Search Immortality Topics:

Page 39«..1020..38394041..5060..»


Category Archives: Quantum Computing

bp Joins the IBM Quantum Network to Advance Use of Quantum Computing in Energy – HPCwire

LONDON,Feb. 15, 2021 IBM today announcedbp has joined the IBM Quantum Network to advance the use of quantum computing in the energy industry.

By joining the IBM Quantum Network as an Industry Partner, bp will have access to IBMs quantum expertise and software and cloud-based access to the most advanced quantum computers available via the cloud. This includes access to a premium 65-qubit quantum computer, the largest universal quantum system available to industry today, and an important milestone on the IBM Quantum roadmapto a 1,000-plus qubit system, targeted for the end of 2023.

bp will work with IBMto explore using quantum computing to solve business and engineering challenges and explore the potential applications for driving efficiencies and reducing carbon emissions.

bps ambition is to become a net zero company by 2050 or sooner and help the world get to net zero. Next-generation computing capabilities such as quantum computing will assist in solving the science and engineering challenges we will face, enabling us to reimagine energy and design new lower carbon products, saidMorag Watson, senior vice president, digital science and engineering for bp.

Quantum computing has the potential to be applied in areas such as: modelling the chemistry and build-up of various types of clay in hydrocarbon wells a crucial factor in efficient hydrocarbon production; analyzing and managing the fluid dynamics of wind farms; optimizing autonomous robotic facility inspection; and helping create opportunities not yet imagined to deliver the clean energy the world wants and needs.

In 2020, bp announced its net zero ambition and its new strategy.By the end of this decade, it aims to have developed around 50 gigawatts of net renewable-generating capacity(a 20-fold increase), increased annual low carbon investment 10-fold to around$5 billionand cut its oil and gas production by 40%.

Joining the IBM Quantum Network will enhance bps ability to leverage quantum advances and applications as they emerge and then influence on how those breakthroughs can be applied to its industry and the energy transition.

bp joins a rapidly growing number of clients working with IBM to explore quantum computing to help accelerate the discovery of solutions to some of todays biggest challenges, addedDario Gil, Senior Vice President and Director of IBM Research. The energy industry is ripe with opportunities to see value from the use of quantum computing through the discovery of new materials designed to improve the generation, transfer, and storage of energy.

bp joins more than 130 members of the IBM Quantum Network, a global community of Fortune 500 companies, start-ups, academic institutions and research labs working to advance quantum computing and explore practical applications. Together, members of the Network and IBM Quantum teams are researching and exploring how quantum computing will help a variety of industries and disciplines, including finance, energy, chemistry, materials science, optimization and machine learning, among many others.

For more information about the IBM Quantum Network, as well as a full list of all partners, members, and hubs, visithttps://www.research.ibm.com/ibm-q/network/.

IBM Quantum Network is a trademark of International Business Machines Corporation.

About bp

bps purpose is to reimagine energy for people and our planet. It has set out an ambition to be a net zero company by 2050, or sooner, and help the world get to net zero, and recently announced its strategy for delivering on that ambition.For more information visitbp.com.

About IBM Quantum

IBM Quantum is an industry-first initiative to build universal quantum systems for business and science applications. For more information about IBMs quantum computing efforts, please visitwww.ibm.com/ibmq.

Source: IBM

Read more here:
bp Joins the IBM Quantum Network to Advance Use of Quantum Computing in Energy - HPCwire

Posted in Quantum Computing | Comments Off on bp Joins the IBM Quantum Network to Advance Use of Quantum Computing in Energy – HPCwire

The Fourth Industrial Revolution AI, Quantum, and IoT Impacts on Cybersecurity – Security Boulevard

Technology changes at a breakneck pace, and to be of any use, the security we rely on to protect that technology must change alongside it.

Cybersecurity solutions, in particular, must keep up with the evolving needs of hybrid enterprise networks that connect an ever-expanding mesh of cloud devices, on-prem legacy hardware and everything in between.

The next cybersecurity challenge lies with the advances in quantum computing that are set to revolutionize tech while simultaneously equipping threat actors with a new arsenal of cyberweapons.

The fourth industrial revolution is upon us. Its a bold claim are we really about to usher in an era as potentially impactful as the steam engine, the age of science and mass production and the initial rise of digital technology?

Well, yes. According to several high-profile industry experts who spoke at the Consumer Electronics Show (CES) 2021, advances in artificial intelligence (AI) and quantum computing are set to fundamentally change the way the world engages with technology.

As an emerging concept, the high-level technology industry has yet to arrive at a fully-consistent definition, but widespread consensus points to a focus on several key elements. The fourth industrial revolution will be marked by fundamental advances and interconnectivity between fields like:

Tying them all together is quantum computing, which we can define aswell, its not particularly simple to explain quantum computing for most of us. Even MIT, while trying to explain it like were five years old, refers to quantum computing as technology that harnesses some of the almost-mystical phenomena of quantum mechanics.

Still, its good to develop a high-level understanding so that we can view the impact on cybersecurity within a more informed context. The MIT explainer referenced above offers a relatively-accessible introduction, as does this Microsoft Azure guide. Without diving deep into a course on qubits, superposition and entanglement, however, we can also gain insight by considering how enterprises are already using quantum computing.

Volkswagen and Daimler, for example, are using quantum supercomputers to improve electric vehicle batteries based on chemical simulations. Simulating, at a molecular level, the behavior of matter is one way we will fundamentally change our approach to problem-solving in the age of quantum computing.

Quantum computing is based on technology weve yet to fully harness. However, the same constant remains true when it comes to bad actors: whatever the good guys understand about quantum computing, the bad guys do, too.

Unfortunately, there will always be an army of cyber criminals standing by, ready to apply their knowledge and talents to nefarious activity. Its safe to say that vulnerabilities will plague quantum systems just as theyve plagued every other next generation system.

In order for cybersecurity solutions to adequately guard quantum networks, they will need to address several key factors:

While each of these issues will require specific high-level and granular solutions, networks equipped with true self-learning AI capabilities will fare better when monitoring network activity, even as it occurs at whirlwind, quantum speeds.

MixModes predictive, proactive, efficient AI gives organizations a fighting chance at combating modern actors. Rules-based approaches are doomed to fail against cyberthreats in the quantum space.

On one level, its a simple matter of speed. The systems of tomorrow (and many of the systems of today) will move too quickly for modern SOCs to keep their security platforms up-to-date. Context-aware AI must live within enterprise systems in order to detect anomalies as they occur in such rapidly changing environments.

MixMode is ready to face quantum threats by thriving within quantum networks. MixMode is data- and feed-agnostic it can operate effectively and independently regardless of data format and type.

As systems rapidly expand and scale to allow for the increased data inputs organizations will need to monitor. For example, we can expect an influx of 5G-enabled IoT sensors and increased remote connections among a workforce forever changed by the 2020 pandemic.

Because MixModes third-wave, self-supervised AI doesnt need constant babysitting or continual rules-tweaking, the platform will protect quantum systems with an approach proven to identify threats and anomalies in network traffic, log systems, API, time-series, cloud data, and beyond.

Learn more about MixMode and set up a demo today.

How a Government Entity Switched to MixMode and Decreased Data Storage Costs by 50%

The SOC Reckoning

2021: The Year SOCs Embrace Cybersecurity Convergence

Why Responding to a Cyber Attack with a Traditional SIEM Leaves You Vulnerable

Misconceptions of the SOAR Playbook

Building a Better SOC Based on What We Learned in 2020

Excerpt from:
The Fourth Industrial Revolution AI, Quantum, and IoT Impacts on Cybersecurity - Security Boulevard

Posted in Quantum Computing | Comments Off on The Fourth Industrial Revolution AI, Quantum, and IoT Impacts on Cybersecurity – Security Boulevard

Experience: With a PhD, the plan is to expand human knowledge – The Guardian

When Zak Romaszko finished his physics degree at the University of Liverpool, a PhD in computing was his obvious next step. I have always been fascinated with computers, says the 27-year-old. I broke my dads PC when I was younger and he was away in the forces, so I had to fix it myself. His interest grew from there, but Romaszkos choice of focus for his research isnt just any type of computing but the cutting-edge quantum variety.

Thought by many to be the next step in the field, and key to solving complex problems in a manageable amount of time, quantum computers use quantum bits rather than the regular bits used by standard computers.

It will be able to solve problems that might take computers millions and billions of years in timescales that are more realistic to humans, says Romaszko. It seemed to be that this would be the way forward in how big calculations would be done in the future.

He found an opportunity to undertake a PhD at the University of Sussex with Prof Winfried Hensinger a subject expert linked to making an ion trap quantum computer, the next step in the computers of the future. Romaszko, who is from Barnoldswick in Lancashire, spent four years on the project as part of the universitys Ion Quantum Technology group, graduating in June 2020. He has now joined a spin-off company founded by Hensinger called Universal Quantum, which is looking to commercialise the technology to make a large-scale quantum computer.

My PhD focused on how we would scale this technology from the level we are at now and get to the point where we need to be to make a truly useful quantum computer, he says.

It sounds like science fiction but Romaszko explains that quantum computers could hold the key to solving some major issues in our world today. People are looking into things like simulation of chemicals and materials and understanding how medicines interact within the body and AI applications, he says.

While it may be difficult to grasp the scale of the computing power at work in the quantum, Romaszko is thrilled to be pushing the boundaries. With a PhD youre basically learning about a field and a very narrow area of science that you just plan to push out a little bit further and expand human knowledge. Its really exciting.

Link:
Experience: With a PhD, the plan is to expand human knowledge - The Guardian

Posted in Quantum Computing | Comments Off on Experience: With a PhD, the plan is to expand human knowledge – The Guardian

New EU Consortium shaping the future of Quantum Computing USA – PRNewswire

Europe has always been excellent in academic research, but over the past few decades commercializing research projects has been slow compared to international competition. This is starting to change with quantum technologies. As one of the largest efforts in Europe and worldwide, Germany announced 2 Billion funding into quantum programs in June 2020, from which 120 Million are invested in this current round of research grants.

Today, IQM announced a Quantum project consortium that includes Europe's leading startups (ParityQC, IQM), industry leaders (Infineon Technologies), research centers (Forschungszentrum Jlich),supercomputing centers (Leibniz Supercomputing Centre), and academia (Freie Universitt Berlin) has been awarded 12.4 Million from the German Ministry of Education and Research (BMBF) (Announcement in German).

The scope of the project is to accelerate commercialization through an innovative co-design concept. This project focuses on application-specific quantum processors, which have the potential to create a fastlane to quantum advantage. The digital-analog concept used to operate the processors will further lay the foundation for commercially viable quantum computers. This project will run for four years and aims to develop a 54-qubit quantum processor.

The project is intended to support the European FET Flagship project EU OpenSuperQ, announced in 2018 which is aimed at designing, building, and operating a quantum information processing system of up to 100 qubits. Deploying digital-analog quantum computing, this consortium adds a new angle to the OpenSuperQ project and widens its scope. With efforts from Munich, Berlin and Jlich, as well as Parity QC from Austria, the project builds bridges and seamlessly integrates into the European quantum landscape.

"The grant from the Federal Ministry of Education and Research of Germanyis a huge recognition of our unique co-design approach for quantum computers. Last year when we established our office in Munich, this was one of our key objectives. The concept allows us to become a system integrator for full-stack quantum computers by bringing together all the relevant players. As Europe's leading startup in quantum technologies, this gives us confidence to further invest in Germany and other European countries" said Dr. Jan Goetz, CEO of IQM Quantum Computers.

As European technology leader, Germany is taking several steps to lead the quantum technology race. An important role of such leadership is to bring together the European startups, industry, research and academic partners. This project will give the quantum landscape in Germany an accelerated push and will create a vibrant quantum ecosystem in the region for the future.

Additional Quotes:

"DAQC is an important project for Germany and Europe. It enables us to take a leading role in the area of quantum technologies. It also allows us to bring quantum computing into one of the prime academic supercomputing centres to more effectively work on the important integration of high-performance computing and quantum computing. We are looking forward to a successful collaboration," said Prof. DrMartinSchulz, Member of the Board of Directors, Leibniz Supercomputing Centre (LRZ).

"The path towards scalable and fully programmable quantum computing will be the parallelizability of gates and building with reduced complexity in order to ensure manageable qubit control. Our ParityQC architecture is the blueprint for a fully parallelizable quantum computer, which comes with the associated ParityOS operating system. With the team of extraordinary members of the DAQC consortium this will allow us to tackle the most pressing and complex industry-relevant optimization problems." saidMagdalena Hauser & Wolfgang Lechner, CEOs & Co-founder ParityQC

"We are looking forward to exploring and realizing a tight connection between hardware and applications, and having DAQC quantum computers as a compatible alternative within the OpenSuperQ laboratory. Collaborations like this across different states, and including both public and private partners, have the right momentum to move quantum computing in Germany forward." saidProf. Frank Wilhelm-Mauch, Director, Institute for Quantum Computing Analytics, Forschungszentrum Jlich

"At Infineon, we are looking forward to collaborating with top-class scientists and leading start-ups in the field of quantum computing in Europe. We must act now if we in Germany and Europe do not want to become solely dependent on American or Asian know-how in this future technology area. We are very glad to be part of this highly innovative project and happy to contribute with our expertise in scaling and manufacturing processes." saidDr.Sebastian Luber, Senior Director Technology & Innovation, Infineon Technologies AG

"This is a hugely exciting project. It is a chance of Europe and Germany to catch up in the development of superconducting quantum computers. I am looking forward to adventures on understanding how such machines can be certified in their precise functioning." said Prof.Jens Eisert, Professor of Quantum Physics, Freie Universitt Berlin

About IQM Quantum Computers:

IQM is the European leader in superconducting quantum computers, headquartered in Espoo, Finland. Since its inception in 2018, IQM has grown to 80+ employees and has also established a subsidiary in Munich, Germany, to lead the co-design approach. IQM delivers on-premises quantum computers for research laboratories and supercomputing centers and provides complete access to its hardware. For industrial customers, IQM delivers quantum advantage through a unique application-specific co-design approach. IQM has raised 71 Million from VCs firms and also public grants and is also building Finland's first quantum computer.

For more information, visit http://www.meetiqm.com.

Registered offices:

IQM Finland OyKeilaranta 1902150 EspooFINLANDwww.meetiqm.com

IQM GERMANY GmbHNymphenburgerstr. 8680636 MnchenGermany

IQM: Facts and Figures

Founders:

Media Contact: Raghunath Koduvayur, Head of Marketing and Communications, [emailprotected], +358504876509

Photo - https://mma.prnewswire.com/media/1437806/IQM_Quantum_Computers_Founders.jpg Photo - https://mma.prnewswire.com/media/1437807/IQM_Quantum_computer_design.jpg Logo - https://mma.prnewswire.com/media/1121497/IQM_Logo.jpg

SOURCE IQM Finland Oy

http://meetiqm.com/contact/

See the rest here:
New EU Consortium shaping the future of Quantum Computing USA - PRNewswire

Posted in Quantum Computing | Comments Off on New EU Consortium shaping the future of Quantum Computing USA – PRNewswire

Microsofts Big Win in Quantum Computing Was an Error After All – WIRED

Whatever happened, the Majorana drama is a setback for Microsofts ambitions to compete in quantum computing. Leading computing companies say the technology will define the future by enabling new breakthroughs in science and engineering.

Quantum computers are built from devices called qubits that encode 1s and 0s of data but can also use a quantum state called a superposition to perform math tricks not possible for the bits in a conventional computer. The main challenge to commercializing that idea is that quantum states are delicate and easily quashed by thermal or electromagnetic noise, making qubits error-prone.

Google, IBM, and Intel have all shown off prototype quantum processors with around 50 qubits, and companies including Goldman Sachs and Merck are testing the technology. But thousands or millions of qubits are likely required for useful work. Much of a quantum computers power would probably have to be dedicated to correcting its own glitches.

Microsoft has taken a different approach, claiming qubits based on Majorana particles will be more scalable, allowing it to leap ahead. But after more than a decade of work, it does not have a single qubit.

From the fuller data, theres no doubt that theres no Majorana.

Sergey Frolov, University of Pittsburgh

Majorana fermions are named after Italian physicist Ettore Majorana, who hypothesized in 1937 that particles should exist with the odd property of being their own antiparticles. Not long after, he boarded a ship and was never seen again. Physicists wouldnt report a good glimpse of one of his eponymous particles until the next millennium, in Kouwenhovens lab.

Microsoft got interested in Majoranas after company researchers in 2004 approached tech strategy chief Craig Mundie and said they had a way to solve one problem holding back quantum computersqubits flakiness.

The researchers seized on theoretical physics papers suggesting a way to build qubits that would make them more dependable. These so-called topological qubits would be built around unusual particles, of which Majorana particles are one example, that can pop into existence in clumps of electrons inside certain materials at very low temperatures.

Microsoft created a new team of physicists and mathematicians to flesh out the theory and practice of topological quantum computing, centered on an outpost in Santa Barbara, California, christened Station Q. They collaborated with and funded leading experimental physicists hunting for the particles needed to build this new form of qubit.

Kouwenhoven, in Delft, was one of the physicists who got Microsofts backing. His 2012 paper reporting signatures of Majorana particles inside nanowires started chatter about a future Nobel prize for proving the elusive particles existence. In 2016, Microsoft stepped up its investmentand the hype.

Everything you ever wanted to know about qubits, superpositioning, and spooky action at a distance.

Kouwenhoven and another leading physicist, Charles Marcus, at the University of Copenhagen were hired as corporate Majorana hunters. The plan was to first detect the particles and then invent more complex devices that could control them and function as qubits. Todd Holmdahl, who previously led hardware for Microsofts lucrative Xbox games console, took over as leader of the topological quantum computing project. Early in 2018, he told Barrons he would have a topological qubit by the end of the year. The now-disputed paper appeared a month later.

While Microsoft sought Majoranas, competitors working on established qubit technologies reported steady progress. In 2019, Google announced it had reached a milestone called quantum supremacy, showing that a chip with 53 qubits could perform a statistical calculation in minutes that would take a supercomputer millennia. Soon after, Microsoft appeared to hedge its quantum bet, announcing it would offer access to quantum hardware from other companies via its cloud service Azure. The Wall Street Journal reported that Holmdahl left the project that year after missing an internal deadline.

Microsoft has been quieter about its expected pace of progress on quantum hardware since Holmdahl's departure. Competitors in quantum computing continue to tout hardware advances and urge software developers to access prototypes over the internet, but none appear close to creating a quantum computer ready for prime time.

Read the original post:
Microsofts Big Win in Quantum Computing Was an Error After All - WIRED

Posted in Quantum Computing | Comments Off on Microsofts Big Win in Quantum Computing Was an Error After All – WIRED

IBM and ExxonMobil are building quantum algorithms to solve this giant computing problem – ZDNet

Research teams from energy giant ExxonMobil and IBM have been working together to find quantum solutions to one of the most complex problems of our time: managing the tens of thousands of merchant ships crossing the oceans to deliver the goods that we use every day.

The scientists lifted the lid on the progress that they have made so far and presented the different strategies that they have been using to model maritime routing on existing quantum devices, with the ultimate goal of optimizing the management of fleets.

ExxonMobil was the first energy company to join IBM's Quantum Network in 2019, and has expressed a keen interest in using the technology to explore various applications, ranging from the simulation of new materials to solving optimization problems.

SEE: Research: Why Industrial IoT deployments are on the rise (TechRepublic Premium)

Now, it appears that part of the energy company's work was dedicated to tapping quantum capabilities to calculate journeys that minimize the distance and time traveled by merchant ships across the globe.

On a worldwide scale, the equation is immense intractable, in fact, for classical computers. About 90% of world trade relies on maritime shipping, with more than 50,000 ships, themselves carrying up to 200,000 containers each, moving around every day to transport goods with a total value of $14 trillion.

The more the number of ships and journeys increase, the bigger the problem becomes. As IBM and ExxonMobil's teams put itin a blog post detailing their research: "Logistically speaking, this isn't the 'traveling salesperson problem.'"

While this type of exponentially growing problem can only be solved with simplifications and approximations on classical computers, the challenge is well-suited to quantum technologies. Quantum computers can effectively leverage a special dual state that is taken on by quantum bits, or qubits, to run many calculations at once; meaning that even the largest problems could be resolved in much less time than is possible on a classical computer.

"We wanted to see whether quantum computers could transform how we solve such complex optimization problems and provide more accurate solutions in less computational times," said the researchers.

Although the theory behind the potential of quantum computing is well-established, it remains to be found how quantum devices can be used in practice to solve a real-world problem such as the global routing of merchant ships. In mathematical terms, this means finding the right quantum algorithms that could be used to most effectively model the industry's routing problems, on current or near-term devices.

To do so, IBM and ExxonMobil's teams started with widely-used mathematical representations of the problem, which account for factors such as the routes traveled, the potential movements between port locations and the order in which each location is visited on a particular route. There are many existing ways to formulate the equation, one of which is called the quadratic unconstrained binary optimization (QUBO) technique, and which is often used in classical computer science.

The next question was to find out whether well-known models like QUBO can be solved with quantum algorithms and if so, which solvers work better. Using IBM's Qiskit optimization module, which was released last year toassist developers in building quantum optimization algorithms, the team tested various quantum algorithms labeled with unbeatably exotic names: the Variational Quantum Eigensolver (VQE), the Quantum Approximate Optimization Algorithm (QAOA), and Alternating Direction Method of Multiplier (ADMM) solvers.

After running the algorithms on a simulated quantum device, the researchers found that models like QUBO could effectively be solved by quantum algorithms, and that depending on the size of the problem, some solvers showed better results than others.

In another promising finding, the team said that the experiment showed some degree of inexactness in solving QUBOs is tolerable. "This is a promising feature to handle the inherent noise affecting the quantum algorithms on real devices," said the researchers.

SEE: BMW explores quantum computing to boost supply chain efficiencies

Of course, while the results suggest that quantum algorithms could provide real-world value, the research was carried out on devices that are still technically limited, and the experiments can only remain small-scale. The idea, however, is to develop working algorithms now, to be ready to harness the power of a fully fledged quantum computer when the technology develops.

"As a result of our joint research, ExxonMobil now has a greater understanding of the modelling possibilities, quantum solvers available, and potential alternatives for routing problems in any industry," said the researchers.

What applies to merchant ships, in effect, can also work in other settings. Routing problems are not inherent to the shipping industry, and the scientists confirmed that their findings could easily be transferred to any vehicle optimization problem that has time constraints, such as goods delivery, ride-sharing services or urban waste management.

In fact, ExxonMobil is not the first company to look at ways to use quantum computing techniques to solve optimization problems. Electronics manufacturer OTI Lumionics, for example, has been using QUBO representations to find the most optimal simulation of next-generation OLED materials. Instead of using gate-based quantum computers to run the problem, however, the company has been developing quantum-inspired algorithms to solve calculations on classical Microsoft Azure hardware,with encouraging results.

The mathematical formulas and solution algorithmsare described in detail in the research paper, and the ExxonMobil/IBM team stressed that their use is not restricted. The researchers encouraged their colleagues to reproduce their findings to advance the global field of quantum solvers.

Here is the original post:
IBM and ExxonMobil are building quantum algorithms to solve this giant computing problem - ZDNet

Posted in Quantum Computing | Comments Off on IBM and ExxonMobil are building quantum algorithms to solve this giant computing problem – ZDNet