Search Immortality Topics:

Page 7«..6789..2030..»


Category Archives: Nano Medicine

Aviceda Therapeutics Announces Key Opinion Leader in Ophthalmology Drug Development Tarek S. Hassan, MD to Join Management Team as Chief Development…

CAMBRIDGE, Mass.--(BUSINESS WIRE)--Aviceda Therapeutics, Inc. a private biotechnology company located in Cambridge MA with a proprietary nano-technology HALOS platform (High-Affinity Ligands Of Siglecs), announced today the appointment of Tarek S. Hassan, MD, FASRS as Chief Development Officer and Senior Vice-President. He joins other leaders in the fields of retina and immunologic-based science and therapeutics, Drs. Mohamed Genead, David Callanan, Michael Tolentino, Derek Kunimoto, and Christopher Scott, as part of the executive management team.

Aviceda Therapeutics is an innovative clinical stage biotechnology company focused on developing transformative glyco-therapeutic drugs that modulate dysregulated inflammation in a diverse range of diseases that affect large unserved and underserved populations. Avicedas short-term focus is the initiation of the clinical trial for its lead product, AVD-104, a Ph II ready ophthalmic lead product for geographic atrophy (GA) secondary to dry AMD (dAMD). Dr. Hassan is ideally suited to manage the development of AVD-104 and move the company forward to bring its breakthrough therapies to the clinic, address significant unmet medical needs, and ultimately transform lives.

Aviceda is honored to have one of the most renowned and successful leaders in retina and strategic drug development join the Aviceda team in this key position. We believe that we have assembled the top team in ophthalmology and beyond. With our lead product about to enter clinical trials for GA associated with dry AMD, this is an ideal time for Tarek to join our management team. Given the broad potential of our HALOS technology pipeline, todays announcement marks a major step forward in advancing Aviceda as leading company in the field of retina and beyond, said Dr. Genead, co-founder and CEO of Aviceda Therapeutics.

I am honored to join the outstanding team of thought leaders in the fields of retina, glycobiology, and immune therapy at Aviceda, said Dr. Tarek Hassan. I am excited to complete the planning and oversee the execution of the Phase 2 trial for AVD-104 for GA associated with AMD. This critical indication affects a large patient population and has no current treatment. We have an outstanding opportunity to make major contributions towards finding a treatment for patients with this serious blinding disease, particularly through our innovative approach of developing immune modulators that act on the switches that turn pathologic mechanisms on and off. We see glyco-immune modulation as a powerful next generation mechanism for the treatment of many acute and chronic diseases of degeneration and inflammation, as well as diseases resulting from immune evasion.

About Tarek Hassan

Tarek S. Hassan, MD is Professor of Ophthalmology at Oakland University William Beaumont School of Medicine, Director of the Vitreoretinal Fellowship Training Program and Senior Partner at Associated Retinal Consultants in Royal Oak, Michigan. He is the current President of the Retina Hall of Fame, Immediate Past President of the Retina World Congress (RWC), Past President of the American Society of Retina Specialists (ASRS), and Past President of the Foundation of the ASRS. He has been on the Executive Board of Directors of the RWC for the past 6 years. He served on the Executive Committee of the ASRS and the Foundation of the ASRS for 12 years and on the Board of Directors of the ASRS for 22 years. He is a Founder and Director of the Retina Fellows Forum (22 years), Club Vit (24 years), and Retina Hall of Fame (6 years).

Dr. Hassan has an active academic clinical practice in which he is extensively involved in a wide variety of clinical vitreoretinal research studies. He has been principal investigator or co-investigator in more than 150 randomized clinical trials, authored and co-authored more than 230 papers in peer-reviewed journals, and written 9 books and/or book chapters for medical texts. He is Senior Associate Editor of the Journal of Vitreoretinal Diseases, as well as an editorial board member and scientific reviewer for other leading journals within ophthalmology and retina. He has given over 760 national and international presentations on many retinal topics and been awarded the American Academy of Ophthalmology (AAO) Achievement Award, the ASRS Senior Honor Award, and the AAO Senior Achievement Award. He was elected as an inaugural member of the Retina Hall of Fame in 2017. He founded, or co-founded several medical device and educational companies, and been granted numerous government-issued device patents.

Born in Houston, Texas, Dr. Hassan obtained his undergraduate, medical school, and residency training at the University of Michigan in Ann Arbor, Michigan and then completed a vitreoretinal diseases and surgery fellowship at Associated Retinal Consultants in Royal Oak.

About Aviceda Therapeutics Inc.

Aviceda is a private biotechnology company located in Cambridge MA with a proprietary nano-technology HALOS platform and an IND-ready ophthalmic lead product for (GA) secondary to dAMD.

Avicedas lead product, AVD-104, is an intravitreal nanoparticle using HALOS technology with a dual mechanism of action (MOA) for GA/dAMD on critical complement and inflammatory pathways.

Read the rest here:
Aviceda Therapeutics Announces Key Opinion Leader in Ophthalmology Drug Development Tarek S. Hassan, MD to Join Management Team as Chief Development...

Posted in Nano Medicine | Comments Off on Aviceda Therapeutics Announces Key Opinion Leader in Ophthalmology Drug Development Tarek S. Hassan, MD to Join Management Team as Chief Development…

Biologys hardest working pigments and MOFs – EurekAlert

image:Illustration of the wide range of electrocatalytic and photocatalytic processes and applications for porphyrin framework materials view more

Credit: Nano Research Energy, Tsinghua University Press

Some of the economic sectors that are the hardest to decarbonize would benefit from the emergence of substantially more efficient catalysts involved in energy conversion chemical reactions. A breakthrough here might depend upon the use of pigments widely deployed in biological processes integrated as a catalyst into novel and highly porous molecular structures that act sort of like sponges.

A paper describing the state of play in this field and the challenges it faces was published in the journal Nano Research Energyon May 29.

In recent years, porphyrins and metalloporphyrins have played an increasingly important role in biomimetic chemistry, solar energy utilization, medicine, and a great many other applications. But use of porphyrins in electrocatalysis and photocatalysis reactions central to many energy conversion processes useful for the clean transition was found to be unstable, deactivate, and difficult to recycle, which has limited the further development of these energy conversion technologies.

So scientists have begun to consider the integration of porphyrins as the organic ligands (the ion that binds to a central metal atom in a complex molecule) into synthetic molecular structures known as metal-organic frameworks (MOFs) and their twin, covalent-organic frameworks (COFs)known as porphyrin-based framework materials.

This should in principle deliver excellent electrocatalysis and photocatalysis performance as the MOF and COF structures are simple to synthesize and highly designed, thus much more controllable and structurally stable, said Yusuke Yamauchi, a co-author of the paper and researcher with the Australian Institute for Bioengineering and Nanotechnology at the University of Queensland.

The researchers, who are themselves involved in porphyrin-based framework materials development, put together a review article describing the state of play in their field. Such review papers are necessary for young fields to advance as they clarify current understanding, discuss advances and challenges, identify research gaps and can even offer guidelines for policy and tips on best practice, Huan Pang, a co-author of the paper and the researcher with the School of Chemistry and Chemical Engineering at the Yangzhou University, China

The paper explores all the current and potential applications of porphyrin-based framework material catalysts, and finds that there remains great potential, but the field confronts several challenges.

In an economy of net-zero greenhouse gas emissions, not everything can be electrifiedparticularly long-haul heavy transportand so some form of clean fuels, such as carbon-neutral synthetic hydrocarbons, ammonia or hydrogen will be necessary. All these fuels involve the conversion of clean energywhether from the sun, wind, water or uraniuminto transportable and stable chemical energy. Part of this process requires the production of clean hydrogen through the use of electricity, light or heat to split water into its constituent elements, hydrogen and oxygen.

Hydrocarbons are composed of differing ratios of carbon and hydrogen, hence the name. Thus the clean, synthetic versions replacing their dirty fossil cousins will require drawing down carbon dioxide from the atmosphere and transforming it into various usable forms of carbon as an input to be married to the clean hydrogen. To draw down atmospheric carbon and make use of it is also known as carbon capture and utilization (CCU).

All these processes, and many others involved in the clean transition (the move from fossil fuels to clean technologies) such as the use of fuel cells and light collection, are in effect chemical reactions that convert energy from one form to another, more usable form. These chemical reactions require addition of substances known as catalysts that speed the reaction up. Some of those catalysts are extremely expensive such as platinum, or are not efficient enough for the end product to compete with fossil fuels, or produce their own environmental challenges.

Thus the hunt is on for more efficient, cheaper and cleaner catalysts such as porphyrin,

The development of efficient non-precious porphyrin-based framework material catalysts to replace precious metal catalysts remains a significant hurdle. The design and construction of porphyrin blocks currently mainly relies on a highly symmetrical design, which limits the diversity of porphyrin framework families and affects their potential catalytic applications. Novel structures that employ porphyrin units with asymmetric design should be considered to extend the substances utility.

The cost of preparing porphyrin framework materials remains high and so it is urgent that engineers develop new synthesis methods if these catalysts are to be taken up in large-scale industrial applications. Reducing the number of steps required in synthesis is an important research, but it is also extremely difficult to do this.

They conclude however that should such challenges be overcome, porphyrin-based framework materials could be a game-changer in the commercialisation of energy conversion processes essential for some of the sectors that are the very hardest to decarbonize.

Porphyrins are some of biologys hardest working substances. This class of pigments is deployed in a wide array of vital processes, from photosynthesis to breathing. Derivatives of these water-soluble, ring-shaped molecules that bind metal ions include chlorophylls in plants and the hemoglobins that carry oxygen in the blood of animals. They also enhance the catalytic activities of enzymes in a range of other life-giving chemical reactions. Metalloporphyrins are of particular interest with respect to the clean transition due to their role as catalysts in water splitting to produce hydrogen and oxygen.

##

About Nano Research Energy

Nano Research Energy is launched by Tsinghua University Press, aiming at being an international, open-access and interdisciplinary journal. We will publish research on cutting-edge advanced nanomaterials and nanotechnology for energy. It is dedicated to exploring various aspects of energy-related research that utilizes nanomaterials and nanotechnology, including but not limited to energy generation, conversion, storage, conservation, clean energy, etc. Nano Research Energy will publish four types of manuscripts, that is, Communications, Research Articles, Reviews, and Perspectives in an open-access form.

About SciOpen

SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journals development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.

Nano Research Energy

Porphyrin-based framework materials for energy conversion

29-May-2022

Read the original post:
Biologys hardest working pigments and MOFs - EurekAlert

Posted in Nano Medicine | Comments Off on Biologys hardest working pigments and MOFs – EurekAlert

Nano Therapy Market 2022 Growth Is Expected To See Development Trends and Challenges to 2030 This Is Ardee – This Is Ardee

New York, United States Report Ocean published the latest research report on the Nano Therapy market. In order to comprehend a market holistically, a variety of factors must be evaluated, including demographics, business cycles, and microeconomic requirements that pertain precisely to the market under study. In addition, the Nano Therapy market study demonstrates a detailed examination of the business state, which represents creative ways for company growth, financial factors such as production value, key regions, and growth rate.

Key Companies Covered in theNano TherapyResearch areNanosphere Inc., Cristal Therapeutics, DIM, NanoMedia Solutions Inc., Luna, Nanobiotix, Sirnaomics Inc., Selecta Biosciences Inc., NanoBioMagnetics.n.nu, Nanospectra Biosciences Inc., Tarveda Therapeutics, Parvus Therapeutics, CytImmune Science Inc., Nanoprobes Inc., NanoBio Corporation, Smith and Nephewand other key market players.

TheNano Therapymarket revenue was $$ Million USD in 2016, grew to $$ Million USD in 2022, and will reach $$ Million USD in 2030, with a CAGR of % during 2022-2030.

The Centers for Medicare and Medicaid Services data estimates that the U.S. national healthcare expenditure surpassed US$ 4.1 trillion in 2020 and is forecast to reach US$ 6.2 trillion by 2028. According to the Commonwealth Fund, the U.S. expended nearly 17% of gross domestic product (GDP) on healthcare in 2018. Switzerland was the second-highest-ranking country, expending 12.2%. In addition, New Zealand and Australia devote only 9.3%.Request To Free Sample of This Strategic Report:-https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

According to the U.S. Bureau of Labor Statistics, employment in healthcare fields is forecast to grow 16% from 2020 to 2030, much quicker than the standard for all occupations, counting about 2.6 million new jobs. This estimated growth is mainly due to an elder population, showing to greater demand for healthcare services. The median annual wage for healthcare practitioners and technical fields (such as registered nurses,0020physicians and surgeons, and dental hygienists) was US$ 75,040 in May 2021, which was greater than the median annual wage for all occupations in the economy of US$ 45,760.

Market Overview

Nano therapy is a branch of nanomedicine that involves using nanoparticles to deliver a drug to a given target location in the body so as to treat the disease through a process known as targeting.

GlobalNano TherapyMarket Development Strategy Pre and Post COVID-19, by Corporate Strategy Analysis, Landscape, Type, Application, and Leading 20 Countries covers and analyzes the potential of the global Nano Therapy industry, providing statistical information about market dynamics, growth factors, major challenges, PEST analysis and market entry strategy Analysis, opportunities and forecasts. The biggest highlight of the report is to provide companies in the industry with a strategic analysis of the impact of COVID-19. At the same time, this report analyzed the market of leading 20 countries and introduce the market potential of these countries.

Most important types of Nano Therapy products covered in this report are:Nanomaterial and Biological DeviceNano Electronic BiosensorMolecular NanotechnologyImplantable Cardioverter-Defibrillators

Most widely used downstream fields of Nano Therapy market covered in this report are:Cardiovascular DiseaseCancer TherapyDiabetes TreatmentRheumatoid ArthritisOthers

Top countries data covered in this report:United StatesCanadaGermanyUKFranceItalySpainRussiaChinaJapanSouth KoreaAustraliaThailandBrazilArgentinaChileSouth AfricaEgyptUAESaudi Arabia

SPECIAL OFFER (Avail an Up-to 30% discount on this report) :-https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

Chapter 1 is the basis of the entire report. In this chapter, we define the market concept and market scope of Nano Therapy, including product classification, application areas, and the entire report covered area.

Chapter 2 is the core idea of the whole report. In this chapter, we provide a detailed introduction to our research methods and data sources.

Chapter 3 focuses on analyzing the current competitive situation in the Nano Therapy market and provides basic information, market data, product introductions, etc. of leading companies in the industry. At the same time, Chapter 3 includes the highlighted analysisStrategies for Company to Deal with the Impact of COVID-19.

Chapter 4 provides breakdown data of different types of products, as well as market forecasts.

Different application fields have different usage and development prospects of products. Therefore, Chapter 5 provides subdivision data of different application fields and market forecasts.

Chapter 6 includes detailed data of major regions of the world, including detailed data of major regions of the world. North America, Asia Pacific, Europe, South America, Middle East and Africa.

Chapters 7-26 focus on the regional market. We have selected the most representative 20 countries from 197 countries in the world and conducted a detailed analysis and overview of the market development of these countries.

Chapter 27 focuses on market qualitative analysis, providing market driving factor analysis, market development constraints, PEST analysis, industry trends under COVID-19, market entry strategy analysis, etc.

Access full Report Description, TOC, Table of Figure, Chart, etc. @:-https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

Key Points:Define, describe and forecast Nano Therapy product market by type, application, end user and region.Provide enterprise external environment analysis and PEST analysis.Provide strategies for company to deal with the impact of COVID-19.Provide market dynamic analysis, including market driving factors, market development constraints.Provide market entry strategy analysis for new players or players who are ready to enter the market, including market segment definition, client analysis, distribution model, product messaging and positioning, and price strategy analysis.Keep up with international market trends and provide analysis of the impact of the COVID-19 epidemic on major regions of the world.Analyze the market opportunities of stakeholders and provide market leaders with details of the competitive landscape.

Table of Content:

For More Information or Query or Customization Before Buying, Visit @:https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

Key Benefits for Industry Participants & Stakeholders

Key Questions Answered in the Market Report

Request Full Report :-https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

About Report Ocean:We are the best market research reports provider in the industry. Report Ocean believes in providing quality reports to clients to meet the top line and bottom line goals which will boost your market share in todays competitive environment. Report Ocean is a one-stop solution for individuals, organizations, and industries that are looking for innovative market research reports.

Get in Touch with Us:Report Ocean:Email:sales@reportocean.comAddress: 500 N Michigan Ave, Suite 600, Chicago, Illinois 60611 UNITED STATESTel:+1 888 212 3539 (US TOLL FREE)Website:https://www.reportocean.com

Excerpt from:
Nano Therapy Market 2022 Growth Is Expected To See Development Trends and Challenges to 2030 This Is Ardee - This Is Ardee

Posted in Nano Medicine | Comments Off on Nano Therapy Market 2022 Growth Is Expected To See Development Trends and Challenges to 2030 This Is Ardee – This Is Ardee

Fast and ultrafast thermal contrast amplification of gold nanoparticle-based immunoassays | Scientific Reports – Nature.com

Setting up TCA readers with CW vs. pulsed lasers

To achieve ultra-high signal amplification fold on the GNP labels, the TCA system can be improved by increasing the laser energy fluence. During laser irradiation, the heat generation of a GNP,(dot{{Q}_{GNS}}), can be estimated as

$$dot{{Q}_{GNP}}={C}_{abs}bullet {I}_{0},$$

(1)

where ({C}_{abs}) is GNPs absorption cross section (unit: ({mathrm{mm}}^{2})), and ({I}_{0}) is the energy fluence of laser irradiation (unit: (mathrm{W}cdot{mathrm{mm}}^{-2})). Increasing ({I}_{0}) creates a higher photothermal response from GNPs ((dot{{Q}_{GNS}})), which could help lower TCAs detection limit of GNPs in LFA. In most previous studies, a CW laser at 532nm was used in TCA and the regular irradiation power on LFAs was set as~25mW10,11,13,15. The measured diameter of the laser spot on LFA was about 0.1mm13, whose average input energy fluence, ({I}_{0}), was estimated as 3.2(mathrm{W}cdot{mathrm{mm}}^{-2}) (Table 1).

To maximize the photothermal response of GNPs, the traditional CW laser was upgraded to a pulsed laser with higher energy fluence. Here, a 1064nm Nd:YAG laser (iWeld 980 Series, 120J, LaserStar Technologies, FL, USA) was used to provide a high-energy singular millisecond pulse, as shown in Supplementary Fig. S1a. As calibrated, the highest laser pulse energy was 60.64J within 20ms16. For a 2mm spot, the energy fluence from the pulsed laser was up to 955.4(mathrm{W}cdot{mathrm{mm}}^{-2}), about 300-fold higher than that in previous studies10,11,13,15. To maximize (dot{{Q}_{GNP}}) under the same laser irradiation, the GNS was chosen over other GNPs, such as gold nanorods (about 90nm in length and 15nm in width) which also absorb strongly at 1064nm, because GNS has larger ({C}_{abs}) than other GNPs as characterized in a previous study17. Table 1 compares the (dot{{Q}_{GNP}}) of different GNP-laser settings. The GNS-pulsed laser (400V) setting has the highest heat generation which can be as high as 2080-fold of that for the 30nm gold nanosphere (GNSp)-CW laser (25mW) setting. Thus, it was chosen to test the limit of TCA. However, less than maximum pulsed laser intensity (22.3(mathrm{W}cdot{mathrm{mm}}^{-2})) was used to test GNS-loaded NC membrane (model LFA) since it was prone to burn under more intensive irradiation.

To test the limit of TCA, both TCA readers equipped with CW laser and pulsed laser were set up to compare their limits of detection (LoDs) for GNPs precoated in NC membrane and on coverslips as immunoassay models. Their schematic setup is shown in Fig.1a,c. More details on CW laser TCA can be referred to our previous work9,13. Details of ultrafast TCA setup and characterization are provided in Supplementary Sect. S1. As compared between Fig.1b,d, different lasers enable different heating intensity and speed. When heating a GNP spot with an ms pulsed laser, the heating energy from pulsed laser was confined within the laser spot which, in turn, enabled a much higher temperature increase than CW laser heating (detailed in Supplementary Sect. S4). The temperature increase of a GNP spot can be done within ms by pulsed laser heating while CW laser would need many seconds to heat the spot. As summarized in Fig.1e, faster reading can be achieved with the pulsed laser ultrafast TCA (seconds) than CW laser TCA either with discrete or continuous reading algorithms (115min) as detailed in previous work9,13,14. Additionally, different temperature measurement products (IR camera vs. sensor) were used to fit with the lasers as summarized in Fig.1e.

TCA readers equipped with continuous-wave (CW) laser vs. pulsed laser. (a) Arrangement of the laser path, IR camera, and testing platform, such as a substrate coated with gold nanoparticle (GNP) spot, in the CW laser TCA reader. (b) Schematic record of temperature response of a GNP spot heated by CW laser. (c) Arrangement of the laser path, IR sensor, and testing platform in the ultrafast TCA reader equipped with an ms pulsed laser. The gray area was the field of view of the IR sensor, which depends on the alignment parameters, d and (theta) (detailed in Supplementary Sect. S1). (d) Schematic record of temperature response of a GNP spot read by pulsed laser. (e) Comparison of reading time, laser heating time scale, and temperature measurement products in ultrafast TCA vs. CW laser TCA with continuous and discrete reading algorithms.

In addition to lasers, GNP-loaded substrates being irradiated also impact the thermal responses. In general, substrates with lower thermal mass and higher tolerance for laser intensity against thermal damages will achieve higher thermal signals. Table 2 lists three substrates (NC membrane, plastics, and coverslip) that can be potentially used for immunoassays and testing the limit of TCA. NC membrane (widely used in LFAs) and coverslip were chosen as substrates to be tested in this study since they had significant differences in both thermal mass normalized by volume and maximum temperature without thermal damage.

To test the limit of TCA, we compared thermal signals of the (pulsed laser) ultrafast TCA with CW laser TCA when reading the same model LFAs (GNS-loaded NC membrane) as seen in Fig.2. The UVvis-NIR extinction spectrum of the GNS is shown in Supplementary Fig. S3. The intensity output of the pulsed laser was set at 22.3(mathrm{W}cdot{mathrm{mm}}^{-2}) (Table 1) to avoid thermal damage to NC membrane, whose thermal signals are shown in Fig.2a. For CW laser TCA, both traditional discrete reading and continuous reading (i.e., fast reading) were applied and results were plotted in Fig.2b,c, respectively. The CW laser intensity was set at 12.7(mathrm{W}cdot{mathrm{mm}}^{-2}) (100mW, Table 1), nearly twofold lower than that from ultrafast TCA. Compared with visual reading of model LFAs, TCA readings showed a 10- to 20-fold reduction in LoD for GNSs loaded in NC membrane, as shown in Fig.2ac. The ultrafast TCA had higher thermal signals than CW laser TCA for the controlled GNS concentrations, as compared in Fig.2d. However, it also had much higher background noise for the blank NC membrane (i.e., without GNSs). We speculate that this is due to the limitation of the IR sensor. Ideally, the acquisition time of the IR sensor should be at least tenfold smaller than the pulse width (3ms) to ensure the accuracy and consistency of the signal acquisition. Unfortunately, in our case, the IR sensor, which was chosen based on its small size to fit into laser chamber and price consideration, had a comparable acquisition time of 3ms (Fig.1e) despite the claim that it could show interpolated temperature at 1ms interval; this may contribute to some noise or inconsistency in the reading. In contrast, the CW laser TCA had a much faster temperature acquisition (16.7ms) than the laser heating time scale (seconds), thus with high reading consistency. Perhaps, as a result, the current ultrafast TCA setup did not show an apparent benefit in signal amplification to read model LFA compared to the fast TCA. The lowest LoD was achieved by the fast TCA reading (i.e., using CW laser and continuous reading algorithm), and was twofold lower than those from ultrafast TCA and the other discrete reading algorithm. Future optimization may consider a more advanced IR sensor, although a higher cost is expected. Alternatively, increasing lasers pulse width can reduce the impact of IR sensors inadequate sampling, which can also enhance thermal signals with a significant increase in laser energy fluence. Since NC membrane was prone to pyrolysis and burn under intensive laser heating (Table 2), another assay substrate (i.e., glass) was considered to test the limit of TCA in the next section.

Reading gold nanoparticles in nitrocellulose (NC) membrane as model lateral flow immunoassays (LFAs) by TCAs with continuous wave (CW) laser vs. pulsed laser. NC membrane was precoated with diluted silica-cored gold nanoshells (GNSs) as model test regions in lateral flow immunoassays. (a) Thermal signals from ultrafast TCA reading with a pulsed laser (22.3(mathrm{W}cdot{mathrm{mm}}^{-2}), 170V, 1.41J, 3ms) (red). (b) Thermal signals from CW laser TCA reading with a discrete reading algorithm (yellow). (c) Thermal signals from fast TCA reading with CW laser and continuous reading algorithm (blue). (d) Comparison of these thermal signals from different TCA readings. Round shadows: limits of detection (LoDs) for GNSs. Square shadow (gray): visual cutoff to read GNS spot in NC membrane (model LFA). Statistical significance is indicated with asterisks: ns: p>0.05; *p<0.05; **p<0.01. The GNS concentration in NC membrane was the projected surface concentration=volumetric concentration (times) membrane thickness.

For even higher signal amplification, proof-of-concept measurement was conducted by TCA reading of GNSs pre-coated on a glass coverslip as a model MIA, which can tolerate much higher irradiation intensity than either paper or plastic (see Table 2 and Fig.3a). To maximize the thermal signals in measurement, the maximal energy output of the pulsed laser (400V, 60.64J, 20ms pulse width, and 2mm spot size, ({I}_{0}=) 955.4(mathrm{W}cdot{mathrm{mm}}^{-2})) in ultrafast TCA was applied to detect GNSs on the coverslips in Fig.3b. A stricter metric (IUPAC, see Methods) was applied to extrapolate the LoD for GNSs on coverslip by ultrafast TCA reading rather than ANOVA analysis which was used as default for other measurements. To understand the benefit of coverslip, its thermal signals were compared with those of model LFAs with NC membrane read by ultrafast TCA but at lower pulse energy (1.41J) to avoid thermal damage (Fig.3c). Unlike model LFAs, the GNS-coverslips in Fig.3b were all subvisual due to poor visual contrast, while the visual cutoff of model LFAs was shown in Fig.3c. Regarding ultrafast TCA reading as compared in Fig.3d, the coverslips had higher thermal responses than model LFAs for the same GNS concentrations. The thermal LoD for GNSs on coverslip was also lower (~57-fold) than the visual LoD for model LFAs. This suggests that increasing laser pulse energy enabled higher thermal responses, which compensated for the large thermal mass of coverslip. Since coverslip has better thermal tolerance, 20ms pulse was applied, which was~6.7-fold longer than the acquisition time of IR sensor (3ms). Thus, the sensor sampling issue that may have influenced readings in the model LFA case (Fig.3c) was likely not an issue here (Fig.3b). Further modeling and discussion on substrate comparison for TCA are provided in Supplementary Sect. S4 to potentially achieve even higher thermal signals and thus better signal amplification from TCA reading. Certainly, finding a sensor that can operate under even shorter pulses with improved signal-to-noise will also help.

Testing the limit of thermal contrast amplification (TCA) by improving substrates for ultrafast TCA reading. Thermal signals were measured through ultrafast TCA reading silica-cored gold nanoshells (GNSs) precoated in nitrocellulose (NC) membrane and on coverslips at the same projected surface concentrations as model test regions in immunoassays. (a) Experimental tolerance of laser pulse energy by the tested GNS-NC membrane and GNS-coverslip systems. (b) Thermal signals from GNS-coverslips with maximal laser pulse energy (60.64J) over 20ms. (c) Thermal signals from GNS-NC membrane with laser pulse energy at 1.41J over 3ms to avoid thermal damage. (d) Comparison of these thermal signals from different substrates. Blue round shadow: limits of detection (LoDs) for GNSs in NC membrane. Square shadow (gray): visual cutoff to read GNS spot in NC membrane. Dashed line: extrapolated LoD for GNSs on coverslip by IUPAC metric. All the coverslip cases were subvisual. Statistical significance is indicated with asterisks: ns: p>0.05; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. The GNS concentration in NC membrane was the projected surface concentration=volumetric concentration (times) membrane thickness.

Figure4a compared thermal signals from GNS-coverslip and GNS-NC membrane (or model LFA) when being read by their respective optimal TCAs. The LoD for GNSs in the coverslip case (1.24E3 GNSs/mm2) was still about 2.85-fold lower than that of the NC membrane case. This further proved that increasing the laser fluence can improve thermal response and signal amplification fold via TCA reading, and thus the sensitivity of immunoassays. Figure4a also showed that the background noise of blank samples for ultrafast reading of GNS-coverslip was around 1C, much higher than GNS-NC membrane with fast TCA reading, which may set the major limit to an even lower LoD. This noise might be due to the system error of the ultrafast TCA, absorption of laser energy by glass, etc. For even greater MIA sensitivity enhancement by TCA, future efforts would be needed to reduce the background noise.

(a) Comparison of thermal signals from diluted silica-cored gold nanoshells (GNSs) precoated in nitrocellulose (NC) membrane (model LAF) and on coverslips as model test regions in immunoassays when being read by their respective optimal thermal contrast amplification (TCA) systems. Model LFA was read by fast TCA (i.e., continuous-wave (CW) laser with a continuous reading algorithm) while coverslips were read by ultrafast TCA at maximal energy output. Blue round shadow: limits of detection (LoDs) for GNSs in NC membrane. Square shadow (gray): visual cutoff to read GNS spots in NC membrane. All the coverslip cases were subvisual. Dashed line: extrapolated LoD for GNSs on coverslip by IUPAC metric. (b) Summary of the LoDs for GNSs precoated in/on different substrates (i.e., NC membrane or coverslip) and read by different TCA systems. Their corresponding amplification folds were calculated by comparing them with visual cutoff for reading GNSs in NC membrane. For NC membrane, GNS concentration was the projected surface concentration=volumetric concentration (times) membrane thickness.

To summarize, Fig.4b shows the LoDs for GNSs measured on various substrates (NC membrane vs. coverslip) when being read by different TCA systems (CW laser vs. pulsed laser). The signal amplification folds were normalized by the visual cutoff of reading model LFAs, which is a conventional readout format for commercial LFAs. The coverslip and ultrafast TCA with maximal pulsed laser energy output had the maximal signal amplification (57-fold), followed by the model LFA with fast TCA reading (20-fold). When reading model LFAs, the discrete reading by CW laser TCA showed a similar amplification fold (tenfold) to the ultrafast TCA. It is also expected that the amplification fold by ultrafast TCA could be further improved by reducing the background noise and/or using a better IR sensor (faster response), despite the higher cost and other changes in TCA setup. For future ultrafast TCA-MIA applications, the consideration of assay kinetics and design was also discussed in Supplementary Sect. S5 apart from signal amplification. Overall, TCA is able to enhance signals for both LFAs and MIAs. MIA with TCA is promising for future ultrasensitive POC diagnostics, although further improvement in reducing background noise will be needed if further signal amplification is needed or required.

Here is the original post:
Fast and ultrafast thermal contrast amplification of gold nanoparticle-based immunoassays | Scientific Reports - Nature.com

Posted in Nano Medicine | Comments Off on Fast and ultrafast thermal contrast amplification of gold nanoparticle-based immunoassays | Scientific Reports – Nature.com

Artificial Intelligence (AI), Cloud Computing, 5G, And Nanotech In Healthcare: How Organizations Are Preparing Best For The Future – Inventiva

Artificial Intelligence (AI), cloud computing, 5G, and Nanotech in healthcare: How organizations are preparing best for the future

Automation, digitalization, and technological enablement are having a significant impact on several industries. The healthcare industry is not an exception. The healthcare delivery system in India is changing and is about to advance significantly. The pandemic has shown that healthcare organizations can become innovative, flexible, and resilient by utilizing tech-enabled business models that place data at the core.

Additionally, healthcare organizations quickly realize that no matter how technically advanced their services or products are, they will no longer be applicable. To produce not just an enhanced product or service but also a better healthcare experience, it is imperative to connect with users along the healthcare value chain, be they patients or physicians. Fortunately, technological progress has accelerated the process of change required for Indian healthcare to become digitally linked and shown promise for enhancing peoples healthcare experiences.

India has already begun developing a national digital framework to create a digital health ecosystem on a national scale. The market for digital healthcare in India was estimated to be worth INR 116.61 billion in 2018 and is projected to reach INR 485.43 billion by 2024, growing at a CAGR of 27.41 per cent. Adopting electronic health records for the whole population is one of the several steps made in that regard.

Healthcare organizations are quickly embracing innovative technology to change how care is delivered in the nation and benefit the healthcare ecosystem as a solution to address the problems that the countrys healthcare system is now facing. Here are a few new technologies that are changing things:

Artificial Intelligence (AI)

Artificial intelligence (AI), machine learning (ML), and digital representations of the human bodys physiology make it possible to anticipate the chance that chronic diseases will advance based on the decisions being made. By using these simulations, healthcare professionals can better comprehend options and therapies and their consequences on patient health outcomes and influence on related expenditures.

Additionally, AI is helping healthcare professionals manage illnesses holistically, better coordinate care plans, and help patients manage and adhere to their treatment regimens. Further, statistics indicate that administrative expenses account for 30% of healthcare expenditures. The bulk of these duties, such as keeping track of bills that need to be paid and maintaining records, may be automated with AI, considerably cutting expenses.

Cloud Computing

The collaboration between physicians, nurses, and departments has grown crucial as healthcare organizations throughout the nation transition to value-based care. Thanks to cloud computing, accessing patient information has gone from a sluggish and laborious procedure to a quick and easy process.

With cloud computing, data may be stored centrally and made accessible from any location at any time. In addition, cloud infrastructure allows users to adjust health data storage depending on the new patient volume. IoT-enabled devices are being offered to patients by a variety of healthcare providers. By connecting these devices to a healthcare providers cloud system, patient data may be swiftly delivered to the doctor. This makes for a quicker diagnosis and better treatment.

The 5G Network

Every aspect of healthcare has the potential to be improved by a 5G connection, particularly since the healthcare sector is still recovering from the ravages of the epidemic. Large data files and real-time, high-definition video may be transmitted over a fast network to handle telemedicine appointments. Patients may reach medical professionals more quickly and receive treatment more quickly thanks to the use of 5G, especially in remote places.

Nanotech

Utilizing nanotechnology has given the healthcare sector new opportunities. Researchers and scientists use this technology to improve medical imaging, target tumours, and medication delivery systems. Additionally, the technique reduces costs, speeds up DNA sequencing, and provides scaffolding for tissue regeneration or wound healing. Further, artery obstructions are being removed by nanobots or micro-scale robots, as are quick biopsies of worrisome cancerous tumours.

The healthcare sector is anticipated to strengthen in 2022, thanks to groundbreaking discoveries and technologies. Most of the significant modifications are still in the future!

This article will examine the main medical technology developments and changes anticipated for the medical industry shortly.

The focus is often on lowering the cost, increasing access to healthcare services, and identifying and treating problems sooner rather than later. The US healthcare industry is expanding quickly; by 2026, the national healthcare products value is predicted to reach USD 6 trillion. Its never too late to prepare for the many available healthcare possibilities. Make sure to use digital technology to increase revenue, and staff productivity, achieve better financial results, and improve patient care.

Artificial intelligence (AI) technology has advanced quickly in recent years, and this trend will persist in 2022. Among the various sectors that gain from AI, medicine mainly uses it for accurate illness diagnosis and detection, albeit this is not the only use. IBM Watson, for instance, is one of the AI systems already accessible for use in business and healthcare.

Computed Tomography Scan Analysis

The demand for computed diagnostic professionals (radiologists) has significantly grown since the COVID-19 epidemic struck the worlds population.

AI-powered technology could provide a solution. AI systems can quickly evaluate CT images from hundreds of patients, identifying pneumonia patterns brought on by COVID-19 and informing physicians of these. That would make up for the lack of qualified labour in this industry.

Before our eyes, innovative ideas are taking shape. For instance, a deep learning model for imaging COVID-19 was developed to recognize COVID-19 patterns in CT images automatically. The Microsoft-sponsored InnerEye research project is another promising endeavour for processing computed tomography scans. Even though accuracy has significantly increased, radiologists are still hesitant to entrust the digital mind with crucial choices. AI cannot be held responsible for a poor diagnosis or ineffective course of therapy. Instead, the expert who decided to employ AI must pay for their error and take every precaution to limit the adverse effects while maximizing this digital health trend.

Because of this, most cutting-edge clinics employ AI as an additional tool rather than a stand-alone diagnostic or therapeutic method. It is excellent for validating current diagnoses or enhancing research data that has been gathered conventionally.

Machine Learning in Biopharma and Medtech

The pharmaceutical sector will effectively capitalize on technological advancements in healthcare by utilizing AI to discover new medications. A group of British and Japanese scientists filed a patent for the first medicinal molecule created by AI in January 2020. The drug will be used to treat obsessive-compulsive disorder after it passes muster for testing on humans.

AI-enhanced lab research has also led to the discovery of other intriguing formulations since late 2021, including some potential treatments for uncommon and extremely severe ailments. Numerous cutting-edge studies, such as molecular modelling and simulation of chemical reactions in multi-factor settings, leverage AI and machine learning approaches to support chemical experiments and therapeutic medication development.

Since many tests may be carried out electronically, this method enables scientists to reduce the number of expensive onsite experiments using reagents and high-tech lab equipment. It also hastens the discovery of critical scientific innovations.

Automating Hospital Workflows using Robotics

Startups from all over the world will pour hundreds of millions of dollars into creating AI projects in 2022, including various forms of robotic systems, which may enable them to reduce the cost of recruiting trained medical personnel. The intention is to assist medical facilities that already have a severe shortage of nurses and clinicians as a result of the COVID-19 pandemic, which has put the entire healthcare system under unprecedented strain, rather than to replace people with machines, which would lead to unemployment and a decline in social standards. Learn more about creating medical HR software to assist HR professionals in addressing the U.S. medical workforce problem.

Innovative enterprises should keep in mind the medical communitys restrictions on AI-driven software, its capabilities, and its applications as they work to realize these lofty goals. Modern medicine has countless applications for robotic assistance and automated systems, including cleanliness, surgery, remote diagnostics, etc. However, the healthcare systems top goals will always be the well-being of medical personnel and the effective treatment of patients.

In light of this, robotic and AI-driven technologies will be employed to support current procedures rather than replace them, resulting in a potent fusion of the present and the future. Daring projects combined with sound regulation are a prominent trend in the digital health sector. It will enable physicians to utilize cutting-edge technology fully, learn to apply it in satisfying and secure ways, and steer clear of any pitfalls.

Symptom Checker Chatbots

Chatbots are computer programs with artificial intelligence (AI) support (often not true AI but powerful algorithms) that engage in meaningful conversations that resemble those between humans using voice, text, or option-based input.

Every area, including healthcare and medical consultancy, is seeing a rise in their use. These solutions, available around-the-clock online or via mobile devices, can provide preliminary medical diagnoses and health advice based on input and complaints from a patient. Chatbots can also be connected with unique patient portals for hospitals and clinics. When human medical assistants are unavailable, they can assist patients with their health issues and worries, even in acute situations (such as disaster-induced overloads of call centres, peak or non-operation hours, etc.)

These chatbots can aid patients in determining their subsequent actions and motivate them to seek professional medical advice when necessary. Care must be exercised, though, since it may result in inaccurate self-diagnosis and disinformation.

Globalization of AI Requirements in Healthcare

Ten recommendations that can serve as the foundation for the creation of GMLP have been developed by a powerful coalition of the U.S. FDA, Health Canada, and the United Kingdoms Medicines and Healthcare products Regulatory Agency (MHRA) (Good Machine Learning Practice). These guidelines will help programmers and AI engineers create secure medical equipment, software, and systems powered by artificial intelligence and machine learning (AI/ML) components. This shows that governments take the potential and hazards posed by AI exceptionally seriously and would want to regulate the use of AI in healthcare practices as soon as feasible.

Adoption of AI-backed Technologies

The main drawback of the advancement in artificial intelligence technology is that hackers will use it to target medical systems and steal secured healthcare information, rather than only to save human lives or help medical personnel with their everyday responsibilities. One of the growing dangers to the security of medical technology in 2022 and beyond is sophisticated malware with AI capabilities.

Which medical technology solutions are in jeopardy? Almost everything could have weak security or security flaws, such as wireless systems in hospitals, clinics, or health centres, EMR/EHR solutions, IoT, and computer-aided healthcare provider and health insurance company systems. Intricate phishing and social engineering assaults can also target clients and staff members.

Hackers may use this feature to simulate personal identities as part of next-generation super-personalized social engineering and phishing campaigns, which have the potential to be as dangerous and deceptive as ever before due to AIs growing capacity to mimic photorealistic 3D faces or organically sounding voices. This necessitates installing high-end data protection methods that can mitigate any hazards by hacker techniques aided by AI.

Despite all the technological safeguards and healthcare providers knowledge, statistics on data breaches show a sharp rise over the previous ten years, with infractions peaking in 20202021. These data breaches impact thousands of patients around the US. Hopefully, healthcare organizations will focus more on data security and their digital ecosystems in 2022. Healthcare cybersecurity is quickly emerging as a popular technological topic this decade.

How to Prevent Data Breaches in Healthcare?

The security of medical records, which is governed by HIPAA and EDI in the healthcare industry, is a top priority for the US government.

Every healthcare professional should follow a few effective procedures:

Facial Recognition With Masks

Face recognition technology, which permits approved access for medical professionals to mobile devices or workstations, rose to popularity due to its ease.

Deep learning facial recognition algorithms must be used in the COVID-19 pandemic to distinguish staff members wearing masks. Specific sources claim that some businesses have already achieved 99.9% accuracy in the face recognition of people wearing masks.

Nanotechnology may still seem like science fiction, yet it is steadily influencing our daily lives. By the end of 2021, fantastic news about the creation of tiny, organic robots that can reproduce themselves will reach every part of the globe. Therefore, it is realistic to anticipate that 2022 will bring forth several significant advancements in the nanomedicine sector. Early investments are welcome in the burgeoning nanomedicine industry.

Here is a brief explanation of what nanomedicine is: it uses nanoscale (microscopically small) materials and objects, like biocompatible nanoparticles, nanoelectronic devices, or even nanorobots, for specific medical uses and manipulations, like the diagnosis or treatment of living organisms. The injection of a group of nanorobots into a humans blood vessels might be utilized as a possible hunter for cancer cells or viruses, for instance. This method is anticipated to effectively combat a wide range of cancers, rheumatoid arthritis, and other hereditary, oncologic, or auto-immune illnesses on a cellular level (or even become an ultimate solution to them).

Even though the IoMT will not be a novel concept by 2022, this industry will experience exponential growth. Every one of the several digital health developments in this sector has excellent applications for healthcare professionals and has the potential to save billions of dollars.

Apps for remote health monitoring and wellness will continue to grow in popularity in 2022. You may discover a decent number of professional (and many other semi-professionals) mobile applications for healthcare and health in the GooglePlay or iTunes libraries.

Some mobile applications can connect to wearables like pulsometers or fitness trackers to use the information gathered by the sensors attached to your body to report or evaluate your health problems, including blood pressure, body temperature, pulse, and other metrics.

Autonomous nursing robots or self-moving smart gadgets can substantially assist by minimizing the tasks linked to supply management or sanitary maintenance that medical professionals must perform.

Different types of robots can work in various hospital-based settings and jobs, protecting human workers from infection risks or stress from the extreme burden imposed on many US hospitals by a COVID-19 patient overflow. An Italian hospital, for instance, employed robot nurses during a COVID-19 severe epidemic. These clever assistants were utilized to remotely check patients blood pressure and oxygen saturation levels because they are two critical indicators of their present state of health. Those levels might decline quickly, necessitating emergency intervention for the patient. This drastically decreased the requirement for nurses to visit patients in person.

Healthcare systems primarily concentrate on elements within their area of expertise: quality and price of medical services while generating risk assessments and accumulating illness data. However, they represent the very beginning. Before patients feel symptoms and seek the help of physicians, a host of other less apparent circumstances impact them.

Initial health problems are caused by factors other than a lack of care. Their origins are deeper; they are found in social, environmental, and demographic contexts that are rarely taken into account in the context of conventional clinical diagnoses.

Medical institutions mainly handle symptoms and offer advice on lifestyle modifications, having a minimally significant influence on treatment results (between 10% and 20%). In addition, between 80% and 90% of health outcomes are determined by non-medical variables. The term social determinants of health refers to these elements (SDOH).

In 2022, healthcare providers will approach SDOH with greater caution than ever before and carefully review patients medical histories, taking into account details that were overlooked in earlier years.

Doctors will shift from treating symptoms to prediction and prevention based on patients SDOH predisposition to particular diseases to stop the advancement of dangerous health concerns and reduce individual medical expenditures.

More implant-related options and technology will hit the global and American healthcare markets in 2022. This offers dramatically improved regenerative medicine effectiveness, patient rehabilitation, and a solution for many disabilities previously thought to be incurable.

Increasing the Use of 3D Bioprinting

By 2027, it is anticipated that the medical industrys volume of 3D printing potential will surpass $6 billion. Even if 3D printing biocompatible implants is not a novel technique in 2022, new materials and more advanced prosthetic methods will make this technology more dependable and available to a more extensive range of patients. In particular, it is anticipated that advancements in 3D bioprinting technology would improve the following areas:

Neural Implants

In 2022, effective options for brain-computer implants are anticipated to debut. Neuralink plans to begin inserting its devices into human brains at least in 2022. More businesses, groups, initiatives, and startups are preparing to market their neuro-implants for various medical requirements, including regaining functional independence in patients with multiple forms of paralysis or blindness.

For instance, it was stated that by the end of 2021, a team of scientists had implanted a microelectrode array (a penny-sized implant) into the visual brain of a blind individual, enabling her to recognize several letters and shapes. Although there is still a long way to go, brain implants potential to help people with various disabilities seems to have a genuinely fantastic and promising future.

Healthcare businesses will employ an exponentially growing number of data sources, and the volume of gathered healthcare data (including patient records, DICOM files, and medical IoT solutions) will also rapidly increase. Medical service providers will seek contemporary platforms, such as data fabrics, to combine and handle massive amounts of dispersed and structured data.

It will be among the tasks to build safe multi-cloud solutions capable of transporting significant amounts of data to manage, store, and mine it for valuable insights and to link siloed data with the healthcare systems.

Healthcare payers and providers frequently have interests that clash. The standard of their collaborative work decreases when both sides take absolutist positions. Patients, therefore, do not get the care they need. They are frequently mistreated, have to wait longer, and pay more.

Both payers and providers should embrace a value-oriented mindset and work toward group goals rather than individual success. All parties must understand that they are working for the same purposeproviding high-end healthcare to the publicand that if either suffers losses, the other will no longer support them. All organizations involved in the healthcare sector will hopefully try their utmost to learn how to collaborate in 2021. They will concentrate on delivering complete care, move from settling disagreements to cooperation, and communicate information to support successful decision-making.

The healthcare sector is already seeing the effects of the vast diversity, universality, and growth of digital communication channels. A brand-new channel for distributing medical data is telehealth. It entails delivering healthcare services remotely through the Internet, videoconferencing, streaming services, and other communication technologies. Long-distance education for patients and medical professionals is included in telehealth. Telehealth has achieved widespread acceptance and has evolved into a regular procedure in 2021. Modern clinics already counsel their patients electronically. This kind of communication will replace conventional internal dialogues and receive full regulatory permission in the upcoming years.

With the introduction of 5G wireless, telehealth will expand rapidly and be universally adopted shortly.

See more here:
Artificial Intelligence (AI), Cloud Computing, 5G, And Nanotech In Healthcare: How Organizations Are Preparing Best For The Future - Inventiva

Posted in Nano Medicine | Comments Off on Artificial Intelligence (AI), Cloud Computing, 5G, And Nanotech In Healthcare: How Organizations Are Preparing Best For The Future – Inventiva

$2.38M to test nano-engineered brain cancer treatment in mice – University of Michigan News

The two-compartment nanoparticles as seen with structured illumination microscopy. The green compartment contains the immune drug while the red compartment brings the tumor-killer. Credit: Ava Mauser and Nahal Habibi, Lahann Lab, University of Michigan.

A new nanomedicine that crosses the blood-brain barrier, engages the immune system and kills cancer cells may offer hope for treating the most aggressive form of brain cancer, glioblastoma.

With $2.38 million in funding from the National Institutes of Health, the medicine will soon be tested in mice at the University of Michigan.

Led by a nano-engineer and neuro-oncology researchers at U-M, the study is the first to test the two drugs together, packaged so that they can be delivered through the bloodstream rather than a hole in the skull. It builds on previous success eliminating cancer in seven out of eight mice by packaging just the immune drug in the protein that crosses the blood-brain barrier so that it could be delivered intravenously. The five-year survival rate for glioblastoma in humans is about 5%.

The standard of care for glioblastoma is surgery and radiation, and the median survival hasnt improved for several decades. A systemically delivered nanomedicine that can prolong survival and prevent recurrence is the dream, said Maria Castro, the R.C. Schneider Collegiate Professor of Neurosurgery and professor of cell and developmental biology.

Her team leads the mouse studies in collaboration with Pedro Lowenstein, the Richard C. Schneider Collegiate Professor of Neurosurgery and professor of cell and developmental biology.

As the team tests out the nanoparticles timed to release the immune drug followed by a tumor-killing drug, developed and produced by project lead Joerg Lahanns group, one of the key questions is how well the drugs cooperate.

Are they working much better than either drug alone? Thats what were hoping for. Or is it just a small improvementor are they actually competing with each other and making the treatment worse or increasing the side effects? said Lahann, the Wolfgang Pauli Collegiate Professor of Engineering and director of the U-M Biointerfaces Institute.

The advanced nanomedicines are delivered intravenously and combined with radiation therapy, as they would be in a future clinical trial.

To get the nanomedicine from the bloodstream to the brain, Lahanns team packages the drugs in a protein called human serum albumin, which is present in blood and can cross the blood-brain barrier. Once there, the drugs must wake up the immune system to prevent recurrence and death, which frequently follow conventional treatments like surgery, radiation and chemotherapy.

Tumors grow and regrow because cancer cells have ways of suppressing the immune system. The 2020 study and the new grant use a drug that blocks STAT3, a signaling molecule that cancer cells use to tell immune cells not to attack them. This gave the immune system of the mice the ability to identify the cancer cells as targets for destruction.

In a study just out in May, the team used a drug that blocks CXCR4, an immune receptor that receives orders to send killer T-cells away. Blocking CXCR4 helps keep T-cells in the brain, where they do their work of killing brain cancer cells. Three out of five mice survived long term, and all of those survivors cleared new tumors during the recurrence challenge.

While the new grant wont use this drug, the team is interested in a future study exploring whether two immune approaches together might be more effective.

Tumors have a lot of variation, so we need to attack them from many directions, Lowenstein said.

After initial testing of the new two-compartment nanomedicine in lab-grown cell cultures that mimic human tumors and their surroundings, the team will begin testing in mice as the next step toward clinical trials in humans. They will find out how much of the nanomedicine makes it into the brain, how well it fights the cancer, how well it leaves the body and what the side effects are like.

Previous studies suggest that the nanoparticles home in on tumor cells, infiltrating them more often than healthy cells, and one of the goals for this one is to better understand how that works. For nanomedicines to advance into clinical trials as experimental treatments for glioblastoma, we must understand the mechanisms by which they accumulate in tumor and other tissues, said Colin Greineder, U-M assistant professor of emergency medicine, who will lead studies of how the nanomedicine distributes in the body.

See original here:
$2.38M to test nano-engineered brain cancer treatment in mice - University of Michigan News

Posted in Nano Medicine | Comments Off on $2.38M to test nano-engineered brain cancer treatment in mice – University of Michigan News