, sufficient hand sanitizers, washing paraphernalia and head covers are essential commodities which have to be provided to them in sufficient amount. Along with providing PPEs in adequate amount, its disposal methodology is also an important step across all the clinical areas since it can be one of the reasons of spreading infection.31

These are key phrases which provide the adequate time for the systems to gather resources and capacity to help in breaking the chain of transmission. The virus infects exponentially which is very clear and many will contract it very soon. State should provide premises to serve as isolation ward and quarantine spaces. All hospitals should use their full area to create control committees to monitor activities to ensure protocols are implemented for effective control. The loop has to be complete, involving community systems, governments and primary health-care workers are key, since not everyone will report to hospitals, if community transmission will be rampant.

The comfort and willingness in working for a health system which has an effective plan, magnifies many times in a pandemic. Protocols in local languages for better understanding and awareness material based on science research have been useful. Offering free transport service between work and home, childcare support and meal vouchers can reduce domestic stress and allow single-minded effort towards the health service.83

Apart from the various negative effect imposed by the pandemic, positive vibes of it cannot be neglected. The pandemic situation significantly improves air quality in different cities across the country, reduces GHGs emission, lessens water pollution and noise, and reduces the pressure on the tourist destinations, which may assist with the restoration of the ecological systems.84 These changes may be short term but are important for maintenance of environmental balance. Apart from this, various successful models like that of Dharavi and Kerala model were implemented which restricted the cases to a minimum through observing the spread in the localities, studying the prototype of spread, and strict use of methods to control the disease in Kerala. Dharavi restricted the coronavirus cases with a strategy of attack not defence and elucidated triumphant results in 2 months.85

There are more than 56 COVID-19 candidate vaccines in clinical evaluation of which 13 are in phase III trials and another 166 candidate vaccines are in preclinical evaluation (Table 1). All top candidate vaccines will be delivered through intra-muscular injection and are designed for a two-dose schedule.86 More recently our group has suggested the combinatorial use of childhood vaccines (BCG, MMR and OPV) along with the COVID-19 dedicated vaccines could be a potential strategy to control the COVID-19 pandemic worldwide.87

Table 1 Prospective Therapeutic Representative Against COVID-19 Disease

Strain B.1.1.7 was first detected in the United States in December 2020 followed by B.1.351, in South Africa P.1, in Brazil and Japan, B.1.427 and B.1.429. These two variants were first identified in California in February 2021. COVID-19 variant from India is B.1.617; one of the lineages is B.1.617.2, which has been detected most frequently in the US and the U.K.88 Recently the black fungus is now maiming COVID-19 patients in India. Mucormycosis is an invasive infection caused by a class of molds called mucormycetes. It has an overall mortality rate of 50%, and may be being triggered by the use of unhygienic oxygen cylinders and steroids, a life-saving treatment for severe and critically ill COVID-19 patients.89

In this review, we have been discussed the stories related to prevention strategies, chemotherapeutics and vaccines strategies to manage COVID-19. Apart from that we have discussed the challenges faced by HCWs and their prevention. Combating COVID-19 is still a challenge also due to the poorly-based counsel for using an experimental amalgamation of antimalarials and antimicrobials as treatment; the use of steroids; and antihypertensive drugs during the course of the disease. Interruption of the transmission of SARS-CoV-2 through engineered vaccines is top in the priority followed by the intense research to find out the potential treatment to control this viral infection.

All authors contributed to data analysis, drafting or revising the article, have agreed on the journal to which the article will be submitted, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

There is no funding to report.

Divakar Sharma and Dileep Tiwari were associated with Hericure Healthcare Pvt Ltd. Currently, Divakar Sharma is working in Maulana Azad Medical College at the time of this review. The authors reported no other potential conflicts of interest for this work.

1. Hoffmann M, Kleine-Weber H, Krger N, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271280. doi:10.1016/j.cell.2020.02.052

2. Fischer F, Raiber L, Boscher C, et al. COVID-19 and the elderly: who cares? Front Public Health. 2020;8:151. doi:10.3389/fpubh.2020.00151

3. Vahia IV, Blazer DG, Smith GS, et al. COVID-19, mental health and aging: a need for new knowledge to bridge science and service. Am J Geriatr Psychiatry. 2020;28(7):695. doi:10.1016/j.jagp.2020.03.007

4. COVID-19. Tracker India; 2020. Available from: https://www.COVID19india.org/. Accessed April 15, 2020.

5. Census-India. 2011. Available from: https://censusindia.gov.in/2011-Common/CensusData2011.html. Accessed April 15, 2020.

6. Mishra VK. Indias projected aged population (65?), projected life expectancy at birth and insecurities faced by aged population. Ageing International. 2020;45:7284.

7. De Witt Huberts J, Greenland K, Schmidt W-P, et al. Exploring the potential of antimicrobial hand hygiene products in reducing the infectious burden in low-income countries: an integrative review. Am J Infect Control. 2016;44(7):764771. doi:10.1016/j.ajic.2016.01.045

8. U.S. Food and Drug Administration. Temporary policy for preparation of certain alcoholbased hand sanitizer products during the public health emergency (COVID-19). Guidance for Industry; March, 2020. Available from: https://www.fda.gov/media/136289/download. Accessed July 21, 2021.

9. Edwards J, Patel G, Wareham DW. Low concentrations of commercial alcohol hand rubs facilitate growth of and secretion of extracellular proteins by multidrug-resistant strains of Acinetobacter baumannii. J Med Microbiol. 2007;56(12):15951599. doi:10.1099/jmm.0.47442-0

10. healthcare-in-europe.com [Internet]. Will resistant bacteria be the end of alcohol hand sanitizers? 2018. Available from: https://healthcare-in-europe.com/en/news/will-resistant-bacteria-be-the-end-of-alcohol-hand-sanitizers.html#. Accessed July 21, 2021.

11. Lan J, Song Z, Miao X, et al. Skin damage among health care workers managing coronavirus disease-2019. J Am Acad Dermatol. 2020;82(5):12151216. doi:10.1016/j.jaad.2020.03.014

12. The Government of India issues simple guidelines, for controlling spread of COVID-19 in densely populated areas. Available from: https://pib.gov.in/PressReleseDetailm.aspx?PRID=1614064. Accessed July 21, 2021.

13. TIFAC explores best methods to revive Indian economy post COVID-19.Available from: https://dst.gov.in/tifac-explores-best-methods-revive-indian-economy-post-COVID-19. Accessed July 21, 2021.

14. TDB approves support for indigenous company for ramping up production of COVID-19 diagnostic kits.Available from: https://dst.gov.in/tdb-approves-support-indigenous-company-ramping-production-COVID-19-diagnostic-kits. Accessed July 21, 2021.

15. NBRI scientists develop herbal hand-sanitiser.Available from: https://vigyanprasar.gov.in/isw/NBRI-scientists-develop-herbal-hand-sanitiser.html. Accessed July 21, 2021.

16. Indian researchers to go for clinical trial of sepsis drug against novel coronavirus.Available from: https://vigyanprasar.gov.in/wp-content/uploads/Indian-researchers-to-go-for-clinical-trial-of-sepsis-drug-against-novel-coronavirus-21apr20.pdf. Accessed July 21, 2021.

17. Advisory_on_Cepheid_Xpert_Xpress_SARS_CoV2_testing.Available from: https://icmr.nic.in/sites/default/files/upload_documents/Advisory_on_Cepheid_Xpert_Xpress_SARS_CoV2_testing.pdf. Accessed July 21, 2021.

18. AMU alumnus develops COVID-19 testing kit, approved by ICMR. Available from: https://www.amu.ac.in/about3.jsp?did=2495. Accessed July 21, 2021.

19. Bione launches rapid COVID-19 at-home screening test kit after ICMR approval.Available from: https://zeenews.india.com/india/bione-launches-rapid-COVID-19-at-home-screening-test-kit-after-icmr-approval-2273752.html. Accessed July 21, 2021.

20. Wu F, Zhao S, Yu B, et al. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. bioRxiv. 2020;2020:919183. doi:10.1101/2020.01.24.919183

Excerpt from:
Challenges and Successes of Dealing with COVID-19 in India | RRTM - Dove Medical Press

Posted in Nano Medicine | Comments Off on Challenges and Successes of Dealing with COVID-19 in India | RRTM – Dove Medical Press