Search Immortality Topics:

Page 38«..1020..37383940..5060..»


Category Archives: Quantum Computing

U.S. DoE sends another $ 73 million into the future of Quantum – Illinoisnewstoday.com

The US Department of Energy (DoE), the most influential body in the way the largest supercomputers are designed and built, has been looking beyond CMOS long before the introduction of exascale systems.

Agencies have made multiple bets that quantum computing will play an important role in the future of large-scale scientific computing, whether as an accelerator of some sort or as a more general-purpose system of the future. There is. With so many projects scattered around, its difficult to maintain current totals, but at current rates, DoE will invest well over $ 1 billion in future quantum technology by the end of 2022. Its possible, and its not unreasonable to think that this doesnt include millions of dollars. Reserved to build the quantum internet.

That gambling dollar figure continues to grow with an additional $ 73 million added today.

DoE has been strong in funding quantum computing for the past few years. Over the course of five years, it has pushed $ 115 million into this area from comprehensive programs like Q-Next, splitting its funding into the quantum application and domain areas (widely referred to by DoE as Quantum Information Science or QIS). increase). The system, even if the realization of that funding could be 10 years (or more) ahead and still might not replace traditional supercomputers.

In 2019, DoE awarded more than $ 60 million for quantum computing in communications, and in January 2020 announced $ 625 million for the new quantum computing center. $ 30 million for QIS in key application areas in March of this year. It will be added to the $ 115 million Q-Next program at Argonne National Laboratory. All of this does not include DoE funding that works with NSF and other institutions and programs, in addition to the $ 73 million announced today. So perhaps its already over a billion.

This week, DoE funds new thinking and experimental and theoretical efforts to promote understanding of the quantum phenomena of systems that can be used in Quantum Information Science (QIS) and the use of quantum computing in chemistry and materials science research. Announced $ 73 million to offer .. This influx of investment 29 projects Above all, more than 3 years to new materials, cryogenic systems and algorithms.

Very few winners have focused on the application, and the majority of the funding seems to support the quantum hardware effort. This includes projects focused on creating qubits (materials, enhanced stability, all-new qubit types), fault tolerance, and error correction. Some efforts focus on quantum simulation in traditional systems.

The award spans various universities and national laboratories. The Berkeley National Lab has two awards, one group focusing on the superconducting structure of scalable quantum systems, and the other team developing f-element qubits with controllable coherence and entanglement. I am. Argonne National Laboratory also has two groups, one focusing on entanglement issues and the other focusing on quantum spin coherence of photosynthetic proteins.

Other notable programs funded include work on applications such as quantum chemistry (Emory University) and molecular dynamics / materials science (University of Southern California). There are also some award-winning teams that focus on specific programming-related challenges.

The project was selected based on a peer review under the DOE Funding Opportunity Announcement Materials and Chemical Science Research for Quantum Information Science by the Department of Basic Energy Sciences (BES) of DOE. NS DOE Science Bureaus efforts in QIS It is notified by community input and applications focused on target missions such as quantum computing, quantum simulation, quantum communication, and quantum sensing. DOEs Science Department supports 5 National QIS Research Center A diverse portfolio of research projects, including recent awards for promoting QIS in areas related to nuclear physics and fusion energy science.

Quantum science represents the next technological revolution and frontier in the information age, and the United States is at the forefront, said Energy Secretary Jennifer M. Granholm. National Labs will strengthen resilience in the face of increasing cyber threats and climate disasters, paving the way for a cleaner and safer future.

Well feature this weeks highlights, analytics, and stories directly from us in your inbox, with nothing in between.Subscribe now

U.S. DoE sends another $ 73 million into the future of Quantum

Here is the original post:
U.S. DoE sends another $ 73 million into the future of Quantum - Illinoisnewstoday.com

Posted in Quantum Computing | Comments Off on U.S. DoE sends another $ 73 million into the future of Quantum – Illinoisnewstoday.com

PsiQuantum: $450 Million In Funding And $3.15 Billion Valuation – Pulse 2.0

PsiQuantum recently announced it raised $450 million in Series D funding at a $3.15 billion valuation. The funding was raised to build the worlds first commercially viable quantum computer.

The funding round was led by funds and accounts managed by BlackRock along with participation from insiders including Baillie Gifford and M12 (Microsofts venture fund) and new investors including Blackbird Ventures and Temasek. PsiQuantum has raised a total of $665 million in funding to date.

Founded in 2016, PsiQuantumw was created by some of the worlds foremost quantum computing experts who understood that a useful quantum computer required fault-tolerance and error correction, and therefore at least 1 million physical qubits.

PsiQuantum includes a growing team of world-class engineers and scientists who are working on the entire quantum computing stack from the photonic and electronic chips, through packaging and control electronics, cryogenic systems, quantum architecture, and fault tolerance, to quantum applications. In May 2020, the company had started manufacturing the silicon photonic and electronic chips that form the foundation of the Q1 system, a significant system milestone in PsiQuantums roadmap to deliver a fault-tolerant quantum computer.

Unlike other quantum computing efforts, PsiQuantum is focused on building a fault-tolerant quantumcomputer supported by a scalable and proven manufacturing process. And the company has developed a unique technology in which single photons (particles of light) are manipulated using photonic circuits which are patterned onto a silicon chip using standard semiconductor manufacturing processes.

PsiQuantum is building quantum photonic chips as well as the cryogenic electronic chips to control the qubits, using the advanced semiconductor tools in the production line of PsiQuantums manufacturing partnerGlobalFoundries.

When fault-tolerant quantum computers become available, humankind can use them to solve otherwise impossible problems. And PsiQuantum is currently working with global leaders in the healthcare, materials, electronics, financial, security, transportation, and energy sectors to identify and optimize algorithms and applications to support business readiness for the broad adoption of quantum computing.

KEY QUOTES:

Quantum computing is the most profoundly world-changing technology uncovered to date. It is my conviction that the way to bring this technology into reality is by using photonics. Our company was founded on the understanding that leveraging semiconductor manufacturing is the only way to deliver the million qubits that are known to be required for error correction, a prerequisite for commercially valuable quantum computing applications. This funding round is a major vote of confidence for that approach.

Jeremy OBrien, CEO and co-founder of PsiQuantum

A commercially viable, general-purpose quantum computer has the potential to create entirely new industries ready to address some the most urgent challenges we face, especially in climate, healthcare, and energy. To see this promising technology deployed within a reasonable time frame requires it to be built using a scalable manufacturing process. Silicon photonics combined with an advanced quantum architecture is the most promising approach weve seen to date.

Tony Kim, managing director at BlackRock

Investing is about backing companies with the potential to deliver transformational growth. With its uniquely scalable approach, PsiQuantum is on track to deliver the worlds first useful quantum computer and unlock a powerful new era of innovation in the process. Whether its developing better battery materials, improving carbon capture techniques, or designing life-saving drugs in a fraction of the time, quantum computing is key to solving many of the worlds most demanding challenges.

Luke Ward, investment manager at Baillie Gifford

We invested in PsiQuantum based on the strength of the companys bold vision matched by a robust, disciplined, stepwise engineering plan to achieve that goal. We are impressed by the technical progress we have seen in hardware development along with refinement of a novel quantum architecture ideally suited for photonics. PsiQuantum and Microsoft have a shared perspective on the need for a good number of logical qubits enabled by fault tolerance and error correction on 1 million-plus physical qubits when it comes to building a truly useful quantum computer.

Samir Kumar, managing director at Microsofts venture fund M12

Link:
PsiQuantum: $450 Million In Funding And $3.15 Billion Valuation - Pulse 2.0

Posted in Quantum Computing | Comments Off on PsiQuantum: $450 Million In Funding And $3.15 Billion Valuation – Pulse 2.0

Supercomputers are becoming another cloud service. Here’s what it means – ZDNet

These days supercomputers aren't necessarily esoteric, specialised hardware; they're made up of high-end servers that are densely interconnected and managed by software that deploys high performance computing (HPC) workloads across that hardware. Those servers can be in a data centre but they could also be in the cloud as well.

When it comes to large simulations like the computational fluid dynamics to simulate a wind tunnel processing the millions of data points needs the power of a distributed system and the software that schedules these workloads is designed for HPC systems. If you want to simulate 500 million data points and you want to do that 7,000 or 8,000 times to look at a variety of different conditions, that's going to generate about half a petabyte of data; even if a cloud virtual machine (VM) could cope with that amount of data, the compute time would take millions of hours so you need to distribute it and the tools to do that efficiently need something that looks like a supercomputer, even if it lives in a cloud data centre.

The best cloud storage services

Free and cheap personal and small business cloud storage services are everywhere. But, which one is best for you? Let's look at the top cloud storage options.

Read More

When the latest Top 500 list came out this summer, Azure had four supercomputers in the top 30; for comparison, AWS had one entry on the list, in 41st place.

SEE: Nextcloud Hub: User tips (free PDF) (TechRepublic)

HPC users on Azure run computational fluid dynamics, weather forecasting, geoscience simulation, machine learning, financial risk analysis, modelling for silicon chip design (a popular enough workload that Azure has FX-series VMs with an architecture specifically for electronic design automation), medical research, genomics, biomedical simulations and physics simulations, as well as workloads like rendering.

They do some of that on traditional HPC hardware; Azure offers Cray XC and CS supercomputers and the UK's Met Office is getting four Cray EX systems on Azure for its new weather-forecasting supercomputer. But you can also put together a supercomputer from H and N-Series VMs (using hardware like NVidia A100 Tensor Core GPUs and Xilinx FPGAs as well as the latest Epyc 7300 CPUs) with HPC images.

One reason the Met Office picked a cloud supercomputer was the flexibility to choose whatever the best solution is in 2027. As Richard Lawrence, the Met Office IT Fellow for supercomputing.put it at the recent HPC Forum, they wanted "to spend less time buying supercomputers and more time utilizing them".

But how does Microsoft build Azure to support HPC well when the requirements can be somewhat different? "There are things that cloud generically needs that HPC doesn't, and vice versa," Andrew Jones from Microsoft's HPC team told us.

Everyone needs fast networks, everybody needs fast storage, fast processors and more memory bandwidth, but the focus on how all that is integrated together is clearly different, he says.

HPC applications need to perform at scale, which cloud is ideal for, but they need to be deployed differently in cloud infrastructure from typical cloud applications.

SEE: Google's new cloud computing tool helps you pick the greenest data centers

If you're deploying a whole series of independent VMs it makes sense to spread them out across the datacenter so that they are relatively independent and resilient from each other, whereas in the HPC world you want to pack all your VMs as closest together as possible, so they have the tightest possible network connections between each other to get the best performance he explains.

Some HPC infrastructure proves very useful elsewhere. "The idea of high-performance interconnects that really drive scalable application performance and latency is a supercomputing and HPC thing," Jones notes. "It turns out it also works really well for other things like AI and some aspects of gaming and things like that."

Although high speed interconnects are enabling disaggregation in the hyperscale data centre, where you can split the memory and compute into different hardware and allocate as much as you need of each, that may not be useful for HPC even though more flexibility in allocating memory would be helpful, because it's expensive and not all the memory you allocate to a cluster will be used for every job.

"In the HPC world we are desperately trying to drag every bit of performance out of the interconnect we can and distributing stuff all over the data centre is probably not the right path to take for performance reasons. In HPC, we're normally stringing together large numbers of things that we mostly want to be as identical as possible to each other, in which case you don't get those benefits of disaggregation," he says.

What will cloud HPC look like in the future?

"HPC is a big enough player that we can influence the overall hardware architectures, so we can make sure that there are things like high memory bandwidth considerations, things like considerations for higher power processes and, therefore, cooling constraints and so on are built into those architectures," he points out.

The HPC world has tended to be fairly conservative, but that might be changing, Jones notes, which is good timing for cloud. "HPC has been relatively static in technology terms over the last however many years; all this diversity and processor choice has really only been common in the last couple of years," he says. GPUs have taken a decade to become common in HPC.

SEE: What is quantum computing? Everything you need to know about the strange world of quantum computers

The people involved in HPC have often been in the field for a while. But new people are coming into HPC who have different backgrounds; they're not all from the traditional scientific computing background.

"I think that diversity of perspectives and viewpoints coming into both the user side, and the design side will change some of the assumptions we'd always made about what was a reasonable amount of effort to focus on to get performance out of something or the willingness to try new technologies or the risk reward payoff for trying new technologies," Jone predicts.

So just as HPC means some changes for cloud infrastructure, cloud may mean big changes for HPC.

Here is the original post:
Supercomputers are becoming another cloud service. Here's what it means - ZDNet

Posted in Quantum Computing | Comments Off on Supercomputers are becoming another cloud service. Here’s what it means – ZDNet

How researchers are mapping the future of quantum computing, using the tech of today – GeekWire

Pacific Northwest National Laboratory computer scientist Sriram Krishnamoorthy. (PNNL Photo)

Imagine a future where new therapeutic drugs are designed far faster and at a fraction of the cost they are today, enabled by the rapidly developing field of quantum computing.

The transformation on healthcare and personalized medicine would be tremendous, yet these are hardly the only fields this novel form of computing could revolutionize. From cryptography to supply-chain optimization to advances in solid-state physics, the coming era of quantum computers could bring about enormous changes, assuming its potential can be fully realized.

Yet many hurdles still need to be overcome before all of this can happen. This one of the reasons the Pacific Northwest National Laboratory and Microsoft have teamed up to advance this nascent field.

The developer of the Q# programming language, Microsoft Quantum recently announced the creation of an intermediate bridge that will allow Q# and other languages to be used to send instructions to different quantum hardware platforms. This includes the simulations being performed on PNNLs own powerful supercomputers, which are used to test the quantum algorithms that could one day run on those platforms. While scalable quantum computing is still years away, these simulations make it possible to design and test many of the approaches that will eventually be used.

We have extensive experience in terms of parallel programming for supercomputers, said PNNL computer scientist Sriram Krishnamoorthy. The question was, how do you use these classical supercomputers to understand how a quantum algorithm and quantum architectures would behave while we build these systems?

Thats an important question given that classical and quantum computing are so extremely different from each other. Quantum computing isnt Classical Computing 2.0. A quantum computer is no more an improved version of a classical computer than a lightbulb is a better version of a candle. While you might use one to simulate the other, that simulation will never be perfect because theyre such fundamentally different technologies.

Classical computing is based on bits, pieces of information that are either off or on to represent a zero or one. But a quantum bit, or qubit, can represent a zero or a one or any proportion of those two values at the same time. This makes it possible to perform computations in a very different way.

However, a qubit can only do this so long as it remains in a special state known as superposition. This, along with other features of quantum behavior such as entanglement, could potentially allow quantum computing to answer all kinds of complex problems, many of which are exponential in nature. These are exactly the kind of problems that classical computers cant readily solve if they can solve them at all.

For instance, much of the worlds electronic privacy is based on encryption methods that rely on prime numbers. While its easy to multiply two prime numbers, its extremely difficult to reverse the process by factoring the product of two primes. In some cases, a classical computer could run for 10,000 years and still not find the solution. A quantum computer, on the other hand, might be capable of performing the work in seconds.

That doesnt mean quantum computing will replace all tasks performed by classical computers. This includes programming the quantum computers themselves, which the very nature of quantum behaviors can make highly challenging. For instance, just the act of observing a qubit can make it decohere, causing it to lose its superposition and entangled states.

Such challenges drive some of the work being done by Microsoft Azures Quantum group. Expecting that both classical and quantum computing resources will be needed for large-scale quantum applications, Microsoft Quantum has developed a bridge they call QIR, which stands for quantum intermediate representation. The motivation behind QIR is to create a common interface at a point in the programming stack that avoids interfering with the qubits. Doing this makes the interface both language- and platform-agnostic, which allows different software and hardware to be used together.

To advance the field of quantum computing, we need to think beyond just how to build a particular end-to-end system, said Bettina Heim, senior software engineering manager with Microsoft Quantum, during a recent presentation. We need to think about how to grow a global ecosystem that facilitates developing and experimenting with different approaches.

Because these are still very early days think of where classical computing was 75 years ago many fundamental components still need to be developed and refined in this ecosystem, including quantum gates, algorithms and error correction. This is where PNNLs quantum simulator, DM-SIM comes in. By designing and testing different approaches and configurations of these elements, they can discover better ways of achieving their goals.

As Krishnamoorthy explains: What we currently lack and what we are trying to build with this simulation infrastructure is a turnkey solution that could allow, say a compiler writer or a noise model developer or a systems architect, to try different approaches in putting qubits together and ask the question: If they do this, what happens?

Of course, there will be many challenges and disappointments along the way, such as an upcoming retraction of a 2018 paper in the journal, Nature. The original study, partly funded by Microsoft, declared evidence of a theoretical particle called a Majorana fermion, which could have been a major quantum breakthrough. However, errors since found in the data contradict that claim.

But progress continues, and once reasonably robust and scalable quantum computers are available, all kinds of potential uses could become possible. Supply chain and logistics optimization might be ideal applications, generating new levels of efficiency and energy savings for business. Since quantum computing should also be able to perform very fast searches on unsorted data, applications that focus on financial data, climate data analysis and genomics are likely uses, as well.

Thats only the beginning. Quantum computers could be used to accurately simulate physical processes from chemistry and solid-state physics, ushering in a new era for these fields. Advances in material science could become possible because well be better able to simulate and identify molecular properties much faster and more accurately than we ever could before. Simulating proteins using quantum computers could lead to new knowledge about biology that would revolutionize healthcare.

In the future, quantum cryptography may also become common, due to its potential for truly secure encrypted storage and communications. Thats because its impossible to precisely copy quantum data without violating the laws of physics. Such encryption will be even more important once quantum computers are commonplace because their unique capabilities will also allow them to swiftly crack traditional methods of encryption as mentioned earlier, rendering many currently robust methods insecure and obsolete.

As with many new technologies, it can be challenging to envisage all of the potential uses and problems quantum computing might bring about, which is one reason why business and industry need to become involved in its development early on. Adopting an interdisciplinary approach could yield all kinds of new ideas and applications and hopefully help to build what is ultimately a trusted and ethical technology.

How do you all work together to make it happen? asks Krishnamoorthy. I think for at least the next couple of decades, for chemistry problems, for nuclear theory, etc., well need this hypothetical machine that everyone designs and programs for at the same time, and simulations are going to be crucial to that.

The future of quantum computing will bring enormous changes and challenges to our world. From how we secure our most critical data to unlocking the secrets of our genetic code, its technology that holds the keys to applications, fields and industries weve yet to even imagine.

Here is the original post:
How researchers are mapping the future of quantum computing, using the tech of today - GeekWire

Posted in Quantum Computing | Comments Off on How researchers are mapping the future of quantum computing, using the tech of today – GeekWire

The Worldwide Quantum Computing Industry is Expected to Reach $1.7 Billion by 2026 – PRNewswire

DUBLIN, Feb. 16, 2021 /PRNewswire/ -- The "Global Quantum Computing Market with COVID-19 Impact Analysis by Offering (Systems, Services), Deployment (On Premises, Cloud-based), Application, Technology, End-use Industry and Region - Forecast to 2026" report has been added to ResearchAndMarkets.com's offering.

The Global Quantum Computing Market is expected to grow from USD 472 million in 2021 to USD 1,765 million by 2026, at a CAGR of 30.2%.

The early adoption of quantum computing in the banking and finance sector is expected to fuel the growth of the market globally. Other key factors contributing to the growth of the quantum computing market include rising investments by governments of different countries to carry out research and development activities related to quantum computing technology.

Several companies are focusing on the adoption of QCaaS post-COVID-19. This, in turn, is expected to contribute to the growth of the quantum computing market. However, stability and error correction issues is expected to restrain the growth of the market.

Services segment is attributed to hold the largest share of the Quantum Computing market

The growth of services segment can be attributed to the increasing number of startups across the world that are investing in research and development activities related to quantum computing technology. This technology is used in optimization, simulation, and machine learning applications, thereby leading to optimum utilization costs and highly efficient operations in various end-use industries.

Cloud-based deployment to witness the highest growth in Quantum Computing market in coming years

With the development of highly powerful systems, the demand for cloud-based deployment of quantum computing systems and services is expected to increase. This, in turn, is expected to result in a significant revenue source for service providers, with users paying for access to noisy intermediate-scale quantum (NISQ) systems that can solve real-world problems. The limited lifespan of rapidly advancing quantum computing systems also favors cloud service providers. The flexibility of access offered to users is another factor fueling the adoption of cloud-based deployment of quantum computing systems and services. For the foreseeable future, quantum computers are expected not to be portable. Cloud can provide users with access to different devices and simulators from their laptops.

Optimization accounted for a major share of the overall Quantum Computing market

Optimization is the largest application for quantum computing and accounted for a major share of the overall Quantum Computing market. Companies such as D-Wave Systems, Cambridge Quantum Computing, QC Ware, and 1QB Information Technologies are developing quantum computing systems for optimization applications. Networked Quantum Information Technologies Hub (NQIT) is expanding to incorporate optimization solutions for resolving problems faced by the practical applications of quantum computing technology.

Trapped ions segment to witness highest CAGR of Quantum Computing market during the forecast period

The trapped ions segment of the market is projected to grow at the highest CAGR during the forecast period as quantum computing systems based on trapped ions offer more stability and better connectivity than quantum computing systems based on other technologies. IonQ, Alpine Quantum Technologies, and Honeywell are a few companies that use trapped ions technology in their quantum computing systems.

Banking and finance is attributed to hold major share of Quantum Computing market during the forecast period

In the banking and finance end-use industry, quantum computing is used for risk modeling and trading applications. It is also used to detect the market instabilities by identifying stock market risks and optimize the trading trajectories, portfolios, and asset pricing and hedging. As the financial sector is difficult to understand; the quantum computing approach is expected to help users understand the complexities of the banking and finance end-use industry. Moreover, it can help traders by suggesting them solutions to overcome financial challenges.

APAC to witness highest growth of Quantum Computing market during the forecast period

APAC region is a leading hub for several industries, including healthcare and pharmaceuticals, banking and finance, and chemicals. Countries such as China, Japan, and South Korea are the leading manufacturers of consumer electronics, including smartphones, laptops, and gaming consoles, in APAC. There is a requirement to resolve complications in optimization, simulation, and machine learning applications across these industries. The large-scale development witnessed by emerging economies of APAC and the increased use of advanced technologies in the manufacturing sector are contributing to the development of large and medium enterprises in the region. This, in turn, is fueling the demand for quantum computing services and systems in APAC.

Key Topics Covered:

1 Introduction

2 Research Methodology

3 Executive Summary

4 Premium Insights4.1 Attractive Opportunities in Quantum Computing Market4.2 Market, by Offering4.3 Market, by Deployment4.4 Market in APAC, by Application and Country4.5 Market, by Technology4.6 Quantum Computing Market, by End-use Industry4.7 Market, by Region

5 Market Overview5.1 Introduction5.2 Market Dynamics5.2.1 Drivers5.2.1.1 Early Adoption of Quantum Computing in Banking and Finance Industry5.2.1.2 Rise in Investments in Quantum Computing Technology5.2.1.3 Surge in Number of Strategic Partnerships and Collaborations to Carry Out Advancements in Quantum Computing Technology5.2.2 Restraints5.2.2.1 Stability and Error Correction Issues5.2.3 Opportunities5.2.3.1 Technological Advancements in Quantum Computing5.2.3.2 Surge in Adoption of Quantum Computing Technology for Drug Discovery5.2.4 Challenges5.2.4.1 Dearth of Highly Skilled Professionals5.2.4.2 Physical Challenges Related to Use of Quantum Computers5.3 Value Chain Analysis5.4 Ecosystem5.5 Porter's Five Forces Analysis5.6 Pricing Analysis5.7 Impact of COVID-19 on Quantum Computing Market5.7.1 Pre-COVID-195.7.2 Post-COVID-195.8 Trade Analysis5.9 Tariff and Regulatory Standards5.9.1 Regulatory Standards5.9.1.1 P1913 - Software-Defined Quantum Communication5.9.1.2 P7130 - Standard for Quantum Technologies Definitions5.9.1.3 P7131 - Standard for Quantum Computing Performance Metrics and Benchmarking5.10 Technology Analysis5.11 Patent Analysis5.12 Case Studies

6 Quantum Computing Market, by Offering6.1 Introduction6.2 Systems6.2.1 Deployment of on Premises Quantum Computers at Sites of Clients6.3 Services6.3.1 Quantum Computing as a Service (QCaaS)6.3.1.1 Risen Number of Companies Offering QCaaS Owing to Increasing Demand for Cloud-Based Systems and Services6.3.2 Consulting Services6.3.2.1 Consulting Services Provide Customized Roadmaps to Clients to Help Them in Adoption of Quantum Computing Technology

7 Quantum Computing Market, by Deployment7.1 Introduction7.2 on Premises7.2.1 Deployment of on Premises Quantum Computers by Organizations to Ensure Data Security7.3 Cloud-based7.3.1 High Costs and Deep Complexity of Quantum Computing Systems and Services Drive Enterprises Toward Cloud Deployments

8 Quantum Computing Market, by Application8.1 Introduction8.2 Optimization8.2.1 Optimization Using Quantum Computing Technology Resolves Problems in Real-World Settings8.3 Machine Learning8.3.1 Risen Use of Machine Learning in Various End-use Industries8.4 Simulation8.4.1 Simulation Helps Scientists Gain Improved Understanding of Molecule and Sub-Molecule Level Interactions8.5 Others

9 Quantum Computing Market, by Technology9.1 Introduction9.2 Superconducting Qubits9.2.1 Existence of Superconducting Qubits in Series of Quantized Energy States9.3 Trapped Ions9.3.1 Surged Use of Trapped Ions Technology in Quantum Computers9.4 Quantum Annealing9.4.1 Risen Use of Quantum Annealing Technology for Solving Optimization Problems in Enterprises9.5 Others (Topological and Photonic)

10 Quantum Computing Market, by End-use Industry10.1 Introduction10.2 Space and Defense10.2.1 Risen Use of Quantum Computing in Space and Defense Industry to Perform Multiple Operations Simultaneously10.3 Banking and Finance10.3.1 Simulation Offers Assistance for Investment Risk Analysis and Decision-Making Process in Banking and Finance Industry10.4 Healthcare and Pharmaceuticals10.4.1 Surged Demand for Robust and Agile Computing Technology for Drug Simulation in Efficient and Timely Manner10.5 Energy and Power10.5.1 Increased Requirement to Develop New Energy Sources and Optimize Energy Delivery Process10.6 Chemicals10.6.1 Establishment of North America and Europe as Lucrative Markets for Chemicals10.7 Transportation and Logistics10.7.1 Surged Use of Quantum-Inspired Approaches to Optimize Traffic Flow10.8 Government10.8.1 Increased Number of Opportunities to Use Quantum Computing to Solve Practical Problems of Climate Change, Traffic Management, Etc.10.9 Academia10.9.1 Risen Number of Integrated Fundamental Quantum Information Science Research Activities to Fuel Market Growth

11 Geographic Analysis11.1 Introduction11.2 North America11.3 Europe11.4 APAC11.5 RoW

12 Competitive Landscape12.1 Introduction12.2 Revenue Analysis of Top Players12.3 Market Share Analysis, 201912.4 Ranking Analysis of Key Players in Market12.5 Company Evaluation Quadrant12.5.1 Quantum Computing Market12.5.1.1 Star12.5.1.2 Emerging Leader12.5.1.3 Pervasive12.5.1.4 Participant12.5.2 Startup/SME Evaluation Matrix12.5.2.1 Progressive Company12.5.2.2 Responsive Company12.5.2.3 Dynamic Company12.5.2.4 Starting Block12.6 Competitive Scenario12.7 Competitive Situations and Trends12.7.1 Other Strategies

13 Company Profiles13.1 Key Players13.1.1 International Business Machines (IBM)13.1.2 D-Wave Systems13.1.3 Microsoft13.1.4 Amazon13.1.5 Rigetti Computing13.1.6 Google13.1.7 Intel13.1.8 Toshiba13.1.9 Honeywell International13.1.10 QC Ware13.1.11 1QB Information Technologies13.1.12 Cambridge Quantum Computing13.20 Other Companies13.2.1 Huawei Technologies13.2.2 Bosch13.2.3 NEC13.2.4 Hewlett Packard Enterprise (HP)13.2.5 Nippon Telegraph and Telephone Corporation (NTT)13.2.6 Hitachi13.2.7 Northrop Grumman13.2.8 Accenture13.2.9 Fujitsu13.2.10 Quantica Computacao13.2.11 Zapata Computing13.2.12 Xanadu13.2.13 IonQ13.2.14 Riverlane13.2.15 Quantum Circuits13.2.16 EvolutionQ13.2.17 ABDProf13.2.18 Anyon Systems

14 Appendix14.1 Discussion Guide14.2 Knowledge Store: The Subscription Portal14.3 Available Customizations

For more information about this report visit https://www.researchandmarkets.com/r/8pglda

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1904 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Follow this link:
The Worldwide Quantum Computing Industry is Expected to Reach $1.7 Billion by 2026 - PRNewswire

Posted in Quantum Computing | Comments Off on The Worldwide Quantum Computing Industry is Expected to Reach $1.7 Billion by 2026 – PRNewswire

Colorado makes a bid for quantum computing hardware plant that would bring more than 700 jobs – The Denver Post

The Colorado Economic Development Commission normally doesnt throw its weight behind unproven startups, but it did so on Thursday, approving $2.9 million in state job growth incentive tax credits to try and land a manufacturing plant that will produce hardware for quantum computers.

Given the broad applications and catalytic benefits that this companys technology could bring, retaining this company would help position Colorado as an industry leader in next-generation and quantum computing, Michelle Hadwiger, the deputy director of the Colorado Office of Economic Development & International Trade, told commissioners.

Project Quantum, the codename for the Denver-based startup, is looking to create up to 726 new full-time jobs in the state. Most of the positions would staff a new facility making components for quantum computers, an emerging technology expected to increase computing power and speed exponentially and transform the global economy as well as society as a whole.

The jobs would carry an average annual wage of $103,329, below the wages other technology employers seeking incentives from the state have provided, but above the average annual wage of any Colorado county. Hadwiger said the company is also considering Illinois, Ohio and New York for the new plant and headquarters.

Quantum computing is going to be as important to the next 30 years of technology as the internet was to the past 30 years, said the companys CEO, who only provided his first name Corban.

He added that he loves Colorado and doesnt want to see it surpassed by states like Washington, New York and Illinois in the transformative field.

If we are smart about it, and that means doing something above and beyond, we can win this race. It will require careful coordination at the state and local levels. We need to do something more and different, he said.

The EDC also approved $2.55 million in job growth incentive tax credits and $295,000 in Location Neutral Employment Incentives for Nextworld, a growing cloud-based enterprise software company based in Greenwood Village. The funds are linked to the creation of 306 additional jobs, including 59 located in more remote parts of the state.

But in a rare case of dissent, Nextworlds CEO Kylee McVaney asked the commission to go against staff recommendations and provide a larger incentive package.

McVaney, daughter of legendary Denver tech entrepreneur Ed McVaney, said the companys lease is about to expire in Greenwood Village and most employees would prefer to continue working remotely. The company could save substantial money by not renewing its lease and relocating its headquarters to Florida, which doesnt have an income tax.

We could go sign a seven-year lease and stay in Colorado or we can try this new grand experiment and save $11 million, she said.

Hadwiger insisted that the award, which averages out to $9,500 per job created, was in line with the amount offered to other technology firms since the Colorado legislature tightened the amount the office could provide companies.

But McVaney said the historical average award per employee was closer to $18,000 and the median is $16,000 and that Colorado was not competitive with Florida given that states more favorable tax structure.

Visit link:
Colorado makes a bid for quantum computing hardware plant that would bring more than 700 jobs - The Denver Post

Posted in Quantum Computing | Comments Off on Colorado makes a bid for quantum computing hardware plant that would bring more than 700 jobs – The Denver Post