Search Immortality Topics:

Page 110«..1020..109110111112..120130..»


Category Archives: Genetic Therapy

A cystic brosis success story — over 30 years | Health – The Union Leader

In August 1989, scientists made a blockbuster discovery: They pinpointed the faulty gene that causes cystic fibrosis, a cruel lung disease that killed many of its victims before they reached adulthood.

The human genome was uncharted territory, and the gene hunt had become an all-out international race, with laboratories in three countries searching for the root of the disease.

That fall, biologist James Wilson stood before an audience of researchers, physicians and cystic fibrosis patients and their families and described gene therapy, a way to replace the faulty gene with a good copy. Wilson had intended his talk to be technical and prophetic, but he was overwhelmed by the surging thrill in the room that science was about to save peoples lives.

It was one of the most amazing experiences that Ive ever had, Wilson said, adding, The expectations were through the roof.

The importance of the cystic fibrosis gene discovery went far beyond a single illness. It helped build the case for the $3 billion project to sequence the entire human genome, which would alter understanding of human biology and shed light on rare and common diseases.

But the story of cystic fibrosis has been illustrative in a way that no one could have anticipated back then. In the early days of human genetics, the path seemed straightforward: Find the gene, fix the gene and repeat for other diseases. The cystic fibrosis journey, from an exuberant moment of insight to a major success, would take 30 years of persistent, methodical work: a feat of science, business, fundraising and patience that has become a model for other diseases.

I specifically remember sitting with my doctor in the exam room, having the conversation that the gene was discovered, said Josh Taylor, 48, of Virginia Beach, who has cystic fibrosis. And him telling me the cure is just he literally said, In 5 to 10 years, were going to beat this.

It was not until late 2019 that another breakthrough fulfilled many of the hopes of 1989. Now, Taylor has what he has been waiting for all these decades a new drug, Trikafta, that is effective for 90 percent of patients. Doctors marvel at what they think will be possible if it is given at an early age: a full life span.

Cystic fibrosis developed when a child had the bad luck to inherit two faulty genes, one from each parent. Back then, there was no test to detect whether a parent carried a defective gene because no one even knew what the gene was.

As scientists developed new tools to probe human genetics, cystic fibrosis quickly became one of the top targets. It is the most common inherited disease among Caucasians, afflicting 30,000 Americans, and its motivated patient group spurred the work forward with funding.

All these human disease genes were floating around. We knew they were inherited, but we knew very little. We didnt know what the genes were, or where they were located, said Robert Nussbaum, a medical geneticist who was hunting genes for other diseases.

Francis Collins, now director of the National Institutes of Health and then a scientist at the University of Michigan working on cystic fibrosis, was photographed for the universitys graduates magazine sitting in a haystack holding a needle, to convey the magnitude of the technical challenge.

Almost everybody knew some family where it had happened, and it was heartbreaking to see what these kids go through, Collins said.

Robert Beall, then an executive vice president at the Cystic Fibrosis Foundation, which was funding the work, was also the most impatient human being I ever met to his credit, Collins said.

Collins partnered with biologist Lap-Chee Tsui, in Toronto holding joint lab meetings at a midway point on the long drive, in London, Ontario.

After years of work, Tsuis lab had narrowed the search to ever smaller stretches of DNA, pioneering new techniques in the search for the gene. Collins had invented a method to speed up the process called chromosome jumping, which allowed scientists to leap over sections of DNA something he compares to leaping from one street corner to the next to initiate searches. Jack Riordan, another scientist in Toronto, discovered a bit of DNA that looked like it might be a part of the gene, providing an essential lead.

In May, a scientist in Tsuis lab found a tantalizing clue three missing letters of DNA in a patient with cystic fibrosis. The team would need to confirm that this genetic mutation was the cause of the disease. Collins and Tsui were at a scientific conference at New Haven, Conn., a month later when they got more evidence.

One rainy night after the days program was over, the pair raced to Tsuis room, where he had installed a portable fax machine to receive updates from the lab. Among the papers that had spilled onto the floor was a table showing those three letters of DNA missing in multiple patients with cystic fibrosis, while they were present in healthy people.

Lap-Chee was a little more skeptical, Ive got to see more data, Collins recalled. I bought it, that was it. I wanted to scream and jump up and down.

The news report triggered frantic preparations to present the findings officially, and the work was published in Science magazine that September in three papers.

Collins would testify before Congress that it was necessary to fund the human genome project because the flat-out effort to find the cystic fibrosis gene simply would not be scalable in trying to understand thousands of other diseases.

Gene therapy, the thinking went, would soon cure cystic fibrosis, marking a turning point in the treatment of genetic diseases. The idea was relatively straightforward: Use a virus to ferry a good, functioning copy of the gene into patients lung cells.

But human biology turned out to have all sorts of ways of resisting an easy fix, and it quickly became clear that gene therapy would not be simple in real lungs.

Then the entire gene therapy field screeched halted in 1999 with the death of Jesse Gelsinger, a teenager with a metabolic disorder who died after being treated for the disorder in one of Wilsons gene therapy trials.

As the hope for a high-profile gene therapy success crashed, research continued on the basic, less glamorous work to untangle what went wrong with the cystic fibrosis gene. That understanding made it possible to develop ways to screen chemicals, to see if any showed promise as a drug.

Beall and Preston Campbell of the Cystic Fibrosis Foundation visited Aurora Biosciences, a San Diego biotech company that used robotics to massively speed up such testing.

Bob and I were like kids in a candy shop, Campbell recalled. After a small initial investment, the foundation stunned the nonprofit world in 2000 by awarding the company $40 million, a new kind of venture philanthropy arrangement in which if the company was successful, the nonprofit group would receive a share of the royalties.

A Massachusetts company, Vertex Pharmaceuticals, acquired Aurora in 2001, and although the cystic fibrosis work continued, it was considered a long shot, called the fantasy project internally, recalled Fred Van Goor, a scientist who joined the company around that time and became the biology lead for the cystic fibrosis program.

The scientific problem was huge: The most common gene mutation in cystic fibrosis created a protein that couldnt do its essential job in the cell. The protein didnt fold correctly, which interfered with its ability to reach the surface of the cell. And it didnt function well once there, where it was supposed to work as a gate. That meant theyd need multiple drugs to help patients one to get the protein to the right spot, the other one to open the gate.

Vertexs first drug candidate was focused on just one of the problems getting the gate to work better. Alone, it would help only about 4% of patients, whose disease was caused by a rare mutation. That drug, Kalydeco, was approved in 2012, but it remained unclear whether a drug could be made that would work for a larger group of patients.

Then, Vertexs main product a hepatitis C drug was eclipsed by a better treatment from a competitor, and the future of the company and its cystic fibrosis research was cast in doubt.

It obviously created an incredible crisis here at Vertex, said Jeff Leiden, chief executive of the company.

Vertexs board decided to bet on cystic fibrosis, and in 2015, a two-drug combination called Orkambi, was approved for a larger group of cystic fibrosis patients. Excitement about the drugs began to yield to a societal debate about their high prices; Orkambis launch price was $259,000 a year.

Meanwhile, the company would need to develop a third drug to treat more patients.

Drug trials are blinded so that neither the patients nor the scientists know which people are receiving the drug and which are receiving a placebo. When Trikafta, the triple drug combination that would ultimately be approved, was unblinded from one trial in October 2018, researchers finally saw the slide showing how the drug affected lung function.

There was a stunned silence in the room for a full minute. The drug worked.

Ten percent of cystic fibrosis patients, or about 3,000 people in the United States, are still waiting for a therapy that works for them.

Stacy Carmona, who was born just three years before the gene was discovered, is one of them.

Im so excited for the community. Im so excited for the CF friends I have who so desperately need the drug. There are so many people hanging on by a thread, waiting for this, Carmona said. The flip side of that is you cant help but wonder when is it going to be my turn?

Read more here:
A cystic brosis success story -- over 30 years | Health - The Union Leader

Posted in Genetic Therapy | Comments Off on A cystic brosis success story — over 30 years | Health – The Union Leader

Orchard Therapeutics (ORTX) Q1 2020 Earnings Call Transcript – Motley Fool

Image source: The Motley Fool.

Orchard Therapeutics(NASDAQ:ORTX)Q12020 Earnings CallMay 9, 2020, 8:30 p.m. ET

Operator

Ladies and gentlemen, thank you for standing by, and welcome to the Orchard Therapeutics First Quarter 2020 Investor Conference Call. [Operator Instructions]

I would now like to hand off the conference over to your speaker today, Renee Leck, Director of Investor Relations. Please go ahead, ma'am.

Renee T. Leck -- Director, Investor Relations

Thanks, Sonia. Good morning, everyone, and welcome to Orchard's First Quarter 2020 Investor Call. You can access the slides for today's call by going to the Investors section of our website, orchardtx.com.

Before we get started, I'd like to remind everyone that statements we make on this call will include forward-looking statements. Actual events and results could differ materially from those expressed or implied by any forward-looking statements as a result of various risk factors and uncertainties, and including those set forth in our annual 10-K filed with the SEC and any other filings we may make. In addition, any forward-looking statements made on this call represent our views only as of today and should not be relied upon as representing our views as of any subsequent date. We specifically disclaim any obligation to update or revise any forward-looking statements.

And with that, I'll turn the call over to our CEO, Bobby Gaspar.

Bobby Gaspar, M.D., Ph.D. -- Chief Executive Officer

Thanks, Renee. Hello, everyone, and welcome. I'd like to start by first acknowledging the tremendous efforts of our organization and our partners in the healthcare field to ensure patients in need continue to receive care during this difficult time. Thank you, everyone. The last few weeks have been an important period for Orchard. Since taking on the leadership, Frank and I, together with the executive team, have thought very carefully about what the new Orchard can become, how we can ensure that Orchard can fulfill its true potential and what we need to do to make that happen.

When we think about our strategic vision as a company, it's really all based on the potential of the hematopoietic stem cell gene therapy platform, where it can take us and the benefit it can provide for many patient populations even beyond our current portfolio of ultra-rare diseases. We have taken some bold and decisive actions that we believe will allow Orchard to achieve long-term growth and focus the company on sustainable value creation. This vision is supported by a new strategic plan that we have developed and which is built around four pillars. Each of these forms a chapter in our remarks this morning.

First, operating efficiencies. We have made a series of important changes to our operations that will enable us to sharpen our focus and more efficiently execute our strategy, which I will detail in a moment. Second is our commercial build. We are focused on establishing the right model for the diagnosis and treatment of patients undergoing HSC gene therapy, and see the true value of this approach over a series of ultra-rare products. Third, one of the most exciting areas in gene therapy right now is the innovation taking place in manufacturing technologies that have the potential to deliver economies of scale. We want to be leaders and invest in this space, knowing that our near-term capacity needs are covered by our experienced CDMO network.

Finally, central to this strategy is prioritizing our portfolio to enable the expansion of Orchard's pipeline beyond ultra-rare to less-rare indications. We are disclosing two new research programs for the first time today, and these are a genetic subset of frontotemporal dementia or FTD, and a genetic subset of Crohn's disease. We believe that the biological and clinical validation that has already been shown in our ultra-rare indications allow us to expand with confidence to these larger indications.

Turning to the first chapter in our new strategic plan. We are focused on improving the operational efficiency throughout the organization. This started with an extensive evaluation over the past six weeks of each program in our portfolio using several criteria that are shown here on the left-hand side of slide five. We undertook an objective analysis that involved both financial metrics and strategic considerations in identifying those programs where there was high need for patients and high-value creation for shareholders. As you can imagine, these were difficult decisions given the potentially transformative nature of many of these programs. Each has value, and we intend to realize that in different ways and over different time horizons.

Today, however, we believe our resources are best focused on Metachromatic Leukodystrophy, Wiskott-Aldrich syndrome, the MPS programs and our research programs. This also means that we have a balanced portfolio with late, mid and early stage programs. The programs I haven't mentioned such as OTL-101 and ADA-SCID and the transfusion-dependent, beta-thalassemia program, OTL-300, will have a reduced investment moving forward. We will look for alternative ways to realize value with those programs, including through partnerships.

So slide six brings together a summary of the operational changes that we've announced today. We believe these changes were important and necessary to enable Orchard to execute its mission and objectives at the highest level by matching our attention and resources to a set of core imperatives for the business. As summarized here, we expect to realize cash savings of approximately $15 million from the prioritization of our portfolio. Another $60 million in savings results from the decision to consolidate our R&D teams to one site and defer the investment in the manufacturing facility. Finally, the more staged approach to the commercial build-out and 25% reduction to our existing workforce and future headcount planning will each yield another $25 million in savings.

All of these cash savings are expected to be realized over 2020 and 2021, and result in total expected savings of $125 million over that period. With the revised plan, we now have cash runway into 2022 and no near term need to finance. It's worth briefly mentioning that this $125 million savings is after making investments in the following key areas to support our new strategy, shown on slide seven. In commercial, diagnostic and screening initiatives, including no-charge testing programs to help identify patients with MLD and other neurodegenerative conditions in time for treatment. In manufacturing, the technology, process innovations and efficiencies to drive scalability.

In R&D, initiatives in less-rare diseases that have the potential to fuel the company's future growth in a substantial way. This wasn't just an exercise to reduce expenses, but important decision-making to ensure our capital is deployed in a disciplined manner, while building a pipeline that can leverage our success across all phases of our business.

Now let me turn the call over to Frank to discuss additional key elements of the new plan.

Frank Thomas -- President and Chief Operating Officer

Thanks, Bobby, and good morning, everyone. As you can tell from this morning's press release, we have carefully examined each aspect of our business. You heard that a moment ago from Bobby, with the way we are creating operational efficiencies, and I think you will see additional evidence in the next two sections as we summarize our latest thinking around commercial deployment and manufacturing. Starting with commercial. We understand the importance of developing a commercial model that will demonstrate our ability to execute and bring these therapies to the market successfully. This model and the infrastructure that we build will also be leveraged for any future product launches.

As you'll note from the bottom of slide nine, each rare disease has certain dynamics that will impact the launch trajectory and speed with which we can penetrate the market. In fact, we anticipate our first two potential launches in WAS and MLD having distinct but complementary launch curves, as you can see from the illustrative diagrams. Let me start with MLD on the left, where we expect to launch first in the EU, followed by the U.S. and then other countries around the world. We think an important inflection point on the revenue curve with MLD will come later when newborn screening is established, providing an opportunity for an acceleration in growth rate. Disease progression is a second important dynamic that will affect market penetration. Because MLD advances so rapidly, it will be important to diagnose patients early and get them treated.

For Wiskott-Aldrich syndrome, the dynamics are very different, and it's reflected in the shape of the curve on the right. Unlike MLD, this disease is slower progressing and more readily diagnosed. We believe that WAS will provide an opportunity to treat a number of prevalent patients from the outset and also give us additional long-term revenue stream. This program, the BLA and MAA filings are on track for 2021. Turning back to MLD for an update on the regulatory time line. We are on track to get a decision from the European Medicines Agency later this year, and if approved, launch in the EU in the first half of 2021.

In the U.S., we recently engaged with the FDA on our planned BLA submission of OTL-200 for the treatment of MLD. The FDA has provided written feedback on the sufficiency of the company's data package, including the clinical endpoint, the natural history comparator and the CMC data package. As a result of this feedback, we intend to file an IND later this year and also seek RMAT designation, both of which we believe will facilitate a more comprehensive dialogue to discuss the data more fully and resolve the open matters before submitting a BLA. We are committed to working closely with the agency, and we'll provide updated guidance on the new filing time lines for the BLA after further regulatory interaction.

On slide 10, you can see that we're tracking nicely for the launch of OTL-200 in the EU in the first half of 2021, if approved, with Germany being the first country where we expect to treat commercial patients. Many of the prelaunch activities are under way, and the team has been able to keep up momentum during the pandemic to work with key centers and progress with site qualifications. We intend to set up a network of treatment centers where MLD patients are often referred and who also have transplant expertise. These same centers can be leveraged in future launches, especially for programs in the neurometabolic franchise.

I previously mentioned the importance of diagnosis in MLD to identify patients at early stages of disease, and we are taking the necessary steps to achieve long-term success. Beyond typical disease awareness efforts, we are also looking at initiatives such as no-charge diagnostic testing with partners such as Invitae, and we are looking to facilitate newborn screening for MLD with funding of upcoming pilots in New York State and Italy that are designed to validate the assay and provide the data for wider implementation. Success in these key initiatives will support early MLD patient identification.

Coming up quickly behind MLD and the neurometabolic franchise, our two proof-of-concept programs in MPS disorders, where we have made recent progress even during this challenging period with COVID-19. For MPS-I, over the past year, we've shown promising preliminary proof-of-concept data with positive engraftment, biomarker correction and encouraging early clinical outcomes, and we are excited to announce our plan to begin a registrational trial next year, bringing this program one step closer to commercialization.

For MPS-IIIA, we announced late last month that the first patient was treated in a proof-of-concept trial at Royal Manchester Children's Hospital, with enrollment planned to continue this year and interim data to be released in 2021. You can see graphically on slide 12 how the aggregation of these commercial markets lead to sustainable revenue growth. In addition, the infrastructure build is designed to provide the necessary commercial capabilities to realize the potential of the portfolio. On this slide, we've included the incidence figures for MLD and the incidence and prevalence figures for WAS to help you understand each opportunity as we see it today.

Given the dynamics at play for MLD that I described on slide nine, we believe this opportunity should largely be tied to the incident patient population, which we believe ranges from 200 to 600 patients per year in countries where rare diseases are often reimbursed. We've taken a more conservative view than previously on the addressable patient and market opportunity in countries such as those in the Middle East and Turkey, where the literature has a wide range of differing incident figures. Also, over time, with improved disease awareness, there may be prevalent patients identified who also could benefit from therapy. Our commercial strategy has always been and continues to be based not only on one product, but rather the aggregation of multiple potential products launching off one HSC gene therapy platform and infrastructure.

Turning to manufacturing. We've also made some key changes to our approach in manufacturing and how we allocate capital in the short and mid-term. On slide 14, you'll see the main tenets of our new manufacturing strategy. First, in the near term, we plan to focus on innovative technologies to enable commercial scalability.

Second, to ensure the appropriate focus on those technologies, we've made a decision to consolidate R&D to a single site in London, which brings together our organization in a more efficient way. This will allow efforts made to improve our manufacturing processes to be quickly and easily shared and then scaled commercially to transfer to our third party manufacturers, all of whom are currently located in Europe. As part of this consolidation, we will close our California site, including the termination of the Fremont project and associated capital spend.

Third, we have strong relationships with CDMOs that will ensure supply of clinical and commercial product to satisfy near-term requirements. And longer term, we intend to identify a new site in the U.S. to eventually bring manufacturing capabilities in-house with a facility that is appropriately sized and fitted for future techniques and operations.

Slide 15 shows the three phases of our approach in manufacturing: invest, partner and build. Today, we are investing, and we'll continue to invest in technologies such as transduction enhancers, stable producer cell line and closed automated processing of the drug product. This will potentially reduce the amount of vector needed, drive down COGS and potentially change the way products are manufactured, making it less labor-intensive, less expensive and more consistent. In the near and mid-term, we will continue to rely on our manufacturing partners for the early planned launches in MLD and WAS. For example, MolMed has been with these programs since the beginning, and they've been a reliable commercial partner with Strimvelis.

In addition to our existing CDMO network, we have begun to search for a drug product partner in the U.S. to complete a tech transfer and serve the U.S. market, thereby reducing scheduling challenges and creating some redundancy. And finally, over time, we plan to build in-house manufacturing capabilities closer to when there is a need for additional capacity. This enables us to explore options that are more aligned with our business in terms of scale and timing.

And with that, I'll turn the call back over to Bobby.

Bobby Gaspar, M.D., Ph.D. -- Chief Executive Officer

Thanks, Frank. In this section, I'm going to briefly highlight the potential of HSC gene therapy to correct not only blood lineage cells, but also how through natural mechanisms, specific cell types may allow correction of disease in specific organ systems and enable expansion of our portfolio into new research indications. As many of you know, and as shown on slide 17, through HSC gene therapy, we are able to insert a working copy of the gene permanently into the genome of HSCs, and these genetically modified cells can lead to multiple corrected cell types in the bloodstream, including immune cells, red blood cells and platelets.

In addition, HSCs can differentiate into cells of the monocyte macrophage lineage that naturally migrate into various organ systems, and thus gives us an opportunity to deliver genes and proteins directly to those organs, including the brain and the GI tract. Within the neurometabolic space, in particular, we have understood through our preclinical and clinical programs in MLD, MPS-I and MPS-IIIA how HSC gene therapy can deliver genes and proteins to the CNS to correct neurodegeneration. Here is an example of this natural mechanism at work in slide 18.

Data shows that there are a population of gene-modified HSCs that can naturally cross the blood-brain barrier, distribute throughout the brain, engraft as microglia and express enzyme that is taken up by neurons. We have seen this approach results in clinical benefits for patients with MLD, and we are also using the same approach for MPS-I and MPS-IIIA. Beyond this, we see that the HSC gene therapy approach could be used to deliver specific genes and proteins for other larger neurodegenerative conditions which have high unmet need.

One of the conditions we are disclosing today, and shown on slide 19, is a specific genetic subset of frontotemporal dementia, where the underlying pathogenesis has a number of parallels with the neurometabolic conditions that we are already addressing. This program involves a broad strategic alliance with Dr. Alessandra Biffi, Boston Children's Hospital and Padua University in Italy, to further explore the potential of ex vivo HSC gene therapy in neurometabolic and neurodegenerative conditions. In other organ systems, such as the GI tract, there are similar mechanisms at work which are illustrated on slide 20. Tissue resident macrophages in the gut wall are required to respond to bacterial invasion from the gut lumen and prevent infection. In certain disorders, such as X-linked chronic granulomatous disease or XCGD, defects in macrophage function results in an abnormal immune response and severe colitis.

Moving on to slide 21. We have already seen in our XCGD program the modification of HSCs and migration of gene-modified cells into the gut can lead to resolution of colitis through presumed reconstitution of the immune response. Certain subsets of Crohn's disease are also associated with mutations in genes that affect the response of macrophages to infection, and so our clinical observations that HSC gene therapy for XCGD suggest that the same approach may be applicable to this genetic subset of Crohn's disease. This preclinical work is ongoing in our Orchard research laboratories.

As we advance our work in FTD and Crohn's disease, and assuming we show preclinical proof-of-concept, these will become exciting opportunities for us to expand and address larger patient populations, either alone or in partnership. We believe we have truly just begun to explore the potential for HSC gene therapy in diseases such as these and others, and are excited to share more about the preclinical development of these programs later this year.

So to summarize our path forward on slide 22, the next 12 to 18 months offers many important milestones as we continue our evolution to a commercial stage company and advance our next wave of clinical stage therapies. We anticipate approval and launch of OTL-200 for MLD in the EU, additional regulatory filings in Wiskott-Aldrich syndrome and MLD, a new registrational study next year in MPS-I, multiple clinical data readouts from our neurometabolic franchise and further detail and progress on our research programs in FTD and Crohn's disease.

To wrap up our prepared remarks, we are confident that our new strategic plan and operational decisions announced today will set us on the right path to achieve long-term growth, build sustainable value and serve an even larger number of patients who could benefit from hematopoietic stem cell gene therapy.

Thank you very much. And now we'll use the rest of the time to answer your questions. So let's have the operator open up the line.

Operator

Thank you. [Operator Instructions] And our first question comes from Whitney Ijem from Guggenheim. Your line is now open. Please go ahead.

Whitney Ijem -- Guggenheim -- Analyst

Hey guys, thanks for the question. So first, just wondering, can you give us some more color maybe on the discussions you're having with the FDA in MLD? Kind of what are they looking for? And I guess is the IND just sort of a tool to get RMAT? Or is there additional kind of clinical work you plan you think you'll need to do?

Bobby Gaspar, M.D., Ph.D. -- Chief Executive Officer

Hi. Whitney, Bobby here. Thanks for that. In general, we can't go into all of the details, obviously, of the discussions with the FDA. But I think in the release and in the script, we've talked about the fact that they've commented on certain endpoints, the natural history, the CMC package, etc. Now I think I'd just like to say this is a and obviously, a very complex disease, a very ultra-rare population, we have extensive data set, and we have already filed with the EMA. Now for historical reasons, there hasn't been an IND in the U.S., and so we haven't had the opportunity to discuss that data in full with the FDA.

What I can say is that we do have an extensive body of data. We want to be able to talk to the FDA and have a comprehensive dialogue to be able to explain that full data set. We feel confident that we have the endpoints that they are looking for and the data that they are asking for. But we need to have that conversation with them in order to be explain to be able to do that fully. So that's why we're filing an IND filing, filing the RMAT, so we can have that dialogue. And once we can clarify those issues, then we can go ahead with submission of the BLA.

Whitney Ijem -- Guggenheim -- Analyst

Okay. Got it. And then just one quick follow-up on MLD. Can you remind us where you are with newborn screening, I guess, both in Europe and then in the U.S.?

Bobby Gaspar, M.D., Ph.D. -- Chief Executive Officer

Yes, sure. So newborn screening for MLD, I think, is an important, a very important issue, because, obviously, that means that we'll be able to get earlier diagnosis and have more patients be able to access therapy. So it's a very important part of our kind of diagnostic initiatives in this disease. What we have so far is that we have worked with a key scientist, where an assay has been developed, that's been published to show that there is an assay that we've done on a dry blood spot to understand the decrease in the enzyme activity and also the increase in the sulfur-type levels.

And that assay is now going to be put into pilots, and we are funding a pilot in New York State, and that will start later this year. And we're also looking at pilots in other states as well. We're also transferring that assay to Italy and that and we're funding a program in Tuscany and in Italy where that will be rolled out. And we're also looking for opportunities in other EU states as well. So I'd say, there are already two that are going to start, we are looking to fund other pilots as well.

And together, that data will allow us to validate the assay but also allow wider implementation of newborn screening, and also for nomination, for example, onto the WAS panel for implementation in states in the U.S. So I say there's a lot of work going on in order to make sure that happens.

Whitney Ijem -- Guggenheim -- Analyst

Great, thanks.

Bobby Gaspar, M.D., Ph.D. -- Chief Executive Officer

Thank you.

Operator

And your next question comes from Esther Rajavelu from Oppenheimer. Your line is now open. Please go ahead.

Esther Rajavelu -- Oppenheimer -- Analyst

Hey guys. Congrats on all the changes. I guess, my first question again on MLD is I'm trying to understand the duration between EU approval and NBS. I don't know if that math or if that graph was drawn to scale, but it looks like it's almost a four-year lag from first approval to newborn screening. Can you help us understand the time line there?

Frank Thomas -- President and Chief Operating Officer

You mean between EU and U.S. or around newborn screening or both?

Esther Rajavelu -- Oppenheimer -- Analyst

Around newborn screening, generally, between EU approval and newborn screening.

Frank Thomas -- President and Chief Operating Officer

Yes, sure. As Bobby mentioned, there's a pretty active program planned around newborn screening that I think we will expect will come over time in order to even apply for the Ross Panel, there are certain requirements that need to be met in terms of the number of patients or a number of children that have to be screened, identifying the positive patients and then you can apply on the Ross Panel. And then from there, there's a process that you go through in the U.S., at least, on a state-by-state basis to get it added.

So I think there are a number of steps along the way. We haven't guided specifically on the time line, but I think there are other precedents out there that suggest that this could take years. Once we screen the once we apply for the Ross Panel to get sort of full reimbursement, but obviously, we'll focus on states initially after that approval that have the largest populations.

Esther Rajavelu -- Oppenheimer -- Analyst

And my Yes, go ahead.

Bobby Gaspar, M.D., Ph.D. -- Chief Executive Officer

Esther for I was just going to say for the EU, obviously, we're looking for approval for MLD later this year. As far as people screening in the EU is concerned, that's on a country-by-country basis, and sometimes it's even certain states. But I've worked on newborn screening for SCID, for example, in the EU. And now there are numerous countries in the EU that are screening for SCID with a number of pilots also in the pipeline as well. And so with that kind of experience, and we would be looking to kind of really facilitate that uptake in the EU and as in and in the U.S., as Frank has already mentioned.

Esther Rajavelu -- Oppenheimer -- Analyst

Understood. And then the decision to defer capex, is that related to some of the time lines for U.S. versus EU approvals and the newborn screening? Or what really kind of went into that delay, given you already have some cost into that facility?

Frank Thomas -- President and Chief Operating Officer

Yes. I can start, and Bobby can add on that again. I think, obviously, we continue to believe in-house manufacturing is an important capability that we're going to want to have over some period of time. It really comes down to sort of when is the need for that capacity and capability relative to the various programs we have. Working with the CDMOs that we have today, we know that we have capacity for the MLD and WAS launches and for a period beyond the launch. So there's not an imminent need to secure the capacity today, and we think that deferring it makes the most sense. We'll continue to work with CDMOs on those launches.

We will look at bringing on a U.S. supplier for drug product to be able to more easily service the U.S. market. And then longer term, look at, potentially, in-house manufacturing at a site and location that we think is more fitted to what the capacity needs will be. So I wouldn't say it's tied to any sort of launch time lines because the plan always was to utilize CDMOs for WAS and MLD. But certainly, as those launches roll out and demand grows, our capacity needs will grow and that will be the appropriate time, we think, to make the investment.

Esther Rajavelu -- Oppenheimer -- Analyst

Understood. Thank you very much.

Bobby Gaspar, M.D., Ph.D. -- Chief Executive Officer

Thank you.

Operator

And your next question comes from Anupam Rama from JPMorgan. Your line is now open. Please go ahead.

Tessa Romero -- JPMorgan -- Analyst

Good morning, guys. This is Tessa on the call this morning for Anupam. You pointed out that updated interim data from the proof-of-concept trial for OTL-203 and MPS-I is expected at ASGCT upcoming here next week. Can you remind us of what will be the size and scope of data that we will see at the conference? And maybe can you just clarify if there is any other newly updated clinical data we should be thinking about for other programs at ASGCT?

Bobby Gaspar, M.D., Ph.D. -- Chief Executive Officer

Okay, fine. Bobby here, and I'll take this question. On MPS-I, so just to remind you, the proof-of-concept study has enrolled all eight patients, so that's been fully recruited into. What we've shared with you previously is biochemical data showing the overexpression of IDUA activity, the decrease in the heparan and dermatan sulfate, the engraftment of gene-modified cells and some early clinical data on patients who have got beyond the one-year time frame after gene therapy. There was only previously one patient who had reached that time point.

So there's been further follow-up on those eight patients. We'll be able to show you longer-term engraftment of the gene-modified cells, more consistent overexpression of enzymatic activity, longer follow-up, decrease in GAG levels and also more clinical data on patients who have got to longer endpoints as well. So we'll be able to show data assay on clinical data on patients after longer follow-up. And this will be both on their cognitive outcome, but we also will have data on, for example, growth parameters as well, which is again a big issue in MPS-I. So that is for MPS-I.

We will also be sharing data on OTL-101 as well for ADA-SCID. There will be further follow-up on patients who have undergone treatment for transfusion-dependent beta-thalassemia, so longer follow-up on the patients who have been treated so far. So there's really quite, as well as other programs. So there's really quite an extensive body of data, and it just showcases the potential of Orchard's platform across a number of different diseases and how HSC gene therapy can correct the underlying defects in immune deficiencies, neurometabolic deficiencies and hemoglobin opportunities as well. And obviously, we'll give you more detail on those different abstracts next week.

Tessa Romero -- JPMorgan -- Analyst

Great, thank you.

Bobby Gaspar, M.D., Ph.D. -- Chief Executive Officer

Thank you.

Operator

Original post:
Orchard Therapeutics (ORTX) Q1 2020 Earnings Call Transcript - Motley Fool

Posted in Genetic Therapy | Comments Off on Orchard Therapeutics (ORTX) Q1 2020 Earnings Call Transcript – Motley Fool

ROCKET PHARMACEUTICALS : Management’s Discussion and Analysis of Financial Condition and Results of Operations (form 10-Q) – marketscreener.com

You should read the following discussion and analysis of our financial conditionand results of operations together with the condensed consolidated financialstatements and related notes that are included elsewhere in this QuarterlyReport on Form 10-Q and our Annual Report on Form 10-K for the fiscal year endedDecember 31, 2019 filed with the U.S. Securities and Exchange Commission, or theSEC, on March 6, 2020, or our 2019 Form 10-K. This discussion containsforward-looking statements based upon current plans, expectations and beliefsthat involve risks and uncertainties. Our actual results may differ materiallyfrom those anticipated in these forward-looking statements as a result ofvarious factors, including, but not limited to, those discussed in the sectionentitled "Risk Factors" and elsewhere in this Quarterly Report on Form 10-Q. Inpreparing this MD&A, we presume that readers have access to and have read theMD&A in our 2019 Form 10-K, pursuant to Instruction 2 to paragraph (b) of Item303 of Regulation S-K. Unless stated otherwise, references in this QuarterlyReport on Form 10-Q to "us," "we," "our," or our "Company" and similar termsrefer to Rocket Pharmaceuticals, Inc.

We are a clinical-stage, multi-platform biotechnology company focused on thedevelopment of first, only and best-in-class gene therapies, with directon-target mechanism of action and clear clinical endpoints, for rare anddevastating diseases. We currently have three clinical-stage ex vivo lentiviralvector ("LVV") programs currently enrolling patients in the US and EU forFanconi Anemia ("FA"), a genetic defect in the bone marrow that reducesproduction of blood cells or promotes the production of faulty blood cells,Leukocyte Adhesion Deficiency-I ("LAD-I"), a genetic disorder that causes theimmune system to malfunction and Pyruvate Kinase Deficiency ("PKD"), a rare redblood cell autosomal recessive disorder that results in chronic non-spherocytichemolytic anemia. Of these, both the Phase 2 FA program and the Phase 1/2 LAD-Iprogram are in registration-enabling studies in the US and EU. In addition, inthe US we have a clinical stage in vivo adeno-associated virus ("AAV") programfor Danon disease, a multi-organ lysosomal-associated disorder leading to earlydeath due to heart failure. Finally, we have a pre-clinical stage LVV programfor Infantile Malignant Osteopetrosis ("IMO"), a genetic disorder characterizedby increased bone density and bone mass secondary to impaired bone resorption -this program is anticipated to enter the clinic in 2020. We have globalcommercialization and development rights to all of these product candidatesunder royalty-bearing license agreements. Additional work in the discovery stagefor an FA CRISPR/CAS9 program as well as a gene therapy program for the lesscommon FA subtypes C and G is ongoing.

Recent Developments

On February 20, 2020, we entered into separate, privately negotiated exchangeagreements (the "Exchange Agreements") with certain holders of our outstanding5.75% Convertible Senior Notes due 2021 (the "2021 Convertible Notes") to extendthe maturity date by one year. Pursuant to the Exchange Agreements, we exchangedapproximately $39.35 million aggregate principal amount of the 2021 ConvertibleNotes (which represents approximately 76% of the aggregate outstanding principalamount of the 2021 Convertible Notes) for (a) approximately $39.35 millionaggregate principal amount of 6.25% Convertible Senior Notes due August 2022(the "2022 Convertible Notes") (an exchange ratio equal to 1.00 2022 ConvertibleNote per exchanged 2021 Convertible Note) and (b) $119,416 in cash to pay theaccrued and unpaid interest on the exchanged 2021 Convertible Notes from, andincluding, February 1, 2020 to February 20, 2020. The 2022 Convertible Noteswere issued in private placements exempt from registration in reliance onSection 4(a) (2) of the Securities Act of 1933, as amended (the "SecuritiesAct"). Upon completion of the exchange transactions, approximately $12.65million aggregate principal amount of 2021 Convertible Notes remainedoutstanding.

Gene Therapy Overview

Genes are composed of sequences of deoxyribonucleic acid ("DNA"), which code forproteins that perform a broad range of physiologic functions in all livingorganisms. Although genes are passed on from generation to generation, geneticchanges, also known as mutations, can occur in this process. These changes canresult in the lack of production of proteins or the production of alteredproteins with reduced or abnormal function, which can in turn result in disease.

Gene therapy is a therapeutic approach in which an isolated gene sequence orsegment of DNA is administered to a patient, most commonly for the purpose oftreating a genetic disease that is caused by genetic mutations. Currentlyavailable therapies for many genetic diseases focus on administration of largeproteins or enzymes and typically address only the symptoms of the disease. Genetherapy aims to address the disease-causing effects of absent or dysfunctionalgenes by delivering functional copies of the gene sequence directly into thepatient's cells, offering the potential for curing the genetic disease, ratherthan simply addressing symptoms.

We are using modified non-pathogenic viruses for the development of our genetherapy treatments. Viruses are particularly well suited as delivery vehiclesbecause they are adept at penetrating cells and delivering genetic materialinside a cell. In creating our viral delivery vehicles, the viral (pathogenic)genes are removed and are replaced with a functional form of the missing ormutant gene that is the cause of the patient's genetic disease. The functionalform of a missing or mutant gene is called a therapeutic gene, or the"transgene." The process of inserting the transgene is called "transduction."Once a virus is modified by replacement of the viral genes with a transgene, themodified virus is called a "viral vector." The viral vector delivers thetransgene into the targeted tissue or organ (such as the cells inside apatient's bone marrow). We have two types of viral vectors in development, LVVand AAV. We believe that our LVV and AAV-based programs have the potential tooffer a long-lasting and significant therapeutic benefit to patients.

Gene therapies can be delivered either (1) ex vivo (outside the body), in whichcase the patient's cells are extracted and the vector is delivered to thesecells in a controlled, safe laboratory setting, with the modified cells thenbeing reinserted into the patient, or (2) in vivo (inside the body), in whichcase the vector is injected directly into the patient, either intravenously("IV") or directly into a specific tissue at a targeted site, with the aim ofthe vector delivering the transgene to the targeted cells.

We believe that scientific advances, clinical progress, and the greaterregulatory acceptance of gene therapy have created a promising environment toadvance gene therapy products as these products are being designed to restorecell function and improve clinical outcomes, which in many cases includeprevention of death at an early age.

--------------------------------------------------------------------------------

The chart below shows the current phases of development of Rocket's programs andproduct candidates:

LVV Programs. Rocket's LVV-based programs utilize third-generation,self-inactivating lentiviral vectors to target selected rare diseases.Currently, Rocket is developing LVV programs to treat FA, LAD-I, PKD, and IMO.

Fanconi Anemia Complementation Group A (FANCA):

FA, a rare and life-threatening DNA-repair disorder, generally arises from amutation in a single FA gene. An estimated 60 to 70% of cases arise frommutations in the Fanconi-A ("FANCA") gene, which is the focus of our program. FAresults in bone marrow failure, developmental abnormalities, myeloid leukemiaand other malignancies, often during the early years and decades of life. Bonemarrow aplasia, which is bone marrow that no longer produces any or very few redand white blood cells and platelets leading to infections and bleeding, is themost frequent cause of early morbidity and mortality in FA, with a median onsetbefore 10 years of age. Leukemia is the next most common cause of mortality,ultimately occurring in about 20% of patients later in life. Solid organmalignancies, such as head and neck cancers, can also occur, although at lowerrates during the first two to three decades of life.

Although improvements in allogeneic (donor-mediated) hematopoietic stem celltransplant ("HSCT"), currently the most frequently utilized therapy for FA, haveresulted in more frequent hematologic correction of the disorder, HSCT isassociated with both acute and long-term risks, including transplant-relatedmortality, graft versus host disease ("GVHD"), a sometimes fatal side effect ofallogeneic transplant characterized by painful ulcers in the GI tract, livertoxicity and skin rashes, as well as increased risk of subsequent cancers. Ourgene therapy program in FA is designed to enable a minimally toxic hematologiccorrection using a patient's own stem cells during the early years of life. Webelieve that the development of a broadly applicable autologous gene therapy canbe transformative for these patients.

Each of our LVV-based programs utilize third-generation, self-inactivatinglentiviral vectors to correct defects in patients' HSCs, which are the cellsfound in bone marrow that are capable of generating blood cells over a patient'slifetime. Defects in the genetic coding of HSCs can result in severe, andpotentially life-threatening anemia, which is when a patient's blood lacksenough properly functioning red blood cells to carry oxygen throughout the body.Stem cell defects can also result in severe and potentially life-threateningdecreases in white blood cells resulting in susceptibility to infections, and inplatelets responsible for blood clotting, which may result in severe andpotentially life-threatening bleeding episodes. Patients with FA have a geneticdefect that prevents the normal repair of genes and chromosomes within bloodcells in the bone marrow, which frequently results in the development of acutemyeloid leukemia ("AML"), a type of blood cancer, as well as bone marrow failureand congenital defects. The average lifespan of an FA patient is estimated to be30 to 40 years. The prevalence of FA in the US and EU is estimated to be about4,000, and given the efficacy seen in non-conditioned patients, the addressableannual market opportunity is now thought to be in the 400 to 500 range.

We currently have one LVV-based program targeting FA, RP-L102. RP-L102 is ourlead lentiviral vector based program that we in-licensed from Centro deInvestigaciones Energticas, Medioambientales y Tecnolgicas ("CIEMAT"), whichis a leading research institute in Madrid, Spain. RP-L102 is currently beingstudied in our sponsored Phase 2 registrational enabling clinical trialstreating FA patients initially at the Center for Definitive and CurativeMedicine at Stanford University School of Medicine ("Stanford") and HospitalInfantil de Nino Jesus ("HNJ") in Spain. The Phase 2 portion of the trial isexpected to enroll ten patients total from the U.S. and EU. Patients willreceive a single IV infusion of RP-L102 that utilizes fresh cells and "ProcessB" which incorporates a modified stem cell enrichment process, transductionenhancers, as well as commercial-grade vector and final drug product.

--------------------------------------------------------------------------------

Table of ContentsIn October 2019, at the European Society of Cell and Gene Therapy ("ESGCT") 2019Annual Congress, long-term Phase 1/2 clinical data of RP-L102, from the clinicaltrial sponsored by CIEMAT, for FA "Process A", without the use of myeloablativeconditioning was presented demonstrating evidence of increasing and durableengraftment leading to bone marrow restoration exceeding the 10% thresholdagreed to by the FDA and EMA for the ongoing registration-enabling Phase 2trial. In patient 02002, who received what we consider adequate drug product,hemoglobin levels are now similar to those in the first year after birth,suggesting hematologic correction over the long term.

During the third quarter of 2019, we received alignment from the FDA on thetrial design and the primary endpoint. This alignment was similar to thatpreviously received from the European Medicines Agency ("EMA"). Resistance tomitomycin-C, a DNA damaging agent, in bone marrow stem cells at a minimum timepoint of one year to serve as the primary endpoint for our Phase II study. InDecember 2019, we announced that the first patient of the global Phase 2 studyfor RP-L102 "Process B" for FA received investigational therapy. There will betotal of 10 patients enrolled in the global Phase 2 studies.

In December 2019, we also announced preliminary results from two pediatricpatients treated with "Process B" RP-L102 prior to development of severe bonemarrow failure in our Phase 1 trial of RP-L102 for FA. To evaluate transductionefficiency, an analysis of the proportion of the MMC-resistant colony formingcells was conducted and both patients have thus far exhibited early signs ofengraftment, including increases in blood cell lineages in one patient. Nodrug-related safety or tolerability issues have been reported.

Leukocyte Adhesion Deficiency-I (LAD-I):

LAD-I is a rare autosomal recessive disorder of white blood cell adhesion andmigration, resulting from mutations in the ITGB2 gene encoding for the Beta-2Integrin component, CD18. Deficiencies in CD18 result in an impaired ability forneutrophils (a subset of infection-fighting white blood cells) to leave bloodvessels and enter into tissues where these cells are needed to combatinfections. As is the case with many rare diseases, true estimates of incidenceare difficult; however, several hundred cases have been reported to date.

Most LAD-I patients are believed to have the severe form of the disease. SevereLAD-I is notable for recurrent, life-threatening infections and substantialinfant mortality in patients who do not receive an allogeneic HSCT. Mortalityfor severe LAD-I has been reported as 60 to 75% by age two in the absence ofallogeneic HCST.

We currently have one program targeting LAD-I, RP-L201. RP-L201 is a clinicalprogram that we in-licensed from CIEMAT. We have partnered with UCLA to leadU.S. clinical development efforts for the LAD-I program. UCLA and its Eli andEdythe Broad Center of Regenerative Medicine and Stem Cell Research is servingas the lead U.S. clinical research center for the registrational clinical trialfor LAD-I, and HNJ is serving as the lead clinical site in Spain.

The ongoing open-label, single-arm, Phase 1/2 registration enabling clinicaltrial of RP-L201 has dosed one severe LAD-I patient in the U.S. to assess thesafety and tolerability of RP-L201. The first patient was treated with RP-L201in third quarter 2019. This study has received $6.5 million CLIN2 grant awardfrom the California Institute for Regenerative Medicine ("CIRM") to support theclinical development of gene therapy for LAD-I.

In December 2019, we announced initial results from the first pediatric patienttreated with RP-L201, demonstrating early evidence of safety. Analyses ofperipheral vector copy number ("VCN"), and CD18-expressing neutrophils wereperformed through three months after infusion of RP-L201 to evaluate engraftmentand phenotypic correction. The patient exhibited early signs of engraftment withVCN myeloid levels at 1.5 at three months and CD-18 expression of 45%. No safetyor tolerability issues related to RP-L201 administration (or investigationalproduct) had been identified as of that date. The study is expected to enrollnine patients globally.

Pyruvate Kinase Deficiency (PKD):

Red blood cell PKD is a rare autosomal recessive disorder resulting frommutations in the pyruvate kinase L/R ("PKLR") gene encoding for a component ofthe red blood cell ("RBC") glycolytic pathway. PKD is characterized by chronicnon-spherocytic hemolytic anemia, a disorder in which RBCs do not assume anormal spherical shape and are broken down, leading to decreased ability tocarry oxygen to cells, with anemia severity that can range from mild(asymptomatic) to severe forms that may result in childhood mortality or arequirement for frequent, lifelong RBC transfusions. The pediatric population isthe most commonly and severely affected subgroup of patients with PKD, and PKDoften results in splenomegaly (abnormal enlargement of the spleen), jaundice andchronic iron overload which is likely the result of both chronic hemolysis andthe RBC transfusions used to treat the disease. The variability in anemiaseverity is believed to arise in part from the large number of diverse mutationsthat may affect the PKLR gene. Estimates of disease incidence have rangedbetween 3.2 and 51 cases per million in the white U.S. and EU population.Industry estimates suggest at least 2,500 cases in the U.S. and EU have alreadybeen diagnosed despite the lack of FDA-approved molecularly targeted therapies.Enrollment is currently ongoing and we anticipate treating the first patient inthe third quarter of 2020.

--------------------------------------------------------------------------------

Table of ContentsWe currently have one LVV-based program targeting PKD, RP-L301. RP-L301 is aclinical stage program that we in-licensed from CIEMAT. The IND for RP-L301 toinitiate a global Phase 1 study was cleared by the FDA in October 2019. Thisprogram has been granted EMA orphan drug disease designation and FDA orphan drugdisease designation ("ODD").

This global Phase 1 open-label, single-arm, clinical trial is expected to enrollsix adult and pediatric transfusion-dependent PKD patients in the U.S. andEurope. Lucile Packard Children's Hospital Stanford will serve as the lead sitein the U.S. for adult and pediatric patients, and Hospital InfantilUniversitario Nio Jess will serve as the lead site in Europe for pediatricsand Hospital Universitario Fundacin Jimnez Daz will serve as the lead site inEurope for adult patients.

Infantile Malignant Osteopetrosis (IMO):

IMO is a genetic disorder characterized by increased bone density and bone masssecondary to impaired bone resorption. Normally, small areas of bone areconstantly being broken down by special cells called osteoclasts, then madeagain by cells called osteoblasts. In IMO, the cells that break down bone(osteoclasts) do not work properly, which leads to the bones becoming thickerand not as healthy. Untreated IMO patients may suffer from a compression of thebone-marrow space, which results in bone marrow failure, anemia and increasedinfection risk due to the lack of production of white blood cells. Untreated IMOpatients may also suffer from a compression of cranial nerves, which transmitsignals between vital organs and the brain, resulting in blindness, hearing lossand other neurologic deficits.

We currently have one LVV-based program targeting IMO, RP-L401. RP-L401 is apreclinical program that we in-licensed from Lund University, Sweden. Thisprogram has been granted ODD and Rare Pediatric Disease designation from theFDA. The FDA defines a "rare pediatric disease" as a serious andlife-threatening disease that affects less than 200,000 people in the U.S. thatare aged between birth to 18 years. The Rare Pediatric Disease designationprogram allows for a sponsor who receives an approval for a product topotentially qualify for a voucher that can be redeemed to receive a priorityreview of a subsequent marketing application for a different product. We havepartnered with UCLA to lead U.S. clinical development efforts for the IMOprogram and anticipate that UCLA will serve as the lead U.S. clinical site forIMO. We intend to file an IND for IMO and commence our clinical trial in thefourth quarter of 2020.

Danon disease is a multi-organ lysosomal-associated disorder leading to earlydeath due to heart failure. Danon disease is caused by mutations in the geneencoding lysosome-associated membrane protein 2 ("LAMP-2"), a mediator ofautophagy. This mutation results in the accumulation of autophagic vacuoles,predominantly in cardiac and skeletal muscle. Male patients often require hearttransplantation and typically die in their teens or twenties from progressiveheart failure. Along with severe cardiomyopathy, other Danon disease symptomscan include skeletal muscle weakness, liver disease, and intellectualimpairment. There are no specific therapies available for the treatment of Danondisease. RP-A501 is in clinical trials as an in vivo therapy for Danon disease,which is estimated to have a prevalence of 15,000 to 30,000 patients in the U.S.and the EU, however new market research is being performed and the prevalence ofpatients may be updated in the future.

In January 2019, we announced the clearance of our IND application by the FDAfor RP-A501, and in February 2019, we were notified by the FDA that we weregranted Fast Track designation for RP-A501. University of California San DiegoHealth is the initial and lead center for our Phase 1 clinical trial.

On May 2, 2019, we presented additional preclinical data at the ASCGT annualmeeting, indicating that high VCN, in Danon disease-relevant organs in both miceand non-human primates ("NHN's"), with high concentrations in heart and livertissue (for NHP, cardiac VCN was approximately 10 times higher on average thanin skeletal muscle and central nervous system), which is consistent withreported results in several studies of heart tissue across different species.There were no treatment-related adverse events or safety issues up to thehighest dose. We have dosed three patients in the RP-A501 phase 1 clinicaltrial. We will continue further enrollment with clinical data read-outs in thefourth quarter of 2020.

As of March 2020, we have dosed three patients in the RP-A501 phase 1 clinicaltrial. This completes the first low dose cohort of the Phase 1 study. Based onthe preliminary safety and efficacy data review of this completed cohort, boththe FDA and IDMC has provided clearance to advance to a higher dose cohort inPhase 1 Trial of RP-A501 for Danon Disease. We will continue further enrollmentwith clinical data read-outs in the second half of 2020.

--------------------------------------------------------------------------------

In addition to its LVV and AAV programs, we also have a program evaluatingCRISPR/Cas9-based gene editing for FA. This program is currently in thediscovery phase. CRISPR/Cas9-based gene editing is a different method ofcorrecting the defective genes in a patient, where the editing is very specificand targeted to a particular gene sequence. "CRISPR/Cas9" stands for Clustered,Regularly Interspaced Short Palindromic Repeats ("CRISPR") Associated protein-9.The CRISPR/Cas9 technology can be used to make "cuts" in DNA at specific sitesof targeted genes, making it potentially more precise in delivering genetherapies than traditional vector-based delivery approaches. CRISPR/Cas9 canalso be adapted to regulate the activity of an existing gene without modifyingthe actual DNA sequence, which is referred to as gene regulation.

Strategy

We seek to bring hope and relief to patients with devastating, undertreated,rare pediatric diseases through the development and commercialization ofpotentially curative first-in-class gene therapies. To achieve these objectives,we intend to develop into a fully-integrated biotechnology company. In the near-and medium-term, we intend to develop our first-in-class product candidates,which are targeting devastating diseases with substantial unmet need, developproprietary in-house analytics and manufacturing capabilities and continue tocommence registration trials for our currently planned programs. In the mediumand long-term, we expect to submit our first biologics license applications("BLAs"), and establish our gene therapy platform and expand our pipeline totarget additional indications that we believe to be potentially compatible withour gene therapy technologies. In addition, during that time, we believe thatour currently planned programs will become eligible for priority review vouchersfrom the FDA that provide for expedited review. We have assembled a leadershipand research team with expertise in cell and gene therapy, rare disease drugdevelopment and commercialization.

We believe that our competitive advantage lies in our disease-based selectionapproach, a rigorous process with defined criteria to identify target diseases.We believe that this approach to asset development differentiates us as a genetherapy company and potentially provides us with a first-mover advantage.

Financial Overview

Since our inception, we have devoted substantially all of our resources toorganizing and staffing the Company, business planning, raising capital,acquiring or discovering product candidates and securing related intellectualproperty rights, conducting discovery, research and development activities forthe programs and planning for potential commercialization. We do not have anyproducts approved for sale and have not generated revenue from product sales.From inception through March 31, 2020, we raised net cash proceeds ofapproximately $373.1 million from investors through both equity and convertibledebt financing to fund operating activities. As of March 31, 2020, we had cash,cash equivalents and investments of $275.9 million.

Since inception, we have incurred significant operating losses. Our ability togenerate product revenue sufficient to achieve profitability will depend heavilyon the successful development and eventual commercialization of one or more ofthe current or future product candidates and programs. We had net losses of$24.7 million for the three months ended March 31, 2020 and $77.3 million forthe year ended December 31, 2019. As of March 31, 2020, we had an accumulateddeficit of $207.8 million. We expect to continue to incur significant expensesand higher operating losses for the foreseeable future as we advance our currentproduct candidates from discovery through preclinical development and clinicaltrials and seek regulatory approval of our product candidates. In addition, ifwe obtain marketing approval for any of their product candidates, we expect toincur significant commercialization expenses related to product manufacturing,marketing, sales and distribution. Furthermore, we expect to incur additionalcosts as a public company. Accordingly, we will need additional financing tosupport continuing operations and potential acquisitions of licensing or otherrights for product candidates.

Until such a time as we can generate significant revenue from product sales, ifever, we will seek to fund our operations through public or private equity ordebt financings or other sources, which may include collaborations with thirdparties and government programs or grants. Adequate additional financing may notbe available to us on acceptable terms, or at all. We can make no assurancesthat we will be able to raise the cash needed to fund our operations and, if wefail to raise capital when needed, we may have to significantly delay, scaleback or discontinue the development and commercialization of one or more productcandidates or delay pursuit of potential in-licenses or acquisitions.

Because of the numerous risks and uncertainties associated with productdevelopment, we are unable to predict the timing or amount of increased expensesor when or if we will be able to achieve or maintain profitability. Even if weare able to generate product sales, we may not become profitable. If we fail tobecome profitable or are unable to sustain profitability on a continuing basis,then we may be unable to continue our operations at planned levels and be forcedto reduce or terminate our operations.

Revenue

To date, we have not generated any revenue from any sources, including fromproduct sales, and we do not expect to generate any revenue from the sale ofproducts in the near future. If our development efforts for product candidatesare successful and result in regulatory approval or license agreements withthird parties, we may generate revenue in the future from product sales.

--------------------------------------------------------------------------------

Research and Development Expenses

Our research and development program ("R&D") expenses consist primarily ofexternal costs incurred for the development of our product candidates. Theseexpenses include:

expenses incurred under agreements with research institutions that conduct

research and development activities including, process development,

preclinical, and clinical activities on Rocket's behalf;

costs related to process development, production of preclinical and clinical

materials, including fees paid to contract manufacturers and manufacturing

input costs for use in internal manufacturing processes;

consultants supporting process development and regulatory activities; and

costs related to in-licensing of rights to develop and commercialize our

product candidate portfolio.

We recognize external development costs based on contractual payment schedulesaligned with program activities, invoices for work incurred, and milestoneswhich correspond with costs incurred by the third parties. Nonrefundable advancepayments for goods or services to be received in the future for use in researchand development activities are recorded as prepaid expenses.

Our direct research and development expenses are tracked on a program-by-programbasis for product candidates and consist primarily of external costs, such asresearch collaborations and third party manufacturing agreements associated withour preclinical research, process development, manufacturing, and clinicaldevelopment activities. Our direct research and development expenses by programalso include fees incurred under license agreements. Our personnel, non-programand unallocated program expenses include costs associated with activitiesperformed by our internal research and development organization and generallybenefit multiple programs. These costs are not separately allocated by productcandidate and consist primarily of:

Our research and development activities are central to our business model.Product candidates in later stages of clinical development generally have higherdevelopment costs than those in earlier stages of clinical development. As aresult, we expect that research and development expenses will increasesubstantially over the next several years as we increase personnel costs,including stock-based compensation, support ongoing clinical studies, seek toachieve proof-of-concept in one or more product candidates, advance preclinicalprograms to clinical programs, and prepare regulatory filings for productcandidates.

We cannot determine with certainty the duration and costs to complete current orfuture clinical studies of product candidates or if, when, or to what extent wewill generate revenues from the commercialization and sale of any of our productcandidates that obtain regulatory approval. We may never succeed in achievingregulatory approval for any of our product candidates. The duration, costs, andtiming of clinical studies and development of product candidates will depend ona variety of factors, including:

the scope, rate of progress, and expense of ongoing as well as any future

clinical studies and other research and development activities that we

undertake;

future clinical trial results;

uncertainties in clinical trial enrollment rates;

changing standards for regulatory approval; and

the timing and receipt of any regulatory approvals.

We expect research and development expenses to increase for the foreseeablefuture as we continue to invest in research and development activities relatedto developing product candidates, including investments in manufacturing, as ourprograms advance into later stages of development and as we conduct additionalclinical trials. The process of conducting the necessary clinical research toobtain regulatory approval is costly and time-consuming, and the successfuldevelopment of product candidates is highly uncertain. As a result, we areunable to determine the duration and completion costs of research anddevelopment projects or when and to what extent we will generate revenue fromthe commercialization and sale of any of our product candidates.

Our future research and development expenses will depend on the clinical successof our product candidates, as well as ongoing assessments of the commercialpotential of such product candidates. In addition, we cannot forecast with anydegree of certainty which product candidates may be subject to futurecollaborations, when such arrangements will be secured, if at all, and to whatdegree such arrangements would affect our development plans and capitalrequirements. We expect our research and development expenses to increase infuture periods for the foreseeable future as we seek to complete development ofour product candidates.

The successful development and commercialization of our product candidates ishighly uncertain. This is due to the numerous risks and uncertainties associatedwith product development and commercialization, including the uncertainty of:

--------------------------------------------------------------------------------

Table of Contents

the scope, progress, outcome and costs of our clinical trials and other

research and development activities;

the efficacy and potential advantages of our product candidates compared to

alternative treatments, including any standard of care;

the market acceptance of our product candidates;

obtaining, maintaining, defending and enforcing patent claims and other

intellectual property rights;

significant and changing government regulation; and

the timing, receipt and terms of any marketing approvals.

A change in the outcome of any of these variables with respect to thedevelopment of our product candidates that we may develop could mean asignificant change in the costs and timing associated with the development ofour product candidates. For example, if the FDA or another regulatory authoritywere to require us to conduct clinical trials or other testing beyond those thatwe currently contemplate for the completion of clinical development of any ofour product candidates that we may develop or if we experience significantdelays in enrollment in any of our clinical trials, we could be required toexpend significant additional financial resources and time on the completion ofclinical development of that product candidate.

General and Administrative Expenses

General and administrative ("G&A") expenses consist primarily of salaries andrelated benefit costs for personnel, including stock-based compensation andtravel expenses for our employees in executive, operational, finance, legal,business development, and human resource functions. In addition, othersignificant general and administrative expenses include professional fees forlegal, patents, consulting, investor and public relations, auditing and taxservices as well as other expenses for rent and maintenance of facilities,insurance and other supplies used in general and administrative activities. Weexpect general and administrative expenses to increase for the foreseeablefuture due to anticipated increases in headcount to support the continuedadvancement of our product candidates. We also anticipate that we will incurincreased accounting, audit, legal, regulatory, compliance and director andofficer insurance costs as well as investor and public relations expenses.

Interest Expense

Interest expense is related to the 2021 Convertible Notes, which mature inAugust 2021, and the 2022 Convertible Notes, which mature in August 2022.

Interest Income

Interest income is related to interest earned from investments.

Critical Accounting Policies and Significant Judgments and Estimates

Our consolidated financial statements are prepared in accordance with generallyaccepted accounting principles in the U.S. The preparation of our financialstatements and related disclosures requires us to make estimates and judgmentsthat affect the reported amounts of assets, liabilities, costs and expenses, andthe disclosure of contingent assets and liabilities in our financial statements.We base our estimates on historical experience, known trends and events andvarious other factors that we believe are reasonable under the circumstances,the results of which form the basis for making judgments about the carryingvalues of assets and liabilities that are not readily apparent from othersources. We evaluate estimates and assumptions on an ongoing basis. Actualresults may differ from these estimates under different assumptions orconditions.

Our significant accounting policies are described in more detail in our 2019Form 10-K, except as otherwise described below.

Results of Operations

Excerpt from:
ROCKET PHARMACEUTICALS : Management's Discussion and Analysis of Financial Condition and Results of Operations (form 10-Q) - marketscreener.com

Posted in Genetic Therapy | Comments Off on ROCKET PHARMACEUTICALS : Management’s Discussion and Analysis of Financial Condition and Results of Operations (form 10-Q) – marketscreener.com

Could intentionally infecting volunteers with COVID-19 help find a cure sooner? – CBC.ca

This is an excerpt fromSecond Opinion, aweeklyroundup of eclectic and under-the-radar health and medical science news emailed to subscribers every Saturday morning.If you haven't subscribed yet, you can do that byclicking here.

As researchers around the world race under immense pressure to develop a COVID-19 vaccine, a controversial approach could potentially help get them there faster but it's incredibly risky.

The process is known as a human challenge study, and it involves intentionally infecting willing volunteers with the coronavirus that causes COVID-19 in order to test the effectiveness of potential vaccines and treatments against it.

"These are very powerful studies that could make a difference, especially since we don't know a lot about the novel coronavirus," said Seema Shah, a medical ethicist at Northwestern University and Lurie Children's Hospital of Chicago.

"They could clarify what's happening in infections with people who are not symptomatic and people who have more severe disease even if they don't have underlying conditions that put them at higher risk."

Shah said COVID-19 human challenge studies could also help identify people who have developed immunity to the coronavirus, while also helping to narrow down the growing list of potential vaccines and treatments for patients.

"If there were a couple of vaccine candidates that had gotten through safety testing and there was a question about which one of those vaccines was more likely to work, a human challenge study could be a quick way to pick the best vaccine of the candidates," she said.

"It could also be useful to study whether the vaccine itself causes different kinds of harm."

The WHOsays any potential vaccine is still at least a year away, but human challenge trials could accelerate theprocess because of the time they save in the clinical trial phase.

Typically, researchers inject thousands of study participants with a vaccine or placebo and wait for symptoms to develop an approach that can take months or years after vaccine development.

Human challenge studies instead vaccinatea small group of people and then intentionally infectthem with the virus, saving critical research time, especially during a global pandemic.

But despite the potential benefits of a controlled human challenge study on COVID-19 patients, experts say the controversial approach is an ethical minefield that could have disastrous consequences if not handled carefully.

Human challenge studies typically recruit young, healthy volunteers in an effort to keep the risk of severe medical complications low.

Thousands of potential volunteers have already pledged to participate in human challenge trials on a website called 1DaySooner, but no such studies are yet underway.

Yet given what we know and don't know about the different ways in which COVID-19 attacks the human body even in young, healthy people, how do we effectively inform participants who may be unknowingly putting themselves at severe risk?

"We know that younger people tend to tolerate COVID-19 as an illness better, but what would worry me about that is there's a lot that is still unknown," said Kerry Bowman, a bioethicist and professor of global health at the University of Toronto.

He said the potential for COVID-19 patients of all ages to face long-term health implications and even death from a virus we still know so little aboutcalls into question how truly informed participants could be on the risks of a human challenge study.

"Do you truly have an informed decision?" he said. "You have consent, but is itreally well-informed? Do people fully understand? Because if we don't understand the virus itself, I wonder about the quality of informed consent that you can ask of people."

In a new paper published in the journal Science Thursday, Shah and a team of international researchers outline an ethical framework for how human challenge studies could be effectively used to combat COVID-19.

The researchers supportdeveloping a "challenge strain" of the coronavirus a stabilizedversion of the one thatis circulating worldwide to potentially infect participants, but stopped short of advocating for the work to proceed.

"The pandemic has affected just about everyone in the world in various ways, so the potential amount of social value is unprecedented here," Shah said.

"That's why our group concluded it's really important to give challenge studies a hard look and potentially invest in laying the groundwork for doing them.

"But then make that judgment call about whether and how to do them at a later date when they're ready to go."

The World Health Organization released specific criteria this week outlining its recommended approach to conducting human challenge studies, without advocating for or against them.

Among those recommendations is a need for "strong scientific justification" for the studies, ensuring that the potential benefits outweigh risksand that the selection of participants should be done with "rigorous" informed consent.

"The overarching, really important one is to minimize risk to participants as much as possible," said bioethicist Dr. Ross Upshur, of the University of Toronto's Dalla Lana School of Public Health, who helped work on the WHO guidelines.

"You need to make sure that people understand what's being proposed:what they're going to be doing;how they're going to be managed in this situation;how their safety and their well-being is going to be protected.

"But it's also incumbent on the researchers to outline all of the uncertainties,because we may not be able to actually quantify some of those risks."

Timothy Caulfield, a Canada Research Chair in health law and policy at the University of Alberta who has researched human challenge studies, said those ethical dilemmas have historically plagued this approach.

"I understand the desire to use human challenge trials, especially in this context, because people are desperate to get a vaccine quickly, not just for clinical reasons, but also for economic and social reasons," he said.

"So the pressure is intense, but the exact reason that we have research ethics guidelines is to protect research participants."

Caulfield said the damage that could be done if a human challenge trial were to go awry would be devastating.

He points to the ethics scandal involvingJesse Gelsinger, a teenager who died in a clinical trial for gene therapy in 1999, as an example of a failed human study that set the research ethics field back immensely.

Gelsingerhad a genetic disease called ornithine transcarbamylase (OTC) that he controlled through diet and medication, but after enrolling in the trialhe was injected with an experimental therapy and died a few days later.

"Just imagine the impact that it could have on vaccine research, especially in this environment where there's so much uncertainty," Caulfieldsaid.

"If it doesn't go well and if we cut corners on research ethics standards, it could end up backfiring and being really problematic."

To read the entireSecond Opinionnewsletter every Saturday morning, subscribe byclicking here.

View original post here:
Could intentionally infecting volunteers with COVID-19 help find a cure sooner? - CBC.ca

Posted in Genetic Therapy | Comments Off on Could intentionally infecting volunteers with COVID-19 help find a cure sooner? – CBC.ca

Recent advancements in management and treatment of thalassemia – Express Healthcare

Dr Gaurav Kharya, Clinical Lead, Centre for Bone Marrow Transplant and Cellular Therapy, Senior Consultant, Paediatric Haematology, Oncology and Immunology, Indraprastha Apollo Hospitals, New Delhi gives detailed insights into how treatment for thalassemia at the right can save patients, importance of tests to detect the disorder and preventive measures to be taken

Thalassemia is an inherited blood disorder that causes your body to have less haemoglobin than the normal levels. It is mostly caused by mutations in the DNA of cells that make haemoglobin and carries oxygen throughout the body. The mutations associated with thalassemia are passed from parents to children. Diagnosis of thalassemia can be made by simple test either Hb electrophoresis or preferably high performance liquid chromatography (HPLC). The test should be conducted before any blood transfusion otherwise they become difficult to interpret. Subsequently, a confirmatory genetic test should be done wherever possible. Over the past few years treatments for thalassemia major have evolved:

Excerpt from:
Recent advancements in management and treatment of thalassemia - Express Healthcare

Posted in Genetic Therapy | Comments Off on Recent advancements in management and treatment of thalassemia – Express Healthcare

Gene Therapy Market Aims to Expand at Double-Digit Growth Rate|Novartis AG, Gilead Sciences Inc., UniQure NV, Spark Therapeutics LLC, Bluebird Bio,…

The worldwide for Gene Therapy marketis expected to grow at a CAGR of roughly +33% over the next five years.

Gene therapy is a test treatment that includes bringing genetic material into an individuals phones to battle or counteract ailment. Specialists are reading gene therapy for various maladies, for example, extreme joined immuno-insufficiencies, hemophilia, Parkinsons infection, disease and even HIV, through various methodologies. A gene can be conveyed to a cell utilizing a bearer known as a vector. The most widely recognized kinds of vectors utilized in gene therapy are infections. The infections utilized in gene therapy are modified to make them safe, albeit a few dangers still exist with gene therapy. The innovation is still in its infancy

Market Research Inc is one of the growing organizations whose proficiency is in making a far reaching analysis and reports an organization wishes to have. It offers the latest industry updates, industry patterns, and research implementations. At that point, it uses the reports they gather to design techniques and solutions for the organization. In addition to the fact that it is accessible in the realm of business, however, it likewise works over several industry divisions.

Request AExclusive Sample Copy of This Gene Therapy Market report at https://www.marketresearchinc.com/request-sample.php?id=23888

Scope of the Report:

The Gene Therapy market is currently in a phase of transition as mobile operators seek to address increasing mobile traffic demands amidst economic uncertainties. This paradigm shift is bringing new challenges and opportunities to infrastructure vendors.

The key players covered in this study:

Market segment by Type, the product can be split into

Market segment by Application, split into

Different global regions such as North America, Latin America, Europe, Asia-Pacific, Africa, and India have been examined to get a better understanding of the competitive landscape.

Early buyers will get Discount on this report at https://www.marketresearchinc.com/ask-for-discount.php?id=23888

Key points of Gene Therapy Market Report

Key Questions Addressed by the Report

For Enquiry OR Any Query? Ask to our Expert @: https://www.marketresearchinc.com/enquiry-before-buying.php?id=23888

About Us

Market Research Inc is farsighted in its view and covers massive ground in global research. Local or global, we keep a close check on both markets. Trends and concurrent assessments sometimes overlap and influence the other. When we say market intelligence, we mean a deep and well-informed insight into your products, market, marketing, competitors, and customers. Market research companies are leading the way in nurturing global thought leadership. We help your product/service become the best they can with our informed approach.

Contact:

Market Research Inc

Kevin

51 Yerba Buena Lane, Ground Suite,

Inner Sunset San Francisco, CA 94103, USA

Call Us: +1 (628) 225-1818

Write Us@sales@marketresearchinc.com

Hormonal therapy industry market is considered to be a very small market because of the unlimited scopes as well as Limited market size which is only focused to was helping with being a substitute of the biotechnology and Clinical Research

Global Prescription Digital Therapeutics (DTx) Market 2020 research report presents analysis of market size, share, and growth, trends, cost structure, statistical and comprehensive data of the global market. The Market report offers noteworthy data regarding industrys growth parameters, the current

Global Pet Cancer Therapeutics Market Size, Status and Forecast 2020-2027 The Global Pet Cancer Therapeutics Market report mainly elaborates market size, share, trends, and growth analysis on the basis of different parameters. The Global Pet Cancer Therapeutics Industry analysis is

Read the original post:
Gene Therapy Market Aims to Expand at Double-Digit Growth Rate|Novartis AG, Gilead Sciences Inc., UniQure NV, Spark Therapeutics LLC, Bluebird Bio,...

Posted in Genetic Therapy | Comments Off on Gene Therapy Market Aims to Expand at Double-Digit Growth Rate|Novartis AG, Gilead Sciences Inc., UniQure NV, Spark Therapeutics LLC, Bluebird Bio,…