Search Immortality Topics:

Page 130«..1020..129130131132..140150..»


Category Archives: Genetic Therapy

This Genius Gene Therapy Plan Could Combat Cocaine Addiction – The National Interest Online

Have you ever slipped when trying to avoid sugar, quit smoking, or break another habit or addiction? Usually that one piece of cake or one cigarette wont ruin your whole plan, but for people struggling with cocaine addiction, one slip can undo months of hard work.

Cocaine consumption is increasing, with 2.2 million people in the U.S. admitting to recent cocaine use in 2017. In 2014, the National Survey on Drug Use and Health estimated that nearly 1 million Americans were addicted to cocaine. The effect of cocaine on the brain and body is so powerful that, even after state-of-the-art treatments, many people trying to quit cocaine relapse within a year.

What if cocaine could be made less euphoric, so that a single use by a recovering addict doesnt result in a full-blown relapse? Scientists at the Mayo Clinic recently published progress toward making this idea a reality a gene therapy that would treat cocaine addiction by making cocaine less rewarding.

We are a molecular biologist and a neurobiologist who are interested in understanding and treating human disease, including neurological disorders such as cocaine addiction. As University of Tennessee faculty members leading basic biomedical research, we have worked for years on how genes are turned on and off in people and the effects of cocaine on mice, respectively. So, we were excited to see a promising convergence of novel gene therapy and cocaine addiction therapy.

A treatment to make cocaine less addictive

Beginning more than 20 years ago, scientists have worked to engineer a new version of a human protein that could break down cocaine so quickly that it doesnt produce an addictive high. We all have the normal human protein BChE that helps regulate neurotransmitters, and which can slowly break down cocaine. Targeted mutations in BChE can turn it into a super-CocH a protein that can quickly break down cocaine. When this CocH is injected into the bloodstream, it breaks down cocaine very fast before the user can experience the pleasurable effects so a dose of cocaine is less rewarding. Being less rewarding means it is easier to stop using cocaine.

Previous research has shown that injections of the super-CocH protein drastically decrease addictive behavior in cocaine-addicted rats. Thats great. But the problem is that daily CocH injections would be too expensive and difficult to maintain for the years needed to prevent cocaine relapse for human users. It would be much more practical to provide a single treatment that could provide enough CocH to last for years.

One way to do that is gene therapy: Give patients the DNA sequence (the gene) that contains the instructions for making super-CocH so their bodies can keep making it for months or potentially years. Fortunately, over the past decade, this type of gene therapy has been moving from science fiction to hopeful reality. Clinical trials have demonstrated the potential of gene therapy to treat diseases from hemophilia to neurodegenerative disorders, and a handful of these are FDA-approved. The new Mayo Clinic study takes an important step toward making CocH gene therapy a reality.

How does gene therapy work?

How exactly does a scientist give a person a gene? You cant just swallow DNA the way you would a pill. The Mayo Clinic scientists had to find a way to deliver the gene to every cell in the liver. The way they did this was to insert the gene for super-CocH into a virus called adeno-associated virus (AAV). AAV has been modified so that when it infects cells it cannot reproduce in the body or make someone sick. It is just a delivery vehicle. The virus works by delivering the CocH gene to liver cells, where it remains for months or years. The cells read the super-CocH gene and use it to manufacture many copies of the CocH protein, which then breaks down cocaine.

In the new study, the team tested this approach in mice. The results are very promising and suggest that this gene therapy is safe and effective. Mice receiving the gene therapy alone were healthy. Mice given cocaine became hyperactive and showed signs of liver damage. When the mice were given cocaine plus gene therapy they behaved normally, as if they had not been given the drug. The cocaine was quickly broken down by their new super-CocH proteins, and their livers showed no signs of damage.

The results are promising enough that the FDA has approved plans to proceed with human clinical trials.

Looking forward

Keep in mind, this treatment wont hit the market anytime soon. It took six years from initial tests of AAV-CocH therapy in mice to reach the point where the technique is safe enough for human trials. There are many aspects of the treatment that need to be evaluated and modified to make sure it is both safe and effective in humans.

For example, AAV gene therapy can produce unwanted immune responses in people that will need to be carefully monitored. Issues such as discomfort caused by the therapy, different responses based on an individuals genetic makeup and interactions with other medications or medical conditions will also need to be addressed.

Because this study only monitored mice for two months, longer-term effects of the gene therapy will need to be investigated. Also, how well this therapy works to treat cocaine addiction in mice is not really known, and treating addiction in humans is certain to be even more complicated.

This gene therapy could someday make a dose of cocaine less rewarding, but a full recovery from addiction will likely require a combination of treatments administered over many years.

Like many, the two us have family members or friends who struggle with addictions that cannot be cured simply by trying harder. This recent work combines careful scientific progress with a creative new idea, giving hope to those trying to overcome cocaine addiction.

Rachel Patton McCord, Assistant Professor of Biochemistry & Cellular and Molecular Biology, University of Tennessee and Rebecca A. Prosser, Professor of Biochemistry & Cellular and Molecular Biology, University of Tennessee

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image: Reuters

Go here to see the original:
This Genius Gene Therapy Plan Could Combat Cocaine Addiction - The National Interest Online

Posted in Genetic Therapy | Comments Off on This Genius Gene Therapy Plan Could Combat Cocaine Addiction – The National Interest Online

900 gene therapy drugs are in the pipeline. How does the FDA want to regulate them? – Genetic Literacy Project

To date, the FDA has approved four gene therapy products, which insert new genetic material into a patients cells. The agency anticipates many more approvals in the coming years, as evidenced by the more than 900 investigational new drug (IND) applications for ongoing clinical studies in this area. The FDA believes this will provide patients and providers with increased therapeutic choices.

In that spirit, [January 28], the FDA is announcing the release of a number of important policies: six final guidances on gene therapy manufacturing and clinical development of products and a draft guidance, Interpreting Sameness of Gene Therapy Products Under the Orphan Drug Regulations.

The six guidance documents incorporate input from many stakeholders and take a significant step toward helping to shape the modern structure for the development and manufacture of gene therapies.

In sum, these policy documents are representative of efforts to help advance product development in the field of gene therapy. We will continue to work with product innovators, sponsors, researchers, patients, and other stakeholders to help make the development and review of these products more efficient, while putting in place the regulatory controls needed to ensure that the resulting therapies are both safe and effective.

Read the original post

More:
900 gene therapy drugs are in the pipeline. How does the FDA want to regulate them? - Genetic Literacy Project

Posted in Genetic Therapy | Comments Off on 900 gene therapy drugs are in the pipeline. How does the FDA want to regulate them? – Genetic Literacy Project

Unconventional drug ‘lottery’ will hand out 50 doses of Zolgensma, world’s most expensive gene therapy – Genetic Literacy Project

The lottery that began [recently] was not about money, or about choosing a school, or about obtaining a visa. It was about a childs life. In this case, the children selected would receive a drug that otherwise was not available.

The treatment, a gene therapy calledZolgensma, is designed for children like Wynter who have a neuromuscular disease called spinal muscular atrophy, or SMA.

The lotterywas devised by the drugs manufacturer, Novartis, to give families in those places a chance to get it through a novel form of compassionate use a way to get medications that have not been approved while they wait. Fifty doses are slotted to be given away for free in the first half of the year, with up to 100 total.

Ethicists and advocates have debated the merits and the design of the unusual arrangement. Parents said that it was uncomfortable to cast their childs fate into what felt like a sweepstakes a kind of bizarre Willy Wonka contest in which, as Maura Blair, a Canadian mother of a child with SMA put it, were talking about lives.

Zolgensma costs $2.1 million in the United States the worlds most expensive drug.

Read the original post

Visit link:
Unconventional drug 'lottery' will hand out 50 doses of Zolgensma, world's most expensive gene therapy - Genetic Literacy Project

Posted in Genetic Therapy | Comments Off on Unconventional drug ‘lottery’ will hand out 50 doses of Zolgensma, world’s most expensive gene therapy – Genetic Literacy Project

University City Science Center partnership with CSL Behring accelerates the search for new biotherapies at the University of Pittsburgh and the…

PHILADELPHIA, Feb. 13, 2020 /PRNewswire/ --Researchers at the University of Pittsburgh and the University of Delaware have been awarded funding and support to accelerate their search for new medicines through an ongoing partnership between global biotechnology leader CSL Behring and the University City Science Center.

CSL Behring awarded Cecelia Yates, Ph.D., from the University of Pittsburgh, and Eleftherios (Terry) Papoutsakis, Ph.D., from the University of Delaware, $250,000 each and an opportunity to work alongside the plasma-based biotech's own experts in an effort to help transform their ideas into groundbreaking therapies to improve patients' health.

CSL Behring, a global leader in treating rare and serious diseases which has its global operational headquarters in King of Prussia, PA, identified the medical researchers utilizing the Science Center's, sourcing innovation framework for technology commercialization, support and infrastructure to efficiently evaluate technologies from multiple institutions.

"Congratulations Drs. Yates and Papoutsakis on being the first recipients of the CSL Behring-Science Center Research Acceleration Initiative," said Bill Mezzanotte, MD, Executive Vice President, Head of Research and Development for CSL Behring. "This initiative is another example of the strength of our partnership with the Philadelphia-based University City Science Center as we look in our 'backyard' for innovative scientific advancements that have the potential to help rare disease patients lead full lives. Our growing R&D organization looks forward to working with Dr. Yates and Dr. Papoutsakis in the years ahead to advance their scientific research."

"The Science Center couldn't be more excited about facilitating the introduction between these talented investigators and CSL Behring," says John Younger, MD, Vice President of Science & Technology at the Science Center. "Our network of universities, biotech, and pharmaceutical companies was built exactly for making these connections not just possible but easy. Supporting the development of new biologics, and new drug and gene delivery systems like those developed by Drs. Papoutsakis and Yates will continue to be an important focus of our team."

The investigators and technologies selected in this inaugural round of the program include:

Cecelia Yates, Ph.D., University of Pittsburgh, for the use of FibroKine biomimetic peptides as potential targeted therapeutic treatment of pulmonary fibrosis.

Fibrotic diseases constitute a significant health problem in the US with the ability to impact any organ that is scarred from chronic disease, including the heart, lung, liver, arteries, and skin. In some cases, progressive and life-threatening diseases follow, but effective therapies don't yet exist. In response, Dr. Yates has developed FibroKine, a chemokine-based class of biomimetic peptides that are potential therapeutic agents for the targeted treatment of tissue fibrosis. Support from CSL Behring will allow the Yates group to test FibroKine peptide ability to effectively treat and halt the progression of pulmonary fibrosis.

Eleftherios (Terry) Papoutsakis, Ph.D., University of Delaware, for exploring the use of cell derived micro-particles and vesicles (MkMPs) for the treatment of thrombocytopenias and in stem-cell targeted gene therapies

Gene delivery to or editing of Hematopoietic (blood) Stem and Progenitor Cells (HSPCs) can provide therapeutic benefit to patients for a variety of genetic hematological disorders, ranging from low platelet count diseases to primary immune deficiencies like Wiskott-Aldrich syndrome. With the support of CSL Behring, Dr. Papoutsakis will investigate the use of human MkMPs: 1) to promote in vivo platelet biogenesis as a potential treatment for thrombocytopenias, and 2) for the in vivo delivery of DNA, RNA, and proteins to HSPCs in gene therapy applications.

In October 2018, the Science Center and CSL Behring joined forces to identify promising technologies and support the commercialization pathways of potential new discoveries. Researchers at academic and research institutions throughout the region were invited to submit proposals for projects with a focus on therapeutics that fit within CSL Behring's five therapeutic areas of expertise: immunology and neurology; hematology and thrombosis; respiratory; cardiovascular and metabolic; and transplant.

Following the success of the initial pilot, the CSL Behring Science Center Research Initiative has expanded and is currently accepting applicationsfrom researchers at 28 institutions across six states with awardees to receive up to $400,000 each.

About CSL BehringCSL Behringis a global biotherapeutics leader driven by its promise to save lives. Focused on serving patients' needs by using the latest technologies, we develop and deliver innovative therapies that are used to treat coagulation disorders, primary immune deficiencies, hereditary angioedema, inherited respiratory disease, and neurological disorders. The company's products are also used in cardiac surgery, burn treatment and to prevent hemolytic disease of the newborn. CSL Behring operates one of the world's largest plasma collection networks, CSL Plasma. The parent company, CSL Limited(ASX: CSL; USOTC: CSLLY), headquartered in Melbourne, Australia, employs more than 25,000 people, and delivers its life-saving therapies to people in more than 70 countries. For inspiring stories about the promise of biotechnology, visit Vita CSLBehring.com/vitaand follow us on Twitter.com/CSLBehring.

About the Science CenterLocated in the heart ofuCitySquare, the Science Center is a mission-driven nonprofit that commercializes promising technology, cultivates talent and convenes people to inspire action. For over 50 years, the Science Center has supported startups, research, and economic development across the emerging technology sectors. As a result, Science Center-supported companies account for one out of every 100 jobs in the Greater Philadelphia region and drive $13 billion in economic activity in the region annually. By providing the right help at the right time, the Science Center is turning bright ideas into businesses and nurturing a workforce to support our 21st century economy. For more information about the Science Center, go towww.sciencecenter.org

View original content:http://www.prnewswire.com/news-releases/university-city-science-center-partnership-with-csl-behring-accelerates-the-search-for-new-biotherapies-at-the-university-of-pittsburgh-and-the-university-of-delaware-301004508.html

SOURCE CSL Behring

View post:
University City Science Center partnership with CSL Behring accelerates the search for new biotherapies at the University of Pittsburgh and the...

Posted in Genetic Therapy | Comments Off on University City Science Center partnership with CSL Behring accelerates the search for new biotherapies at the University of Pittsburgh and the…

Regenerative Medicine Market trends, leaders, segment analysis and forecast to 2030 described in a new market report – WhaTech Technology and Markets…

Technological innovations in the area of stem cell therapy and tissue engineering has led to rapid growth of the regenerative medicine market size.

Regenerative medicine is a comparatively new area of science that involves the restoration of damaged cells, tissues or organs by applying cell therapy, tissue engineering, immunotherapy or gene therapy techniques. On contrary to the present clinical therapeutics that act on slowing the disease progression or relieve symptoms, regenerative medication has a promising therapeutic approach of restoring the function and structure of damaged organs and tissues.

The global regenerative medicine market is expected to witness significant growth during the forecast period,due to the increase in the prevalence of chronic diseases, orthopaedic injuries, genetic disorders, growing aging population, increasing government funding along with the private funding in the research & development of regenerative medicines with the advancement in nanotechnology based drug delivery system, and moderate healthcare reforms. Currently, major breakthrough in the area is the development of tissue engineered trachea, transplantation of retinal pigment differentiated by stem cell based therapy to treat age-related macular degeneration.

However, recently research labs have started to focus on regenerating solid organs such as heart, kidney, lungs and other organs to curb the problems associated with organ transplantation.

The rise in number of regulatory approvals of regenerative medications is expected to further drive the regenerative medicine market during the forecast period. Moreover, there has been strategic partnership between many companies that has encouraged increased involvement of these companies in the global market.

Improvised drug delivery systems for regenerative medicines is also expected to contribute to the growth of the global market.

Download sample copy of this report at:www.psmarketresearch.com/market-ort-sample

The key factors which drive the growth of the global market include increase in the demand of orthopaedic surgeries, government healthcare reforms in certain countries such as the U.S. and Canada, aging population, rise in chronic diseases, increasing prevalence of bone and joint diseases, and innovations in nanotechnology that aids in drug delivery mechanism.

Globally, North America is the largest market for regenerative medicine followed by Europe. The largest regenerative medicine market size of North America is attributed to the high rate of incidence of cardiac disorders, autoimmune diseases, and increasing prevalence of cancer patients among the American population.

Additionally, the involvement of government organization for funding in the area of R&D of regenerative medicines, technological advancement and other policies are driving the growth of the North American market.

MARKET SEGMENTATION

By Type

By Therapy

Pre-AccessInquiry at:www.psmarketresearch.com/send-enine-market

By Application

This email address is being protected from spambots. You need JavaScript enabled to view it.

Read more from the original source:
Regenerative Medicine Market trends, leaders, segment analysis and forecast to 2030 described in a new market report - WhaTech Technology and Markets...

Posted in Genetic Therapy | Comments Off on Regenerative Medicine Market trends, leaders, segment analysis and forecast to 2030 described in a new market report – WhaTech Technology and Markets…

Potential gene therapy to combat cocaine addiction – The Conversation US

Have you ever slipped when trying to avoid sugar, quit smoking, or break another habit or addiction? Usually that one piece of cake or one cigarette wont ruin your whole plan, but for people struggling with cocaine addiction, one slip can undo months of hard work.

Cocaine consumption is increasing, with 2.2 million people in the U.S. admitting to recent cocaine use in 2017. In 2014, the National Survey on Drug Use and Health estimated that nearly 1 million Americans were addicted to cocaine. The effect of cocaine on the brain and body is so powerful that, even after state-of-the-art treatments, many people trying to quit cocaine relapse within a year.

What if cocaine could be made less euphoric, so that a single use by a recovering addict doesnt result in a full-blown relapse? Scientists at the Mayo Clinic recently published progress toward making this idea a reality a gene therapy that would treat cocaine addiction by making cocaine less rewarding.

We are a molecular biologist and a neurobiologist who are interested in understanding and treating human disease, including neurological disorders such as cocaine addiction. As University of Tennessee faculty members leading basic biomedical research, we have worked for years on how genes are turned on and off in people and the effects of cocaine on mice, respectively. So, we were excited to see a promising convergence of novel gene therapy and cocaine addiction therapy.

Beginning more than 20 years ago, scientists have worked to engineer a new version of a human protein that could break down cocaine so quickly that it doesnt produce an addictive high. We all have the normal human protein BChE that helps regulate neurotransmitters, and which can slowly break down cocaine. Targeted mutations in BChE can turn it into a super-CocH a protein that can quickly break down cocaine. When this CocH is injected into the bloodstream, it breaks down cocaine very fast before the user can experience the pleasurable effects so a dose of cocaine is less rewarding. Being less rewarding means it is easier to stop using cocaine.

Previous research has shown that injections of the super-CocH protein drastically decrease addictive behavior in cocaine-addicted rats. Thats great. But the problem is that daily CocH injections would be too expensive and difficult to maintain for the years needed to prevent cocaine relapse for human users. It would be much more practical to provide a single treatment that could provide enough CocH to last for years.

One way to do that is gene therapy: Give patients the DNA sequence (the gene) that contains the instructions for making super-CocH so their bodies can keep making it for months or potentially years. Fortunately, over the past decade, this type of gene therapy has been moving from science fiction to hopeful reality. Clinical trials have demonstrated the potential of gene therapy to treat diseases from hemophilia to neurodegenerative disorders, and a handful of these are FDA-approved. The new Mayo Clinic study takes an important step toward making CocH gene therapy a reality.

How exactly does a scientist give a person a gene? You cant just swallow DNA the way you would a pill. The Mayo Clinic scientists had to find a way to deliver the gene to every cell in the liver. The way they did this was to insert the gene for super-CocH into a virus called adeno-associated virus (AAV). AAV has been modified so that when it infects cells it cannot reproduce in the body or make someone sick. It is just a delivery vehicle. The virus works by delivering the CocH gene to liver cells, where it remains for months or years. The cells read the super-CocH gene and use it to manufacture many copies of the CocH protein, which then breaks down cocaine.

In the new study, the team tested this approach in mice. The results are very promising and suggest that this gene therapy is safe and effective. Mice receiving the gene therapy alone were healthy. Mice given cocaine became hyperactive and showed signs of liver damage. When the mice were given cocaine plus gene therapy they behaved normally, as if they had not been given the drug. The cocaine was quickly broken down by their new super-CocH proteins, and their livers showed no signs of damage.

The results are promising enough that the FDA has approved plans to proceed with human clinical trials.

Keep in mind, this treatment wont hit the market anytime soon. It took six years from initial tests of AAV-CocH therapy in mice to reach the point where the technique is safe enough for human trials. There are many aspects of the treatment that need to be evaluated and modified to make sure it is both safe and effective in humans.

For example, AAV gene therapy can produce unwanted immune responses in people that will need to be carefully monitored. Issues such as discomfort caused by the therapy, different responses based on an individuals genetic makeup and interactions with other medications or medical conditions will also need to be addressed.

Because this study only monitored mice for two months, longer-term effects of the gene therapy will need to be investigated. Also, how well this therapy works to treat cocaine addiction in mice is not really known, and treating addiction in humans is certain to be even more complicated.

This gene therapy could someday make a dose of cocaine less rewarding, but a full recovery from addiction will likely require a combination of treatments administered over many years.

Like many, the two us have family members or friends who struggle with addictions that cannot be cured simply by trying harder. This recent work combines careful scientific progress with a creative new idea, giving hope to those trying to overcome cocaine addiction.

Read the rest here:
Potential gene therapy to combat cocaine addiction - The Conversation US

Posted in Genetic Therapy | Comments Off on Potential gene therapy to combat cocaine addiction – The Conversation US