Search Immortality Topics:

Page 46«..1020..45464748..6070..»


Category Archives: Nano Medicine

Nanomaterials – Wikipedia

Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 to 1000 nanometres (109 meter) but usually is 1 to 100nm (the usual definition of nanoscale[1]).

Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, or mechanical properties.[2]

Nanomaterials are slowly becoming commercialized[3] and beginning to emerge as commodities.[4]

There are significant differences among agencies on the definition of a nanomaterial.[5]

In ISO/TS 80004, nanomaterial is defined as a "material with any external dimension in the nanoscale or having internal structure or surface structure in the nanoscale", with nanoscale defined as the "length range approximately from 1 nm to 100 nm". This includes both nano-objects, which are discrete pieces of material, and nanostructured materials, which have internal or surface structure on the nanoscale; a nanomaterial may be a member of both these categories.[6]

On 18 October 2011, the European Commission adopted the following definition of a nanomaterial: "A natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and for 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range 1nm 100nm. In specific cases and where warranted by concerns for the environment, health, safety or competitiveness the number size distribution threshold of 50% may be replaced by a threshold between 1% to 50%."[7]

Engineered nanomaterials have been deliberately engineered and manufactured by humans to have certain required properties.[8]

Legacy nanomaterials are those that were in commercial production prior to the development of nanotechnology as incremental advancements over other colloidal or particulate materials.[9][10][11] They include carbon black and titanium dioxide nanoparticles.[12]

Nanomaterials may be incidentally produced as a byproduct of mechanical or industrial processes. Sources of incidental nanoparticles include vehicle engine exhausts, welding fumes, combustion processes from domestic solid fuel heating and cooking. For instance, the class of nanomaterials called fullerenes are generated by burning gas, biomass, and candle.[13] It can also be a byproduct of wear and corrosion products.[14] Incidental atmospheric nanoparticles are often referred to as ultrafine particles, which are unintentionally produced during an intentional operation, and could contribute to air pollution.[15][16]

Biological systems often feature natural, functional nanomaterials. The structure of foraminifera (mainly chalk) and viruses (protein, capsid), the wax crystals covering a lotus or nasturtium leaf, spider and spider-mite silk,[17] the blue hue of tarantulas,[18] the "spatulae" on the bottom of gecko feet, some butterfly wing scales, natural colloids (milk, blood), horny materials (skin, claws, beaks, feathers, horns, hair), paper, cotton, nacre, corals, and even our own bone matrix are all natural organic nanomaterials.

Natural inorganic nanomaterials occur through crystal growth in the diverse chemical conditions of the Earth's crust. For example, clays display complex nanostructures due to anisotropy of their underlying crystal structure, and volcanic activity can give rise to opals, which are an instance of a naturally occurring photonic crystals due to their nanoscale structure. Fires represent particularly complex reactions and can produce pigments, cement, fumed silica etc.

Natural sources of nanoparticles include combustion products forest fires, volcanic ash, ocean spray, and the radioactive decay of radon gas. Natural nanomaterials can also be formed through weathering processes of metal- or anion-containing rocks, as well as at acid mine drainage sites.[15]

"Lotus effect", hydrophobic effect with self-cleaning ability

Close-up of the underside of a gecko's foot as it walks on a glass wall (spatula: 200 10-15nm)

SEM micrograph of a butterfly wing scale (5000)

Brazilian Crystal Opal. The play of color is caused by the interference and diffraction of light between silica spheres (150 - 300nm in diameter).

Blue hue of a species of tarantula (450nm 20nm)

Nano-objects are often categorized as to how many of their dimensions fall in the nanoscale. A nanoparticle is defined a nano-object with all three external dimensions in the nanoscale, whose longest and the shortest axes do not differ significantly. A nanofiber has two external dimensions in the nanoscale, with nanotubes being hollow nanofibers and nanorods being solid nanofibers. A nanoplate has one external dimension in the nanoscale, and if the two larger dimensions are significantly different it is called a nanoribbon. For nanofibers and nanoplates, the other dimensions may or may not be in the nanoscale, but must be significantly larger. A significant different in all cases is noted to be typically at least a factor of 3.[19]

Nanostructured materials are often categorized by what phases of matter they contain. A nanocomposite is a solid containing at least one physically or chemically distinct region, or collection of regions, having at least one dimension in the nanoscale.. A nanofoam has a liquid or solid matrix, filled with a gaseous phase, where either phase has dimensions on the nanoscale. A nanoporous material is a solid material containing nanopores, cavities with dimensions on the nanoscale. A nanocrystalline material has a significant fraction of crystal grains in the nanoscale.[20]

In other sources, nanoporous materials and nanofoam are sometimes considered nanostructures but not nanomaterials because only the voids and not the materials themselves are nanoscale.[21] Although the ISO definition only considers round nano-objects to be nanoparticles, other sources use the term nanoparticle for all shapes.[22]

Nanoparticles have all three dimensions on the nanoscale. Nanoparticles can also be embedded in a bulk solid to form a nanocomposite.[21]

The fullerenes are a class of allotropes of carbon which conceptually are graphene sheets rolled into tubes or spheres. These include the carbon nanotubes (or silicon nanotubes) which are of interest both because of their mechanical strength and also because of their electrical properties.[23]

The first fullerene molecule to be discovered, and the family's namesake, buckminsterfullerene (C60), was prepared in 1985 by Richard Smalley, Robert Curl, James Heath, Sean O'Brien, and Harold Kroto at Rice University. The name was a homage to Buckminster Fuller, whose geodesic domes it resembles. Fullerenes have since been found to occur in nature.[24] More recently, fullerenes have been detected in outer space.[25]

For the past decade, the chemical and physical properties of fullerenes have been a hot topic in the field of research and development, and are likely to continue to be for a long time. In April 2003, fullerenes were under study for potential medicinal use: binding specific antibiotics to the structure of resistant bacteria and even target certain types of cancer cells such as melanoma. The October 2005 issue of Chemistry and Biology contains an article describing the use of fullerenes as light-activated antimicrobial agents. In the field of nanotechnology, heat resistance and superconductivity are among theproperties attracting intense research.

A common method used to produce fullerenes is to send a large current between two nearby graphite electrodes in an inert atmosphere. The resulting carbon plasma arc between the electrodes cools into sooty residue from which many fullerenes can be isolated.

There are many calculations that have been done using ab-initio Quantum Methods applied to fullerenes. By DFT and TDDFT methods one can obtain IR, Raman and UV spectra. Results of such calculations can be compared with experimental results.

Inorganic nanomaterials, (e.g. quantum dots, nanowires and nanorods) because of their interesting optical and electrical properties, could be used in optoelectronics.[26] Furthermore, the optical and electronic properties of nanomaterials which depend on their size and shape can be tuned via synthetic techniques. There are the possibilities to use those materials in organic material based optoelectronic devices such as Organic solar cells, OLEDs etc. The operating principles of such devices are governed by photoinduced processes like electron transfer and energy transfer. The performance of the devices depends on the efficiency of the photoinduced process responsible for their functioning. Therefore, better understanding of those photoinduced processes in organic/inorganic nanomaterial composite systems is necessary in order to use them in optoelectronic devices.

Nanoparticles or nanocrystals made of metals, semiconductors, or oxides are of particular interest for their mechanical, electrical, magnetic, optical, chemical and other properties.[27][28] Nanoparticles have been used as quantum dots and as chemical catalysts such as nanomaterial-based catalysts. Recently, a range of nanoparticles are extensively investigated for biomedical applications including tissue engineering, drug delivery, biosensor.[29][30]

Nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic or molecular structures. A bulk material should have constant physical properties regardless of its size, but at the nano-scale this is often not the case. Size-dependent properties are observed such as quantum confinement in semiconductor particles, surface plasmon resonance in some metal particles and superparamagnetism in magnetic materials.

Nanoparticles exhibit a number of special properties relative to bulk material. For example, the bending of bulk copper (wire, ribbon, etc.) occurs with movement of copper atoms/clusters at about the 50nm scale. Copper nanoparticles smaller than 50nm are considered super hard materials that do not exhibit the same malleability and ductility as bulk copper. The change in properties is not always desirable. Ferroelectric materials smaller than 10nm can switch their polarization direction using room temperature thermal energy, thus making them useless for memory storage. Suspensions of nanoparticles are possible because the interaction of the particle surface with the solvent is strong enough to overcome differences in density, which usually result in a material either sinking or floating in a liquid. Nanoparticles often have unexpected visual properties because they are small enough to confine their electrons and produce quantum effects. For example, gold nanoparticles appear deep red to black in solution.

The often very high surface area to volume ratio of nanoparticles provides a tremendous driving force for diffusion, especially at elevated temperatures. Sintering is possible at lower temperatures and over shorter durations than for larger particles. This theoretically does not affect the density of the final product, though flow difficulties and the tendency of nanoparticles to agglomerate do complicate matters. The surface effects of nanoparticles also reduces the incipient melting temperature.

The smallest possible crystalline wires with cross-section as small as a single atom can be engineered in cylindrical confinement.[31][32][33] Carbon nanotubes, a natural semi-1D nanostructure, can be used as a template for synthesis. Confinement provides mechanical stabilization and prevents linear atomic chains from disintegration; other structures of 1D nanowires are predicted to be mechanically stable even upon isolation from the templates.[34][35]

2D materials are crystalline materials consisting of a two-dimensional single layer of atoms. The most important representative graphene was discovered in 2004.Thin films with nanoscale thicknesses are considered nanostructures, but are sometimes not considered nanomaterials because they do not exist separately from the substrate.[21]

Some bulk materials contain features on the nanoscale, including nanocomposites, nanocrystalline materials, nanostructured films, and nanotextured surfaces.[21]

Box-shaped graphene (BSG) nanostructure is an example of 3D nanomaterial.[36] BSG nanostructure has appeared after mechanical cleavage of pyrolytic graphite. This nanostructure is a multilayer system of parallel hollow nanochannels located along the surface and having quadrangular cross-section. The thickness of the channel walls is approximately equal to 1nm. The typical width of channel facets makes about 25nm.

Nano materials are used in a variety of, manufacturing processes, products and healthcare including paints, filters, insulation and lubricant additives. In healthcare Nanozymes are nanomaterials with enzyme-like characteristics.[37] They are an emerging type of artificial enzyme, which have been used for wide applications in such as biosensing, bioimaging, tumor diagnosis,[38] antibiofouling and more. In paints nanomaterials are used to improve UV protection and improve ease of cleaning.[39] High quality filters may be produced using nanostructures, these filters are capable of removing particulate as small as a virus as seen in a water filter created by Seldon Technologies. In the air purification field, nano technology was used to combat the spread of MERS in Saudi Arabian hospitals in 2012.[40] Nanomaterials are being used in modern and human-safe insulation technologies, in the past they were found in Asbestos-based insulation.[41] As a lubricant additive, nano materials have the ability to reduce friction in moving parts. Worn and corroded parts can also be repaired with self-assembling anisotropic nanoparticles called TriboTEX.[40]Nanomaterials can also be used in three-way-catalyst (TWC) applications. TWC converters have the advantage of controlling the emission of nitrogen oxides (NOx), which are precursors to acid rain and smog[42]. In core-shell structure, nanomaterials form shell as the catalyst support to protect the noble metals such as palladium and rhodium[43]. The primary function is that the supports can be used for carrying catalysts active components, making them highly dispersed, reducing the use of noble metals, enhancing catalysts activity, and improving the mechanical strength.

The goal of any synthetic method for nanomaterials is to yield a material that exhibits properties that are a result of their characteristic length scale being in the nanometer range (1 100nm). Accordingly, the synthetic method should exhibit control of size in this range so that one property or another can be attained. Often the methods are divided into two main types, "bottom up" and "top down."

Bottom up methods involve the assembly of atoms or molecules into nanostructured arrays. In these methods the raw material sources can be in the form of gases, liquids or solids. The latter require some sort of disassembly prior to their incorporation onto a nanostructure. Bottom up methods generally fall into two categories: chaotic and controlled.

Chaotic processes involve elevating the constituent atoms or molecules to a chaotic state and then suddenly changing the conditions so as to make that state unstable. Through the clever manipulation of any number of parameters, products form largely as a result of the insuring kinetics. The collapse from the chaotic state can be difficult or impossible to control and so ensemble statistics often govern the resulting size distribution and average size. Accordingly, nanoparticle formation is controlled through manipulation of the end state of the products. Examples of chaotic processes are laser ablation, exploding wire, arc, flame pyrolysis, combustion, and precipitation synthesis techniques.

Controlled processes involve the controlled delivery of the constituent atoms or molecules to the site(s) of nanoparticle formation such that the nanoparticle can grow to a prescribed sizes in a controlled manner. Generally the state of the constituent atoms or molecules are never far from that needed for nanoparticle formation. Accordingly, nanoparticle formation is controlled through the control of the state of the reactants. Examples of controlled processes are self-limiting growth solution, self-limited chemical vapor deposition, shaped pulse femtosecond laser techniques, and molecular beam epitaxy.

Novel effects can occur in materials when structures are formed with sizes comparable to any one of many possible length scales, such as the de Broglie wavelength of electrons, or the optical wavelengths of high energy photons. In these cases quantum mechanical effects can dominate material properties. One example is quantum confinement where the electronic properties of solids are altered with great reductions in particle size. The optical properties of nanoparticles, e.g. fluorescence, also become a function of the particle diameter. This effect does not come into play by going from macrosocopic to micrometer dimensions, but becomes pronounced when the nanometer scale is reached.

In addition to optical and electronic properties, the novel mechanical properties of many nanomaterials is the subject of nanomechanics research. When added to a bulk material, nanoparticles can strongly influence the mechanical properties of the material, such as the stiffness or elasticity. For example, traditional polymers can be reinforced by nanoparticles (such as carbon nanotubes) resulting in novel materials which can be used as lightweight replacements for metals. Such composite materials may enable a weight reduction accompanied by an increase in stability and improved functionality.[44]

Finally, nanostructured materials with small particle size such as zeolites, and asbestos, are used as catalysts in a wide range of critical industrial chemical reactions. The further development of such catalysts can form the basis of more efficient, environmentally friendly chemical processes.

The first observations and size measurements of nano-particles were made during the first decade of the 20th century. Zsigmondy made detailed studies of gold sols and other nanomaterials with sizes down to 10nm and less. He published a book in 1914.[45] He used an ultramicroscope that employs a dark field method for seeing particles with sizes much less than light wavelength.

There are traditional techniques developed during the 20th century in interface and colloid science for characterizing nanomaterials. These are widely used for first generation passive nanomaterials specified in the next section.

These methods include several different techniques for characterizing particle size distribution. This characterization is imperative because many materials that are expected to be nano-sized are actually aggregated in solutions. Some of methods are based on light scattering. Others apply ultrasound, such as ultrasound attenuation spectroscopy for testing concentrated nano-dispersions and microemulsions.[46]

There is also a group of traditional techniques for characterizing surface charge or zeta potential of nano-particles in solutions. This information is required for proper system stabilzation, preventing its aggregation or flocculation. These methods include microelectrophoresis, electrophoretic light scattering and electroacoustics. The last one, for instance colloid vibration current method is suitable for characterizing concentrated systems.

The chemical processing and synthesis of high performance technological components for the private, industrial and military sectors requires the use of high purity ceramics, polymers, glass-ceramics and material composites. In condensed bodies formed from fine powders, the irregular sizes and shapes of nanoparticles in a typical powder often lead to non-uniform packing morphologies that result in packing density variations in the powder compact.

Uncontrolled agglomeration of powders due to attractive van der Waals forces can also give rise to in microstructural inhomogeneities. Differential stresses that develop as a result of non-uniform drying shrinkage are directly related to the rate at which the solvent can be removed, and thus highly dependent upon the distribution of porosity. Such stresses have been associated with a plastic-to-brittle transition in consolidated bodies, and can yield to crack propagation in the unfired body if not relieved.[47][48][49]

In addition, any fluctuations in packing density in the compact as it is prepared for the kiln are often amplified during the sintering process, yielding inhomogeneous densification. Some pores and other structural defects associated with density variations have been shown to play a detrimental role in the sintering process by growing and thus limiting end-point densities. Differential stresses arising from inhomogeneous densification have also been shown to result in the propagation of internal cracks, thus becoming the strength-controlling flaws.[50][51]

It would therefore appear desirable to process a material in such a way that it is physically uniform with regard to the distribution of components and porosity, rather than using particle size distributions which will maximize the green density. The containment of a uniformly dispersed assembly of strongly interacting particles in suspension requires total control over particle-particle interactions. It should be noted here that a number of dispersants such as ammonium citrate (aqueous) and imidazoline or oleyl alcohol (nonaqueous) are promising solutions as possible additives for enhanced dispersion and deagglomeration. Monodisperse nanoparticles and colloids provide this potential.[52]

Monodisperse powders of colloidal silica, for example, may therefore be stabilized sufficiently to ensure a high degree of order in the colloidal crystal or polycrystalline colloidal solid which results from aggregation. The degree of order appears to be limited by the time and space allowed for longer-range correlations to be established. Such defective polycrystalline colloidal structures would appear to be the basic elements of sub-micrometer colloidal materials science, and, therefore, provide the first step in developing a more rigorous understanding of the mechanisms involved in microstructural evolution in high performance materials and components.[53][54]

The quantitative analysis of nanomaterials showed that nanoparticles, nanotubes, nanocrystalline materials, nanocomposites, and graphene have been mentioned in 400000, 181000, 144000, 140000, and 119000 ISI-indexed articles, respectively, by Sep 2018. As far as patents are concerned, nanoparticles, nanotubes, nanocomposites, graphene, and nanowires have been played a role in 45600, 32100, 12700, 12500, and 11800 patents, respectively. Monitoring approximately 7000 commercial nano-based products available on global markets revealed that the properties of around 2330 products have been enabled or enhanced aided by nanoparticles. Liposomes, nanofibers, nanocolloids, and aerogels were also of the most common nanomaterials in consumer products.[55]

The European Union Observatory for Nanomaterials (EUON) has produced a database (NanoData) that provides information on specific patents, products, and research publications on nanomaterials.

The World Health Organization (WHO) published a guideline on protecting workers from potential risk of manufactured nanomaterials at the end of 2017.[56] WHO used a precautionary approach as one of its guiding principles. This means that exposure has to be reduced, despite uncertainty about the adverse health effects, when there are reasonable indications to do so. This is highlighted by recent scientific studies that demonstrate a capability of nanoparticles to cross cell barriers and interact with cellular structures.[57][58] In addition, the hierarchy of controls was an important guiding principle. This means that when there is a choice between control measures, those measures that are closer to the root of the problem should always be preferred over measures that put a greater burden on workers, such as the use of personal protective equipment (PPE). WHO commissioned systematic reviews for all important issues to assess the current state of the science and to inform the recommendations according to the process set out in the WHO Handbook for guideline development. The recommendations were rated as "strong" or "conditional" depending on the quality of the scientific evidence, values and preferences, and costs related to the recommendation.

The WHO guidelines contain the following recommendations for safe handling of MNMs:[citation needed]

A. Assess health hazards of MNMs

B. Assess exposure to MNMs

C. Control exposure to MNMs

For health surveillance WHO could not make a recommendation for targeted MNM-specific health surveillance programmes over existing health surveillance programmes that are already in use owing to the lack of evidence. WHO considers training of workers and worker involvement in health and safety issues to be best practice but could not recommend one form of training of workers over another, or one form of worker involvement over another, owing to the lack of studies available. It is expected that there will be considerable progress in validated measurement methods and risk assessment and WHO expects to update these guidelines in five years time, in 2022.

Because nanotechnology is a recent development, the health and safety effects of exposures to nanomaterials, and what levels of exposure may be acceptable, are subjects of ongoing research.[8] Of the possible hazards, inhalation exposure appears to present the most concern. Animal studies indicate that carbon nanotubes and carbon nanofibers can cause pulmonary effects including inflammation, granulomas, and pulmonary fibrosis, which were of similar or greater potency when compared with other known fibrogenic materials such as silica, asbestos, and ultrafine carbon black. Although the extent to which animal data may predict clinically significant lung effects in workers is not known, the toxicity seen in the short-term animal studies indicate a need for protective action for workers exposed to these nanomaterials, although no reports of actual adverse health effects in workers using or producing these nanomaterials were known as of 2013.[59] Additional concerns include skin contact and ingestion exposure,[59][60][61] and dust explosion hazards.[62][63]

Elimination and substitution are the most desirable approaches to hazard control. While the nanomaterials themselves often cannot be eliminated or substituted with conventional materials,[8] it may be possible to choose properties of the nanoparticle such as size, shape, functionalization, surface charge, solubility, agglomeration, and aggregation state to improve their toxicological properties while retaining the desired functionality.[64] Handling procedures can also be improved, for example, using a nanomaterial slurry or suspension in a liquid solvent instead of a dry powder will reduce dust exposure.[8] Engineering controls are physical changes to the workplace that isolate workers from hazards, mainly ventilation systems such as fume hoods, gloveboxes, biosafety cabinets, and vented balance enclosures.[65] Administrative controls are changes to workers' behavior to mitigate a hazard, including training on best practices for safe handling, storage, and disposal of nanomaterials, proper awareness of hazards through labeling and warning signage, and encouraging a general safety culture. Personal protective equipment must be worn on the worker's body and is the least desirable option for controlling hazards.[8] Personal protective equipment normally used for typical chemicals are also appropriate for nanomaterials, including long pants, long-sleeve shirts, and closed-toed shoes, and the use of safety gloves, goggles, and impervious laboratory coats.[65] In some circumstances respirators may be used.[64]

Exposure assessment is a set of methods used to monitor contaminant release and exposures to workers. These methods include personal sampling, where samplers are located in the personal breathing zone of the worker, often attached to a shirt collar to be as close to the nose and mouth as possible; and area/background sampling, where they are placed at static locations. The assessment should use both particle counters, which monitor the real-time quantity of nanomaterials and other background particles; and filter-based samples, which can be used to identify the nanomaterial, usually using electron microscopy and elemental analysis.[64][66] As of 2016, quantitative occupational exposure limits have not been determined for most nanomaterials. The U.S. National Institute for Occupational Safety and Health has determined non-regulatory recommended exposure limits for carbon nanotubes, carbon nanofibers,[59] and ultrafine titanium dioxide.[67] Agencies and organizations from other countries, including the British Standards Institute[68] and the Institute for Occupational Safety and Health in Germany,[69] have established OELs for some nanomaterials, and some companies have supplied OELs for their products.[8]

Read more here:
Nanomaterials - Wikipedia

Posted in Nano Medicine | Comments Off on Nanomaterials – Wikipedia

Nanomedicine | medicine | Britannica.com

Nanomedicine, branch of medicine that seeks to apply nanotechnologythat is, the manipulation and manufacture of materials and devices that are smaller than 1 nanometre [0.0000001 cm] in sizeto the prevention of disease and to imaging, diagnosis, monitoring, treatment, repair, and regeneration of biological systems.

Although nanomedicine remains in its early stages, a number of nanomedical applications have been developed. Research thus far has focused on the development of biosensors to aid in diagnostics and vehicles to administer vaccines, medications, and genetic therapy, including the development of nanocapsules to aid in cancer treatment.

An offshoot of nanotechnology, nanomedicine is an emerging field and had garnered interest as a site for global research and development, which gives the field academic and commercial legitimacy. Funding for nanomedicine research comes both from public and private sources, and the leading investors are the United States, the United Kingdom, Germany, and Japan. In terms of the volume of nanomedicine research, these countries are joined by China, France, India, Brazil, Russia, and India.

Working at the molecular-size scale, nanomedicine is animated with promises of the seamless integration of biology and technology, the eradication of disease through personalized medicine, targeted drug delivery, regenerative medicine, as well as nanomachinery that can substitute portions of cells. Although many of these visions may not come to fruition, some nanomedicine applications have become reality, with the potential to radically transform the practice of medicine, as well as current understandings of the health, disease, and biologyissues that are of vital importance for contemporary societies. The fields global market share totalled some $78 billion dollars in 2012, driven by technological advancements. By the end of the decade, the market is expected to grow to nearly $200 billion.

Nanomedicine derives much of its rhetorical, technological, and scientific strength from the scale on which it operates (1 to 100 nanometers), the size of molecules and biochemical functions. The term nanomedicine emerged in 1999, the year when American scientist Robert A. Freitas Jr. published Nanomedicine: Basic Capabilities, the first of two volumes he dedicated to the subject.

Extending American scientist K. Eric Drexlers vision of molecular assemblers with respect to nanotechnology, nanomedicine was depicted as facilitating the creation of nanobot devices (nanoscale-sized automatons) that would navigate the human body searching for and clearing disease. Although much of this compelling imagery still remains unrealized, it underscores the underlying vision of doctors being able to search and destroy diseased cells, or of nanomachines that substitute biological parts, which still drives portrayals of the field. Such illustrations remain integral to the field, being used by scientists, funding agencies, and the media alike.

Attesting to the fields actuality are numerous dedicated scientific and industry-oriented conferences, peer-reviewed scientific journals, professional societies, and a growing number of companies. However, nanomedicines identity, scope, and goals are a matter of controversy. In 2006, for instance, the prestigious journal Nature Materials discussed the ongoing struggle of policy makers to understand if nanomedicine is a rhetorical issue or a solution to a real problem. This ambivalence is reflected in the numerous definitions of nanomedicine that can be found in scientific literature, that range from complicated drugs to the above mentioned nanobots. Despite the lack of a shared definition, there is a general agreement that nanomedicine entails the application of nanotechnology in medicine and that it will profoundly impact medical practice.

A further topic of debate is nanomedicines genealogy, in particular its connections to molecular medicine and nanotechnology. The case of nanotechnology is exemplary: on one hand, its potentialin terms of science but also in regard to funding and recognitionis often mobilized by nanomedicine proponents; on the other, there is an attempt to distance nanomedicine from nanotechnology, for fear of being damaged by the perceived hype that surrounds it. The push is then for nanomedicine to emerge not as a subdiscipline of nanotechnology but as a parallel field.

Although nanomedicine research and development is actively pursued in numerous countries, the United States, the EU (particularly Germany), and Japan have made significant contributions from the fields outset. This is reflected both in the number of articles published and in that of patents filed, both of which have grown exponentially since 2004. By 2012, however, nanomedicine research in China grew with respect to publications in the field, and the country ranked second only to the United States in the number of research articles published.

In 2004, two U.S. funding agenciesthe National Institutes of Health and the National Cancer Instituteidentified nanomedicine as a priority research area allocating $144 million and $80 million, respectively, to its study. In the EU meanwhile, public granting institutions did not formally recognize nanomedicine as a field, providing instead funding for research that falls under the headers of nanotechnology and health. Such lack of coordination had been the target of critiques by the European Science Foundation (ESF), warning that it would result in lost medical benefits. In spite of this, the EU ranked first in number of nanomedicine articles published and in 2007 the Seventh Framework Programme (FP7) allocated 250 million to nanomedicine research. Such work has also been heavily funded by the private sector. A study led by the European Science and Technology Observatory found that over 200 European companies were researching and developing nanomedicine applications, many of which were coordinating their efforts.

Much of nanomedicine research is application oriented, emphasizing methods to transfer it from the laboratory to the bedside. In 2005 the ESF pointed to four main subfields in nanomedicine research: analytical tools and nanoimaging, nanomaterials and nanodevices, novel therapeutics and drug delivery systems, and clinical, regulatory, and toxicological issues. Research in analytical tools and nanoimaging seeks to develop noninvasive, reliable, cheap, and highly sensitive tools for in vivo diagnosis and visualization. The ultimate goal is to create fully functional mobile sensors that can be remotely controlled to conduct in vivo, real-time analysis. Research on nanomaterials and nanodevices aims to improve the biocompatibility and mechanical properties of biomaterials used in medicine, so as to create safer implants, substitute damaged cell parts, or stimulate cell growth for tissue engineering and regeneration, to name a few. Work in novel therapeutics and drug delivery systems strives to develop and design nanoparticles and nanostructures that are noninvasive and can target specific diseases, as well as cross biological barriers. Allied with very precise means for diagnosis, these drug delivery systems would enable equally precise site-specific therapeutics and fewer side effects. The area of drug delivery accounts for a large portion of nanomedicines scientific publications.

Finally, the subfield of clinical, regulatory, and toxicological issues lumps together research that examines the field as a whole. Questions of safety and toxicology are prevalent, an issue that is all the more important given that nanomedicine entails introducing newly engineered nanoscale particles, materials, and devices into the human body. Regulatory issues revolve around the management of this newness, with some defending the need for new regulation, and others the ability of systems to deal with it. This subfield should also include other research by social scientists and humanists, namely on the ethics of nanomedicine.

Combined, these subfields build a case for preventive medicine and personalized medicine. Building upon genomics, personalized medicine envisions the possibility of individually tailored diagnostics and therapeutics. Preventive medicine takes this notion further, conjuring the possibility of treating a disease before it manifests itself. If realized, such shifts would have radical impacts on understandings of health, embodiment, and personhood. Questions remain concerning the cost and accessibility of nanomedicine and also about the consequences of diagnostics based on risk propensity or that lack a cure.

Go here to read the rest:
Nanomedicine | medicine | Britannica.com

Posted in Nano Medicine | Comments Off on Nanomedicine | medicine | Britannica.com

What is Nanomedicine? The future of medicine.

Materials which have at least one dimension less than 100nm are classified as nanomaterials. These materials can be may shapes and sizes like spheres, rods, wires, cubes, plates, stars, cages, pyramids among some funny named shapes like nanohedgehogs, nanocandles and nanocakes! See the paperMorphology-Controlled Growth of ZnO Nanostructures Using Microwave Irradiation: from Basic to Complex Structuresfor some really inventive names for various shaped nanomaterials!

Aside scientists are pretty terrible at naming things, for example,the creative names given to optical telescopes the Extremely Large Telescope,Large Binocular Telescope,Overwhelmingly Large Telescope,Very Large Optical Telescope.

These nanoparticle shapes come in different sizes and different materials too. Broadly we can categorize nanomaterials into two groups organic or inorganic (but it is possible to have a hybrid inorganic-organic nanoparticle too). Organic nanoparticles arent nanoparticles from your local farmers market they are nanoparticles which contain carbon (and often hydrogen too which forms hydrocarbons) whereas most inorganic nanoparticles dont contain carbon atoms. Organic nanomaterials include carbon (except fullerenes) , polymeric and lipid-based nanocarriers. Inorganic nanoparticles include metallic/plasmonic, magnetic, upconversion, semiconductor and silica based nanoparticles.

The main groups of organic nanocarriers are liposomes, micelles, protein/peptide based and dendrimers. Protein/peptide based nanocarriers are amorphous (non-crystalline) materials generally conjugated to the therapeutic agent and is often further functionalised with other molecules. Micelles and liposomes are formed by amphiphilic (both hydrophilic and hydrophobic parts), micelles form monolayers whereas liposomes form bilayers. Lastly, dendrimer nanocarriers are tree-like structures which have a starting atom core (eg. nitrogen) and other elements are added through a series of chemical reactions resulting in a spherical branching structure. This final structure is not unlike blood hemoglobin and albumin macromolecules.

These vesicular nanocarriers can be used to trap both hydrophobic and hydrophilic drugs and even small nanoparticles inside the aqueous/lipid core. This provides protection for drugs and facilitates significant drug loading minimising toxicity and increasing blood circulation time (increasing possibility that the drug will reach the therapeutic target from avoiding opsonisation).

inorganic nanomaterials are stable, robust, resistant, highly functional. and are quite easily cleared from the body. Furthermore, inorganic material exhibit truly exciting mechanical, optical, physical and electrical phenomena at the nanoscale which can be tailored through changes in material, phase, shape, size and surface characteristics. Oftentimes, it is necessary to add a biocompatible surface to inorganic nanoparticles to avoid toxicity, especially for heavy metals.

Semiconductor Nanomaterials

Quantum dots are the most well-known semiconductor nanoemitter. These are typically very small in size ~5nm, which is smaller or equal to the exciton Bohr radius giving quantum confinement. Electrons are subatomic particles with a negative elementary electric charge, electron holes is an empty position in an atom or lattice that an electron could occupy. An exciton is a bound statewhere an electron and electron hole are electrostatically attracted to each other through Coulombic forces.Anexciton bohr radiusis the separation distance between the hole and electron. Due to 3 dimensional confinement effects, quantised energy levels are produced in the filled low energy valence band and in the empty conduction band of the quantum dots which is very unlike bulk semiconductors. The energy gap between the conduction and valance band varies with the size of the quantum dot which explains the tunable emissions (colour) when excited. Additionally, alloyed quantum dots can be further tuned because the bandgap is approximately equal to the weighted average of the composite semiconductor material. Quantum dots excited in the near-infrared are expected to be revolutionary in biomedical imaging. There has been concerns about the stability and toxicity, as many quantum dots lose luminescence intensity when exposed to light/air/oxygen/water and they are generally composed of heavy metal materials.

Upconversion Nanomaterials

Upconversion nanomaterials consist of two parts, first the host dielectric lattice (e.g., NaYF4) with one or more guest trivalent lanthanide (atomic numbers 5771) ions (e.g., Er3+, Yb3+). Upconversion is an anti-stokes process, two or more lower energy photons are absorbed (either simultaneously or stepwise) via long-lived real electronic states of the lanthanide dopant and a higher energy photon is emitted. The lanthanide element has a specific electronic configuration with energy levels which is usually independent of the host material type, the nanoparticle shape and its size.

Electrons are arranged in shells around an atoms nucleus, where the closest electrons to the nucleus have the lowest energy. Each shell can hold a certain number of electrons (principal quantum number) the first shell (1) can hold 2 electrons, the second (2) 8 and the third (3) 18. Within these shells are subshells (defined by theazimuthal quantum number) and are labelled s,p,d or f which can hold 2,6,10 or 14 electrons respectively.

In the case of upconversion, the 5s and 5p shells are full whereas the 4f-4f shells are not. But, because 5s and 5p are full they shield the 4f-4f shells which allows sharp line-like luminescence, i.e. the luminescencepeak is not broad. This luminescence is also resistant to photobleaching, high photostability and are nonblinking, which of course is beneficial over fluorescent molecules which experience high levels of degradation. Through careful design, upconversion nanomaterials can display a variety of emission and excitation wavelengths from UV to NIR.

These upconversion nanoparticles can be incorporated with photosensitizers to produce reactive oxygen species which generally require activation by UV light. This therapy procedure is calledPhotodynamic therapyand can be used for treating a wide range of medical conditions including malignant cancers and acne. Upconverison nanomaterials also have applications in multimodal imaging through the use of specific dopants high atomic number dopants for computed tomography (CT) imaging, radioisotopes for single-photon emission tomography (SPECT) imaging or positron emission tomography(PET) imaging.

MagneticNanomaterials

At the nanoscale, certain magnetic materials below a specific size exhibit a special form of magnetism called superparamagnetism. Superparamagnetic nanoparticles behave as single domain paramagnets when under an external magnetic field but once the field is removed there is no residual magnetisation. Typically, these materials areIron oxide nanoparticles. Additionally, these nanomaterials tend to be non-toxic and can be readily coated with molecules for further functionalization. These nanoparticles are commonly used as MRI contrast agentsinmagnetic resonance imaging (MRI).Furthermore, magnetic nanoparticles can be used in nanotherapy either through magnetic-field-directed drug delivery or through magnetic hyperthermia which involves localized heating of diseased tissues and therefore, cell death.

Silica Nanoparticles

Silica is a highly biocompatible biomaterial which is often used in nanomedicine.

Mesoporous silica nanoparticles are silica nanoparticles which have been template-patterned to have pores throughout the particle. This is done through the use of surfactants likeCetrimonium bromide(CTAB), which is extracted after synthesis leaving holes where the CTAB once was. In these pores, water insoluble materials can be added, such as drugs for chemotherapy, dyes for imaging or even small nanoparticles. These pore sizes can be controlled to encapsulate various sizes of biomolecules. Silica is often used to coat nanoparticles to achieve biocompatibility and to simplify further functionalisation.

PlasmonicNanomaterials

Now, saving the best for last plasmonic nanoparticles.

Plasmonic nanoparticles consist of noble metals like gold, silver, copper and aluminium. At the nanoscale, these materials can supportLocalized surface plasmons, which is a collective oscillation of the free surface electrons at the interface between the nanomaterial and the surrounding dielectric medium when resonance occurs between the natural resonant frequency of the surface electrons and the frequency of the incident light photons. The LSPR can be tuned with the material, size and shape of the nanoparticle.

Plasmonic nanoparticles can scatter and absorb light, for example, for smaller nanoparticles absorption tends to dominate (more light is absorbed which is generally converted to heat energy) and for larger nanoparticles scattering tends to dominate (which is exploited in bioimaging). For this reason, smaller nanoparticles are often used in photothermal therapy. InPhotothermal therapy, plasmonic nanoparticles accumulate in diseased tissues then are irradiated with resonant light, the nanoparticles absorb this light energy and convert it to heat energy, resulting in localised heating of the damaged tissue. This localised heating causes cell death, thus this therapy can be used for cancerous tumors. This heating can be visualised using thermographical measurements or using a dark field microspectroscope, plasmon scattering can be used in medical imaging. Please giveBiomedical applications of plasmon resonant metal nanoparticles, Liao et. al.a read for additional information.

Like Loading...

Read this article:
What is Nanomedicine? The future of medicine.

Posted in Nano Medicine | Comments Off on What is Nanomedicine? The future of medicine.

11th European and Global Summit for Clinical Nanomedicine …

CLINAM FoundationThe goal of the CLINAM Foundation is to contribute to the benefit of patients and society by exploring and translating leading edge technologies towards clinical application, with an emphasis on nanomedicine, targeted medicine, precision medicine and personalization. The summit keeps its tradition to build bridges from the enabling technologies to clinical application for major and neglected diseases. There is broad support for this summit by many collaborating institutions.

Scientific Committee Prof. Dr. med. Patrick Hunziker, University Hospital Basel (CH) (chairman) Prof. Dr. med. Christoph Alexiou, Head, Section of Experimental Oncology and Nanomedicine (SEON),Else Krner-Fresenius-Foundation Professorship, University Hospital Erlangen (D) Prof. Dr. Lajos Balogh, Editor-in-Chief, Precision Nanomedicine Journal, North Andover, MA (USA) Prof. Dr. Gerd Binnig, Nobel Laureate, Munich (D) Prof. Dr. Yechezkel Barenholz, Hebrew University, Hadassah Medical School, Jerusalem (IL) Prof. Dr. med. Omid Farokhzad, Director, Center for Nanomedicine, Harvard Medical Schooland Brigham and Women's Hospital, Boston, MA (USA) Prof. Dr. Twan Lammers, Experimental Molecular Imaging, RWTH Aachen (D) Prof. Dr. med. Dong Soo Lee, PhD, Chair, Department of Nuclear Medicine, Seoul NationalUniversity, Seoul (KOR) Dr. med. h.c. Beat Lffler, MA, CEO, CLINAM-Foundation, Basel (CH) (contents and programme) Prof. Dr. med. Marisa Papaluca, European Medicines Agency (EMA), London (UK) Prof. Dr. Gert Storm, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht (NL) Prof. Dr. Dr. h.c. Viola Vogel, Head, Department of Health Sciences and Technology Laboratory of Applied Mechanobiology, ETH Zrich (CH)

IntroductionThe CLINAM Summit is a globally unique event that brings together all stakeholders in nanomedicine, targeted medicine and precision medicine. It builds on the principle that fundamental scientists, developers and profes-sionals in clinical application and all to nanomedicine related persons can mutually learn from each other to find better solutions for the medicine of the future. Based on recent groundbreaking achievements, the meeting will be a highlight to explore the pathways to personalized medicine and highlight its potential for prevention, diagnosis, therapy by development of tools, materials and strategies for this young field. CLINAM is thus evolving toward its role as the international meeting forum for interdisciplinary fields of cutting edge medicine. CLINAM will again welcome the participants from the community of nanomedicine, targeted drug delivery and precision medicine and bring together the pioneers and worldwide opinion leaders, not only to learn and discuss but also to develop new ideas, create new collaborative projects and shape the future of medicine. Senior scientists enlighten young researchers and students with their long experience and expertise. The summit expects again about 500 participants from more than 35 countries that make use of the role of the CLINAM Foundation as the nonprofit service provider for novel nanomedicine, targeted delivery and precision medicine. CLINAM BASEL welcomes you and wishes you three days of great science, great contacts and high level wellbeing with cultural elements in the evenings.CLINAM is the worldwide melting pot in the field of nanomedicine, targeted delivery and precision medicine. Meet in Basel at a high-level communication platform where you find those striving for the development in all fields of renewing medicine.

Target AudienceThe faculty includes the pioneers and opinion leaders in the fields of medicine, nanoscience and targeted medicine, who share experience in an interdisciplinary and interactive manner that widens mutual understanding for both sides. The summit and the exhibition are aimed at physicians, as well as nonscientists with a background in pharmacology, biology, physics, chemistry, biophysics, medicine, materials science and engineering. The meeting is a particularly useful source of knowledge for the targeted medicine and delivery community. The conference is also of interest for members of the regulatory authorities as well as policymakers, experts from industry in the field of life sciences, developers of new tools and materials for nanomedicine, and all those investigating the potential of emerging technologies in the field of healthcare. Experts from venture companies can acquire knowledge on existing and upcoming developments and novel products in the emerging field of nanomedicine and knowledge based medicine. Government authorities can profit from the regulators international sessions.Visa for Switzerland Embassy Appointment minimum 6 weeks before travelling!Before registering, check Visa-Regulations for Switzerland: Participants with visa-need for entering Switzerland have to make their appointment with the Swiss Embassy 6 weeks before the Summit in their country in order to make an application and to acquire a visa. All concerned will ask us in a mail to send an official invitation letter, which you will have to present at the embassy. For this we need your statement of nationality, full address, periapt address, passport number, date of birth.

Registration for the Summit: clinam18.viva-events.ch

CLINAM Exhibition:Profit of ExhibitingExhibitors at the CLINAM Summit profit from meeting their potential clients in one spot since CLINAM is presently the worlds largest summit on Clinical Nanomedicine with 500+ participants in need of toolmakers findings, knowledge and their devices. SMEs and small Start-up companies have the chance to showcase their skills at an affordable price and to meet ALL STAKEHOLDERS in the field of nanomedicine, targeted delivery and precision medicine. This is a Foyer exhibition at low exhibitors rate. All breaks and catering for lunches take place in midst of the CLINAM marketplace. Start-up booths are given to companies that are less than 3 years in active development.

Regular Fees Booking online: clinam18.viva-events.chFloor Space (350 /m2) 6 m2 2'100.00 (minimum)8 m2 2'800.00 12 m2 4000.00 (Maximum is 36 m2) Company name A3 on pillar 100 1 table, 2 chairs, 1 pin board for poster & power connection 200 Exhibitors Ticket for Conference Exhibitors multi-user-badge 800 Booth Construction on demand

Special Start-up Booth4 m2, 1 table, 2 chairs, pillar, power connection, 1 pin board and 1 registration(Upon application, company less than 3 years active) 1650.00

Summit VenueCongress Center Basel Messeplatz 21 CH-4021 Basel, Switzerland Phone +41 58 206 28 28This email address is being protected from spambots. You need JavaScript enabled to view it.

Registration OfficeViva Management GmbH Kramgasse 16C -3011 Bern, Switzerland Phone +41 31 311 74 34This email address is being protected from spambots. You need JavaScript enabled to view it.

Organizers Oce European Foundation forClinical Nanomedicine (CLINAM) Alemannengasse 12CH-4058 Basel, Switzerland Phone +41 61 695 93 95This email address is being protected from spambots. You need JavaScript enabled to view it.

Exhibitors at CLINAM 11/2018 (Status June) Izon Science Europe Ltd. Nacamed Resistell AG Precision Nanomedicine PRNANO Deutsche Plattform Nano Biomedizin Particle Metrix GmbH SiBreaX AG Precision NanoSystems, Inc. Polymun Scientific GmbH Lipoid AG Seroscience Ltd. InnoMedica AG ESNAM, edinethics TECOmedical AG Aseptic Technologies S.A. EVA - the Basel Life Sciences Start-up Agency/BASEL INKUBATOR CIBER-BBN Cordouan Technologies

Sponsors of the 11th European and Global Summit for Clinical Nanomedicine, Targeted Delivery and Precision Medicine The Building Blocks to Personalized Medicine

The European Foundation for Clinical Nanomedicine is a non-profit institution aiming at advancing medicine to the benefit of individuals and society through the application of nanoscience. Aiming at prevention, diagnosis, and therapy through nanomedicine as well as at exploration of its implications, the Foundation reaches its goals through support of clinically focussed research and of interaction and information flow between clinicians, researchers, the public, and other stakeholders. The recognition of the large future impact of nanoscience on medicine and the observed rapid advance of medical applications of nanoscience have been the main reasons for the creation of the Foundation.Nanotechnology for MedicineNanotechnology is generally considered as the key technology of the 21st century. It is an interdisciplinary scientific field focusing on methods, materials, and tools on the nanometer scale, i.e. one millionth of a millimeter. The application of this science to medicine seeks to benefit patients by providing prevention, early diagnosis, and effective treatment for prevalent, for disabling, and for currently incurable medical conditions.

See the original post:
11th European and Global Summit for Clinical Nanomedicine ...

Posted in Nano Medicine | Comments Off on 11th European and Global Summit for Clinical Nanomedicine …

Nanomedicine – Overview

The program began in 2005 with a national network ofeight Nanomedicine Development Centers. Now, in the second half of this 10-year program, the four centers best positioned to effectively apply their findings to translational studies were selected to continue receiving support.

Nanomedicine, an offshoot of nanotechnology, refers to highly specific medical intervention at the molecular scale for curing disease or repairing damaged tissues, such as bone, muscle, or nerve. A nanometer is one-billionth of a meter, too small to be seen with a conventional lab microscope. It is at this size scale about 100 nanometers or less that biological molecules and structures operate in living cells.

The NIH vision for Nanomedicine is built upon the strengths of NIH funded researchers in probing and understanding the biological, biochemical and biophysical mechanisms of living tissues. Since the cellular machinery operates at the nanoscale, the primary goal of the program - characterizing the molecular components inside cells at a level of precision that leads to re-engineering intracellular complexes - is a monumental challenge.

The teams selected to carry out this initiative consist of researchers with deep knowledge of biology and physiology, physics, chemistry, math and computation, engineering, and clinical medicine. The choice and design of experimental approaches are directed by the need to solve clinical problems (e.g., treatment of sickle cell disease, blindness, cancer, and Huntingtons disease). These are very challenging problems, and great breakthroughs are needed to achieve the goals within the projected 10 year timeframe. The initiative was selected for the NIH Roadmap (now Common Fund) precisely because of the challenging, high risk goals, and the NIH team is working closely with the funded investigators to use the funds and the intellectual resources of the network of investigators to meet those challenges.

10 Year Program Design High Risk, High Reward

The Centers were funded with the expectation that the first half of the initiative would be more heavily focused on basic science with increased emphasis on application of this knowledge in the second five years. This was a novel, experimental approach to translational medicine that began by funding basic scientists interested in gaining a deep understanding of an intracellular nanoscale system and necessitated collaboration with clinicians from the outset in order to properly position work at the centers so that during the second half of the initiative, studies would be applied directly to medical applications. The program began witheight Nanomedicine Development Centers(NDCs), and four centers remain in the second half of the program.

Clinical Consulting Boards (CCBs)

The program has establishedClinical Consulting Boards (CCBs)for each of the continuing centers. These boards consist of at least three disease-specific clinician-scientists who are experts in the target disease(s). The intent is for CCBs to provide advice and insight into the needs and barriers regarding resource and personnel allocations as well as scientific advice as needed to help the centers reach their translational goals. Each CCB reports directly to the NIH project team.

Translational Path

In 2011, the PIs of the NDCs worked with their CCBs to precisely define their translational goals and the translational research path needed to reach those goals by the end of the initiative in 2015. To facilitate this, the NIH project team asked them to developcritical decision pointsalong their path. These critical decision points differ from distinct milestones because they may be adjusted based on successes, challenges, barriers, and progress. Similarly, the timing of these decision points may be revised as the centers progress. Research progress and critical decision points are revisited several times a year by the CCB and the NIH team, and when a decision point is reached, next steps are re-examined for relevance, feasibility and timing.

Transition plan

Throughout the program, various projects have been spun off of work at all the centers and most have received funding from other sources. This was by design as work at each center has been shifting from basic science to translational studies. Centers will not be supported by the common fund after 10 years. It is expected that work at the centers will be more appropriately funded by other sources. Pre-clinical targets will likely be developed, and the work at each center will be focused on a specific disease so the work will need to transition out of the experimental space of the common fund.

Support for the NIH Nanomedicine Initiative is provided by the NIH Common Fund, and a team of staff members from across the NIH oversees the program. You may direct questions or comments on the NIH Nanomedicine Initiative to Dr. Richard S. Fisher, Nanomedicine Project Team Leader (nano@nih.gov).

Go here to see the original:
Nanomedicine - Overview

Posted in Nano Medicine | Comments Off on Nanomedicine – Overview

What is Nanomedicine? : Center for Nanomedicine

Nanomedicine is defined as the medical application of nanotechnology. Nanomedicine can include a wide range of applications, including biosensors, tissue engineering, diagnostic devices, and many others. In the Center for Nanomedicine at Johns Hopkins, we focus on harnessing nanotechnology to more effectively diagnose, treat, and prevent various diseases. Our entire bodies are exposed to the medicines that we take, which can lead to unpleasant side effects and minimize the amount of medicine that reaches the places where it is needed. Medications can be more efficiently delivered to the site of action using nanotechnology, resulting in improved outcomes with less medication.

For example, treating cancer with current chemotherapy delivery techniques is like spraying an entire rose garden with poison in order to kill a single weed. It would be far more effective to spray a small amount of poison, directly on the weed, and save the roses. In this analogy, a cancer patients hair follicles, immune cells, and epithelia are the roses being poisoned by the chemotherapy. Using nanotechnology, we can direct the chemotherapy to the tumor and minimize exposure to the rest of the body. In addition, our nanotechnologies are more capable of bypassing internal barriers (see Technologies), further improving upon conventional nanotechnologies. Not only is our approach more effective at eradicating tumors (see Cancer under Research), but it also results in much higher quality of life for the patient.

Nanotechnology can also reduce the frequency with which we have to take our medications. Typically, the human body can very quickly and effectively remove medications, reducing the duration of action. For example, the current treatment for age-related macular degeneration (AMD) requires monthly injections into the eye in a clinical setting. However, if the medication is slowly released from the inside of a nanoparticle, the frequency of injection can be reduced to once every 6 months (see Eye under Research). The nanoparticle itself also slowly biodegrades into components that naturally occur in the body, which are also removed from the body after the medication has done its job. This exciting technology is currently being commercialized and moved toward clinical trials (see Commercialization).

Nanomedicine will lead to many more exciting medical breakthroughs. Please explore our various nanotechnology platforms and the numerous areas in which we are pursuing nanomedicine-based medical solutions.

Link:
What is Nanomedicine? : Center for Nanomedicine

Posted in Nano Medicine | Comments Off on What is Nanomedicine? : Center for Nanomedicine