Search Immortality Topics:

Page 172«..1020..171172173174..180190..»


Category Archives: Genetic Medicine

In Breakthrough, Scientists Edit a Dangerous Mutation From Genes in Human Embryos – New York Times

Weve always said in the past gene editing shouldnt be done, mostly because it couldnt be done safely, said Richard Hynes, a cancer researcher at the Massachusetts Institute of Technology who co-led the committee. Thats still true, but now it looks like its going to be done safely soon, he said, adding that the research is a big breakthrough.

What our report said was, once the technical hurdles are cleared, then there will be societal issues that have to be considered and discussions that are going to have to happen. Nows the time.

Scientists at Oregon Health and Science University, with colleagues in California, China and South Korea, reported that they repaired dozens of embryos, fixing a mutation that causes a common heart condition that can lead to sudden death later in life.

Scientists tried two techniques to remove a dangerous mutation. In the first, genetic scissors were inserted into fertilized eggs. The mutation was repaired in some of the resulting embryos but not always in every cell. The second method worked better: By injecting the scissors along with the sperm into the egg, more embryos emerged with repaired genes in every cell.

When gene-editing components were introduced into a fertilized egg, some embryos contained a patchwork of repaired and unrepaired cells.

Gene-editing

components inserted

after fertilization

Cell with

unrepaired

gene

Mosaicism in

later-stage embryo

When gene-editing components were introduced with sperm to the egg before fertilization, more embryos had repaired mutations in every cell.

Gene-editing components

inserted together with sperm,

before fertilization

In 42 of 58

embryos

tested, all

cells were

repaired

Uniform

later-stage embryo

When gene-editing components were introduced into a fertilized egg, some embryos contained a patchwork of repaired and unrepaired cells.

Gene-editing

components inserted

after fertilization

Cell with

unrepaired

gene

Mosaicism in

later-stage embryo

When gene-editing components were introduced with sperm to the egg before fertilization, more embryos had repaired mutations in every cell.

Gene-editing

components inserted

together with sperm,

before fertilization

In 42 of 58

embryos

tested, all

cells were

repaired

Uniform

later-stage embryo

If embryos with the repaired mutation were allowed to develop into babies, they would not only be disease-free but also would not transmit the disease to descendants.

The researchers averted two important safety problems: They produced embryos in which all cells not just some were mutation-free, and they avoided creating unwanted extra mutations.

It feels a bit like a one small step for (hu)mans, one giant leap for (hu)mankind moment, Jennifer Doudna, a biochemist who helped discover the gene-editing method used, called CRISPR-Cas9, said in an email.

I expect these results will be encouraging to those who hope to use human embryo editing for either research or eventual clinical purposes, said Dr. Doudna, who was not involved in the study.

Much more research is needed before the method could be tested in clinical trials, currently impermissible under federal law. But if the technique is found to work safely with this and other mutations, it might help some couples who could not otherwise have healthy children.

Potentially, it could apply to any of more than 10,000 conditions caused by specific inherited mutations. Researchers and experts said those might include breast and ovarian cancer linked to BRCA mutations, as well as diseases like Huntingtons, Tay-Sachs, beta thalassemia, and even sickle cell anemia, cystic fibrosis or some cases of early-onset Alzheimers.

You could certainly help families who have been blighted by a horrible genetic disease, said Robin Lovell-Badge, a professor of genetics and embryology at the Francis Crick Institute in London, who was not involved in the study.

You could quite imagine that in the future the demand would increase. Maybe it will still be small, but for those individuals it will be very important.

The researchers also discovered something unexpected: a previously unknown way that embryos repair themselves.

In other cells in the body, the editing process is carried out by genes that copy a DNA template introduced by scientists. In these embryos, the sperm cells mutant gene ignored that template and instead copied the healthy DNA sequence from the egg cell.

We were so surprised that we just couldnt get this template that we made to be used, said Shoukhrat Mitalipov, director of the Center for Embryonic Cell and Gene Therapy at Oregon Health and Science University and senior author of the study. It was very new and unusual.

The research significantly improves upon previous efforts. In three sets of experiments in China since 2015, researchers seldom managed to get the intended change into embryonic genes.

And some embryos had cells that did not get repaired a phenomenon called mosaicism that could result in the mutation being passed on as well as unplanned mutations that could cause other health problems.

In February, a National Academy of Sciences, Engineering and Medicine committee endorsed modifying embryos, but only to correct mutations that cause a serious disease or condition and when no reasonable alternatives exist.

Sheldon Krimsky, a bioethicist at Tufts University, said the main uncertainty about the new technique was whether reasonable alternatives to gene editing already exist.

As the authors themselves noted, many couples use pre-implantation genetic diagnosis to screen embryos at fertility clinics, allowing only healthy ones to be implanted. For these parents, gene editing could help by repairing mutant embryos so that more disease-free embryos would be available for implantation.

Hank Greely, director of the Center for Law and the Biosciences at Stanford, said creating fewer defective embryos also would reduce the number discarded by fertility clinics, which some people oppose.

The larger issue is so-called germline engineering, which refers to changes made to embryo that are inheritable.

A new technique known as Crispr has revolutionized humans ability to edit DNA. See you if you can identify whether a given development has already happened, could eventually happen or is pure fiction.

If youre in one camp, its a horror to be avoided, and if youre in the other camp, its desirable, Dr. Greely said. Thats going to continue to be the fight, whether its a feature or a bug.

For now, the fight is theoretical. Congress has barred the Food and Drug Administration from considering clinical trials involving germline engineering. And the National Institutes of Health is prohibited from funding gene-editing research in human embryos. (The new study was funded by Oregon Health and Science University, the Institute for Basic Science in South Korea, and several foundations.)

The authors say they hope that once the method is optimized and studied with other mutations, officials in the United States or another country will allow regulated clinical trials.

I think it could be widely used, if its proven safe, said Dr. Paula Amato, a co-author of the study and reproductive endocrinologist at O.H.S.U. Besides creating more healthy embryos for in vitro fertilization, she said, it could be used when screening embryos is not an option or to reduce arduous IVF cycles for women.

Dr. Mitalipov has pushed the scientific envelope before, generating ethical controversy with a so-called three-parent baby procedure that would place the nucleus of the egg of a woman with defective cellular mitochondria into the egg from a healthy woman. The F.D.A. has not approved trials of the method, but Britain may begin one soon.

The new study involves hypertrophic cardiomyopathy, a disease affecting about one in 500 people, which can cause sudden heart failure, often in young athletes.

It is caused by a mutation in a gene called MYBPC3. If one parent has a mutated copy, there is a 50 percent chance of passing the disease to children.

Using sperm from a man with hypertrophic cardiomyopathy and eggs from 12 healthy women, the researchers created fertilized eggs. Injecting CRISPR-Cas9, which works as a genetic scissors, they snipped out the mutated DNA sequence on the male MYBPC3 gene.

They injected a synthetic healthy DNA sequence into the fertilized egg, expecting that the male genome would copy that sequence into the cut portion. That is how this gene-editing process works in other cells in the body, and in mouse embryos, Dr. Mitalipov said.

Instead, the male gene copied the healthy sequence from the female gene. The authors dont know why it happened.

Maybe human sex cells or gametes evolved to repair themselves because they are the only cells that transmit genes to offspring and need special protection, said Juan Carlos Izpisua Belmonte, a co-author and geneticist at the Salk Institute.

Out of 54 embryos, 36 emerged mutation-free, a significant improvement over natural circumstances in which about half would not have the mutation. Another 13 embryos also emerged without the mutation, but not in every cell.

The researchers tried to eliminate the problem by acting at an earlier stage, injecting the egg with the sperm and CRISPR-Cas9 simultaneously, instead of waiting to inject CRISPR-Cas9 into the already fertilized egg.

That resulted in 42 of 58 embryos, 72 percent, with two mutation-free copies of the gene in every cell. They also found no unwanted mutations in the embryos, which were destroyed after about three days.

The method was not perfect. The remaining 16 embryos had unwanted additions or deletions of DNA. Dr. Mitalipov said he believed fine-tuning the process would make at least 90 percent of embryos mutation-free.

And for disease-causing mutations on maternal genes, the same process should occur, with the fathers healthy genetic sequence being copied, he said.

But the technique will not work if both parents have two defective copies. Then, scientists would have to determine how to coax one gene to copy a synthetic DNA sequence, Dr. Mitalipov said.

Otherwise, he said, it should work with many diseases, a variety of different heritable mutations.

R. Alta Charo, a bioethicist at University of Wisconsin at Madison, who led the committee with Dr. Hynes, said the new discovery could also yield more information about causes of infertility and miscarriages.

She doubts a flood of couples will have edited children.

Nobodys going to do this for trivial reasons, Dr. Charo said. Sex is cheaper and its more fun than IVF, so unless youve got a real need, youre not going to use it.

Excerpt from:
In Breakthrough, Scientists Edit a Dangerous Mutation From Genes in Human Embryos - New York Times

Posted in Genetic Medicine | Comments Off on In Breakthrough, Scientists Edit a Dangerous Mutation From Genes in Human Embryos – New York Times

Madhuri Hegde, PhD is Elected to the Board of the ACMG Foundation for Genetic and Genomic Medicine – Markets Insider

BETHESDA, Md., Aug. 4, 2017 /PRNewswire-USNewswire/ --Madhuri Hegde, PhD, FACMG of PerkinElmer, Inc. in Waltham, MA has been elected to the ACMG Foundation for Genetic and Genomic Medicine Board of Directors, the supporting educational foundation of the American College of Medical Genetics and Genomics. The ACMG Foundation is a national nonprofit foundation dedicated to facilitating the integration of genetics and genomics into medical practice. The board members are active participants in serving as advocates for the Foundation and for advancing its policies and programs. Dr. Hegde has been elected to a 2-year renewable term starting immediately.

Dr. Hegde joined PerkinElmer in 2016 as Vice President and Chief Scientific Officer, Global Genetics Laboratory Services. She also is an Adjunct Professor of Human Genetics in the Department of Human Genetics at Emory University. Previously, Dr. Hegde was Executive Director and Chief Scientific Officer at Emory Genetics Laboratory in Atlanta, GA and Professor of Human Genetics and Pediatrics at Emory University and Assistant Professor, Department of Human Genetics and Senior Director at Baylor College of Medicine in Houston, TX.

Dr. Hegde has served on a number of Scientific Advisory Boards for patient advocacy groups including Parent Project Muscular Dystrophy, Congenital Muscular Dystrophy and Neuromuscular Disease Foundation. She was a Board member of the Association for Molecular Pathology and received the Outstanding Faculty Award from MD Anderson Cancer Center. She earned her PhD in Applied Biology from the University of Auckland in Auckland, New Zealand and completed her Postdoctoral Fellowship in Molecular Genetics at Baylor College of Medicine in Houston, TX. She also holds a Master of Science in Microbiology from the University of Mumbai in India. She has authored more than 100 peer-reviewed publications and has given more than 100 keynote and invited presentations at major national and internal conferences.

"We are delighted that Dr. Hegde has been elected to the ACMG Foundation Board of Directors. She has vast experience in genetic and genomic testing and is a longtime member of the College and supporter of both the College and the Foundation," said Bruce R. Korf, MD, PhD, FACMG, president of the ACMG Foundation.

The complete list of the ACMG Foundation board of directors is at http://www.acmgfoundation.org.

About the ACMG Foundation for Genetic and Genomic Medicine

The ACMG Foundation for Genetic and Genomic Medicine, a 501(c)(3) nonprofit organization, is a community of supporters and contributors who understand the importance of medical genetics and genomics in healthcare. Established in 1992, the ACMG Foundation for Genetic and Genomic Medicine supports the American College of Medical Genetics and Genomics' mission to "translate genes into health" by raising funds to help train the next generation of medical geneticists, to sponsor the development of practice guidelines, to promote information about medical genetics, and much more.

To learn more about the important mission and projects of the ACMG Foundation for Genetic and Genomic Medicine and how you too can support the work of the Foundation, please visit http://www.acmgfoundation.org or contact us at rel="nofollow">acmgf@acmgfoundation.org or 301-718-2014.

Contact Kathy Beal, MBA ACMG Media Relations, rel="nofollow">kbeal@acmg.net

View original content with multimedia:http://www.prnewswire.com/news-releases/madhuri-hegde-phd-is-elected-to-the-board-of-the-acmg-foundation-for-genetic-and-genomic-medicine-300499860.html

SOURCE American College of Medical Genetics and Genomics

Read more here:
Madhuri Hegde, PhD is Elected to the Board of the ACMG Foundation for Genetic and Genomic Medicine - Markets Insider

Posted in Genetic Medicine | Comments Off on Madhuri Hegde, PhD is Elected to the Board of the ACMG Foundation for Genetic and Genomic Medicine – Markets Insider

Genome editing and the AMA Code of Medical Ethics – American Medical Association (blog)

An international team of researchers recently published, in the journal Nature, their study using genome editing to correct a heterozygous mutation in human preimplantation embryos using a technique called CRISPR-Cas9. This bench research, while far from bedside use, raises questions about the medical ethics of what could be considered genetic engineering. The AMA Code of Medical Ethics has guidance for physicians conducting research in this area.

In Opinion 7.3.6, Research in Gene Therapy and Genetic Engineering, the Code explains:

Gene therapy involves the replacement or modification of a genetic variant to restore or enhance cellular function or the improve response to nongenetic therapies. Genetic engineering involves the use of recombinant DNA techniques to introduce new characteristics or traits. In medicine, the goal of gene therapy and genetic engineering is to alleviate human suffering and disease. As with all therapies, this goal should be pursued only within the ethical traditions of the profession, which gives primacy to the welfare of the patient.

In general, genetic manipulation should be reserved for therapeutic purposes. Efforts to enhance desirable characteristics or to improve complex human traits are contrary to the ethical tradition of medicine. Because of the potential for abuse, genetic manipulation of nondisease traits or the eugenic development of offspring may never be justifiable.

Moreover, genetic manipulation can carry risks to both the individuals into whom modified genetic material is introduced and to future generations. Somatic cell gene therapy targets nongerm cells and thus does not carry risk to future generations. Germ-line therapy, in which a genetic modification is introduced into the genome of human gametes or their precursors, is intended to result in the expression of the modified gene in the recipients offspring and subsequent generations. Germ-line therapy thus may be associated with increased risk and the possibility of unpredictable and irreversible results that adversely affect the welfare of subsequent generations.

Thus, in addition to fundamental ethical requirements for the appropriate conduct of research with human participants, research in gene therapy or genetic engineering must put in place additional safeguards to vigorously protect the safety and well-being of participants and future generations.

Physicians should not engage in research involving gene therapy or genetic engineering with human participants unless the following conditions are met:

(a) Participate only in those studies for which they have relevant expertise.

(b) Ensure that voluntary consent has been obtained from each participant or from the participants legally authorized representative if the participant lacks the capacity to consent, in keeping with ethics guidance. This requires that:

(i) prospective participants receive the information they need to make well-considered decisions, including informing them about the nature of the research and potential harms involved;

(ii) physicians make all reasonable efforts to ensure that participants understand the research is not intended to benefit them individually;

(iii) physicians also make clear that the individual may refuse to participate or may withdraw from the protocol at any time.

(c) Assure themselves that the research protocol is scientifically sound and meets ethical guidelines for research with human participants. Informed consent can never be invoked to justify an unethical study design.

(d) Demonstrate the same care and concern for the well-being of research participants that they would for patients to whom they provide clinical care in a therapeutic relationship. Physician researchers should advocate for access to experimental interventions that have proven effectiveness for patients.

(e) Be mindful of conflicts of interest and assure themselves that appropriate safeguards are in place to protect the integrity of the research and the welfare of human participants.

(f) Adhere to rigorous scientific and ethical standards in conducting, supervising, and disseminating results of the research.

AMA Principles of Medical Ethics: I,II,III,V

At the 2016 AMA Interim Meeting, the AMA House of Delegates adopted policy on genome editing and its potential clinical use. In the policy, the AMA encourages continued research into the therapeutic use of genome editing and also urges continued development of consensus international principles, grounded in science and ethics, to determine permissible therapeutic applications of germline genome editing.

Chapter 7 of the Code, Opinions on Research & Innovation, also features guidance on other research-related subjects, including informed consent, conflicts of interest, use of placebo controls, and the use of DNA databanks.

The Code of Medical Ethics is updated periodically to address the changing conditions of medicine. The new edition, adopted in June 2016, is the culmination of an eight-year project to comprehensively review, update and reorganize guidance to ensure that the Code remains timely and easy to use for physicians in teaching and in practice.

Read more here:
Genome editing and the AMA Code of Medical Ethics - American Medical Association (blog)

Posted in Genetic Medicine | Comments Off on Genome editing and the AMA Code of Medical Ethics – American Medical Association (blog)

Genetic risk for lupus tied to ancestry – Medical Xpress – Medical Xpress

Credit: CC0 Public Domain

Northwestern Medicine collaborated with international colleagues in a study that identified two dozen new genes linked to lupus after analyzing genetic samples from over 27,000 individuals across the globe.

The study, published in Nature Communications, was co-authored by Rosalind Ramsey-Goldman, MD, DrPH, the Solovy/Arthritis Research Society Research Professor of Medicine in the Division of Rheumatology, part of a group of authors from more than 70 universities.

"These new observations will help direct future research to better diagnose and treat the disease while also providing insights into why lupus disproportionately affects certain ethnicities at higher rates and more severely," said Ramsey-Goldman, also a member of the Robert H. Lurie Comprehensive Center Cancer and Northwestern University Clinical and Translational Sciences Institute.

Systemic lupus erythematosus (SLE) is an autoimmune disease that predominantly affects women during their childbearing years, and is more common in African-American, Native American and Hispanic patients. In SLE, the immune system produces antibodies that cause inflammation and damage the body's own organs and tissues, but it can be difficult to diagnose because its symptoms are similar to those of other immune system diseases.

The study revealed 24 genomic regions that contribute to an accelerating pattern of risk for SLE, leading the investigators to propose what they call the "cumulative hit hypothesis."

According to the authors, an immune system can normally absorb the effect of a modest amount of these risky genes, but as the number of genes climbs the immune system becomes overwhelmedresulting in disorders such as SLE.

The ancestral distribution of these genes may explain the ethnic disparities in SLE, according to the study. One cluster of risky genes has a greater frequency in people with African-American ancestry, a population with a higher incidence of SLE. On the other hand, a different risky cluster was less common in those with a mix of African-American and Central European ancestry, reflecting how a complex demographic history can affect the risk of developing SLE.

"There is a genetic predisposition to developing lupus and this study will help scientists decipher the heterogeneous manifestations of the disease, which is hard to diagnose and treat," Ramsey-Goldman said. "The hope is that these discoveries lead to better diagnostic tools, such as biomarkers, and assist in the development of targeted therapies."

While large-scale population screening may not be financially practical, it may be more realistic to accelerate the diagnosis of suspected lupus by testing narrowly for genetic markers such as those uncovered in the current study, according to the authors.

"Understanding the implications and not just cataloguing the overlap of genetic variation that predicts multiple autoimmune diseases is a key next set of questions these investigators are pursuing," said lead author Carl Langefeld, PhD, professor of Biostatistics at Wake Forest Medicine.

Explore further: Large multi-ethnic study identifies many new genetic markers for lupus

More information: Carl D. Langefeld et al. Transancestral mapping and genetic load in systemic lupus erythematosus, Nature Communications (2017). DOI: 10.1038/ncomms16021

The rest is here:
Genetic risk for lupus tied to ancestry - Medical Xpress - Medical Xpress

Posted in Genetic Medicine | Comments Off on Genetic risk for lupus tied to ancestry – Medical Xpress – Medical Xpress

Understanding Williams Syndrome: Genetic condition brings host of medical problems but also unlimited capacity to love – WGN-TV

Please enable Javascript to watch this video

How a heart that is broken physically works flawlessly when it comes to emotion. For children born with Williams Syndrome, compromised heart function opens the door for an unlimited capacity to love.

Maya is a happy, playful 18-month-old.

The moment I get home from work, the moment she wakes up, she's usually always smiling and happy, says Mayas father Scott Ottenheimer. We celebrate and get so excited aboutthe milestones because they mean so much to us.

When Maya was born inFebruary 2016, she hada heart murmur.

Mayas mother Jenna Ottenheimer says, In her case, the heart murmur ended up being a serious defect. She was born with narrowing of both her aorta and pulmonary arteries. It was absolutely devastating. It was the darkest time of my life.

It was the first indication of their newborn's complex medical condition.And as Scott and Jenna braced for their daughter's open heart surgery, the first of several procedures, they learned of Maya'sdiagnosis -- Williams Syndrome.

People say, 'What's Williams syndrome?' And I say, I've never heard of it either before Maya, Scott says.

Children or adults with Williams Syndrome can experience a whole host of medical problems, says Dr Darrel Waggoner, medical geneticist at the University of Chicago Medicine. They can experience problems related to growth, development, eating.

Williams Syndrome is a genetic condition that affects one in 10,000 people worldwide.

Dr Waggoner says it stems from a chromosome abnormality.

This is a picture of chromosome 7. This white band that's the piece of genetic code thats missing or deleted, says Dr Waggoner. If you think of your genetic code as a set of instructions on how to grow a heart and develop your brain, if you are missing some of those instructions then it leads to changes.

Jenna explains, Maya has a couple other medical problems we follow. We see gastroenterology for acid reflux. Her kidneys are affected.

Along with regular monitoring of hermedical issues, Mayareceives severalhours a week of physical, occupational and speech therapy.

I'm very proud of her andhow far she's come in 18 months, Jenna says. She's crawling and pulling to stand and we feel confident she's going to walk soon. She will talk one day. It's just with Williams Syndrome the delays can be life long.

Amanda and Andrew McDaniel understand completely.

Like Maya, their son Tom was born with a major heart defect.

Were very proud, says Andrew. Weve worked very hard to bring him along.

Amandas pregnancy was uneventful, but as soon as her son was born, he was rushed to the neonatal intensive care unit. And within days it was confirmed he had Williams Syndrome along with another condition that caused problems with his legs and spine.

It was a lot to digest, a lot to take in, Amanda says. We were told to expect a kid who wouldnt sleep, didnt want to eat and would have extreme colic.

Connecting with other families like the Ottenheimers through the Williams Syndrome Association has helped the McDaniels navigate their sons health challenges.

Amanda says, Our biggest struggle in the next months was all the follow up appointments. We saw 12 different specialists because its such a spectrum disorder. Hes had countless tests and procedures.

Now at 2-years-old, Tom is working hard to gain more mobility. Therapy is a constant. But he takes it all in stride. Amid all the challenges, Maya and Tom smile. Its the special gift of people with Williams Syndrome.

Once his personality came in he was always sweet and charming, Andrew says. As hard as it was, that made it worth it.

Dr Waggoner explains, Behaviorally, the children some of them have a characteristic personality. They are very friendly, very social.

He wants the entire restaurant when we go out to dinner to interact with him. He cant walk and he cant talk, but he gets every adult in the restaurant to come up and interact with him, says Amanda. But there is so much more. I want him to be accepted. I want him to have friends.

What she has taught me is how can we say that it's a disorder to be so friendly and so happy? Jenna says. I think kids and adults with Williams Syndrome can teach us a lot about accepting others and being friendly and happy and open minded and open hearted, because kids with Williams Syndrome are genetically born that way.

The joy their children bring is infectious. But the parents WGN spoke with want others to know there is so much more to learn about Williams Syndrome. Thats why they shared their stories to raise awareness and foster a better understanding of some of the major struggles they face.

You can learn more at https://williams-syndrome.org/

Email info@williams-syndrome.org

Williams Syndrome Association: 248-244-2229

See the original post:
Understanding Williams Syndrome: Genetic condition brings host of medical problems but also unlimited capacity to love - WGN-TV

Posted in Genetic Medicine | Comments Off on Understanding Williams Syndrome: Genetic condition brings host of medical problems but also unlimited capacity to love – WGN-TV

Myriad Genetics’ Stock Is Starting To Make A Run – Seeking Alpha

Healthcares been in the news a lot lately thanks to the Republicans efforts at healthcare reform. There are several bottoming heathcare and biotech stocks that could benefit from these efforts. One of those companies with potential is Myriad Genetics (MYGN). Myriad creates genetic tests to screen for genetic cancer risk and other diseases. Its currently coming out of a bottom and has the potential to continue moving up if it can capitalize on this growing market.

Myriad manufactures molecular diagnostic tests to screen for genetic dispositions to cancer, autoimmune diseases, and other maladies. The company is probably best known for its BRACAnalysis test. This test determines womens risk for breast cancer by detecting mutations in the BRCA1 or BRCA2 genes. Genetic mutations greatly increase the risk of developing cancer. So these type of diagnostic tests are growing more and more important for detecting cancer risks early. Advanced diagnostics also allow doctors to tailor their preventative medicine programs to better serve the patients individual needs. In fact, personalized medicine is expected to be the wave of the future. Theres also an increasing need for better diagnostic tools as the population ages. So Myriads products can fill an important niche in a growing market.

Myriads stock was in some trouble until recently. A monthly stock chart shows that MYGN was in a bear market for pretty much all of 2016. It finally started to bottom late in 2016, and completed its bottom in May of 2017. Its currently moving up strongly out of its bottom, but has retraced a bit over the past month. MYGNs all time high is at about $47, so this stock some room to move up.

Figure 1: Monthly chart of MYGN. Chart provided by FreeStockCharts.com.

A weekly chart confirms that MYGN completed its bottom last May. The chart shows very large and strong white candles coming out of the bottom, lacking indecisive wicks and tails. Small black candles form for about a month after each strong move up, likely due to profit taking. The stock is also currently undergoing some profit taking after the last strong move up in June. There have been green volume surges on the moves up, with green volume bars outnumbering the red bars since coming out of the bottom.

Figure 2: Weekly chart of MYGN. Chart provided by FreeStockCharts.com.

We can see the current retracement in more detail in the daily chart. Black candles have been larger and more numerous over the past month. We can see the strength of the green volume in May and June. But volume has been low in July, with red volume becoming more and more dominant. The chart also shows that high frequency traders (HFT) tried to sell down this stock on 7/21, possibly in response to a news release that day. It looks like the HFTs moved in at the start of the day, but failed to move the stock down much.

Figure 3: Daily chart of MYGN. Chart provided by FreeStockCharts.com

The chart indicators also confirm this weakness in the current price action. RSI is moving down steadily to the bottom of the chart. Stochastics has also moved down well into oversold territory. Both indicators look a little overextended but dont show any signs of a reversal quite yet.

Figure 4: Indicator charts for MYGN. Chart provided by FreeStockCharts.com

MYGN really looks a little week right now. There arent enough buyers to stop the slip-slide due to profit taking. The pattern of this stock, however, has been to move up strongly and then slowly slide back for a month. So well see if the stock continues that trend in August.

The charts show that MYGN has recovered nicely in 2017. So lets check the fundamentals and see if they justify the stocks uptrend. Myriads income statement shows that revenues started to turn around in the first quarter of fiscal year 2017. Revenues, however, were flat last quarter. Net income, on the other hand, has been inconsistent. Income has been up and down for the past several quarters. Costs have also continued to rise, but flattened out last quarter.

Figure 5: Income statement for MYGN. Data provided by Google Finance.

Myriad also took on a lot of debt in the second quarter of fiscal year 2017. The company started to pay down that debt last quarter, so at least its controlling its debt load. The current ratio is about 1.6, which is acceptable.

Figure 6: Balance sheet for MYGN. Data provided by Google Finance

Data from Nasdaq.com shows that the institutional holdings are above 100%. This usually means that some convertible bonds were executed, or that there was a direct stock sale to an institution. This should pattern out in the next quarter after Nasdaq.com updates its information. MYGN has 261 holders, so its pretty widely held for a small cap. And more funds started new positions or increased their positions compared to funds that sold out or decreased their holdings.

Figure 7: Institutional Holdings for MYGN. Data provided by Nasdaq.com.

A few giant funds are among the top holders of this stock, including Vanguard and Dimensional Fund Advisors. There are few giant banks in the mix as well, such as Blackrock and State Street. Some large banks have reduced their holdings in this stock though, which is interesting. The buy side institutions are doing the opposite; theyre increasing their positions or holding steady.

Figure 8: Top holders for MYGN. Data provided by Nasdaq.com.

Myriads financial performance improved last year but slowed down last quarter. Can it pick up again? A quick look at the last earnings report can show us what to expect. Myriad expects accelerating growth going forward, per CEO Mark Capone. Capone said, Coupled with meaningful sequential volume growth in all of our major pipeline tests including GeneSight, Vectra DA, Prolaris, and EndoPredict, we believe we are rapidly approaching an important inflection in our business where our new products will drive accelerated revenue growth and profitability.

That sounds promising, but we need more specifics. Luckily, the report also provides guidance for the fourth quarter of fiscal year 2017. The company expects revenues of $192-$194 million, which is flat to slightly down compared to last quarter. Earnings per share are expected in the range of $0.11 to $0.13, which is a large improvement over the $0.06 per share reported last quarter. Revenues for the full fiscal year are expected to be $763-$765, up just 1% over 2016. Earnings per share are expected to drop from 2016, down to $0.23-$0.25. This reflects the slowdown in earnings that was observed in the first three quarters of fiscal year 2017. The company needs to show that it can continue to grow revenues and earnings more consistently. Itll be interesting to see what the guidance is for 2018 in the next earnings release. Myriad is expected to report around August 8th.

MYGN has trended up fairly strongly out of its 2016 bottom. Its also in a market with a lot of potential, notwithstanding the healthcare shenanigans going on in Congress right now. The companys financials showed improvement earlier in the year, but have started to lag more recently. It needs to continue to grow revenues and earnings, otherwise the current profit taking could turn into broader selling. The 2016 high of $40 could also challenge the uptrend if the financials dont continue to improve. The stock shows some promise, but theres also some uncertainty about companys performance in the next fiscal year. The fact that large funds are interested in this stock bodes well for it though. And an earnings report that beats expectations could cause the stock to move up strongly again. Investors that are interested this companys technology should wait until the profit taking ends before entering this stock though. The $27 level looks like a good place to enter. For everyone else, its best to wait until the next earnings report to see the companys projections for fiscal year 2018.

Disclosure: I/we have no positions in any stocks mentioned, and no plans to initiate any positions within the next 72 hours.

I wrote this article myself, and it expresses my own opinions. I am not receiving compensation for it (other than from Seeking Alpha). I have no business relationship with any company whose stock is mentioned in this article.

Visit link:
Myriad Genetics' Stock Is Starting To Make A Run - Seeking Alpha

Posted in Genetic Medicine | Comments Off on Myriad Genetics’ Stock Is Starting To Make A Run – Seeking Alpha