Search Immortality Topics:

Page 171«..1020..170171172173..180190..»


Category Archives: Genetic Medicine

Can Scans Predict Some Autism Cases? – Sioux City Journal

TUESDAY, Aug. 8, 2017 (HealthDay News) -- People with a particular genetic cause of autism show structural abnormalities in the brain that are readily detected with noninvasive imaging, according to a new study.

Using MRI brain scans, researchers found clear brain structure abnormalities in people with autism caused, in part, by defects in chromosome 16.

Those MRI findings were, in turn, related to particular impairments, such as problems with communication and social skills.

It all suggests that brain imaging could one day be used to spot young children most in need of therapy for an autism spectrum disorder, the study authors said. It's estimated that one in 68 U.S. children is "on the spectrum," and symptoms usually appear early in life.

The study included 158 people who carried either of two defects in chromosome 16 that raise the risk of autism.

The flaws are found in a small piece of the chromosome known as p11.2. In some cases, people are missing the p11.2 portion -- which is known as a deletion. In other cases, there is an extra copy of it (known as a duplication).

Together, the defects are thought to contribute to less than 1 percent of all autism cases, said Dr. Elliott Sherr, the senior researcher on the study.

Sherr's team found that p11.2 deletions and duplications were each linked to specific brain structure abnormalities that were visible on MRI.

People with a deletion had excess tissue near the brain stem, and a thick, abnormally shaped corpus callosum -- a bundle of fibers that connects the left and right sides of the brain.

In contrast, people with a p11.2 duplication had a thin corpus callosum and "undergrowth" in certain other areas of brain tissue.

"Their brains look very different," said Sherr, a professor of neurology at the University of California, San Francisco.

And those structural abnormalities appear to correlate with different types of impairments, the study found.

The MRI findings in deletion carriers were tied to problems with communication and social skills. Meanwhile, the findings in duplication carriers were linked to lower IQ scores and problems with verbal skills.

What does it all mean? It's not clear yet, Sherr said.

"What we can say is, there's a strong link between these anatomical features of the brain and people's behavior," he said.

In general, people with p11.2 deletions or duplications have "intellectual challenges," such as lower-than-normal IQ, Sherr explained.

But they do not all develop autism, he said. The risk is thought to be 20 to 25 percent.

The current findings, Sherr said, raise the question of whether MRI could help identify young children likely to need therapy for autism.

First, though, important questions would need to be answered, he noted.

The current findings are based on one-time brain scans of people who ranged in age from 1 to 63 years. So it's not clear whether the MRI findings predict future impairments in people who carry the p11.2 abnormalities.

"We'd like to find out whether we can see these brain changes early in development," Sherr said. "And if we do see them, do they point to the risk of developmental challenges later on?"

Thomas Frazier is chief science officer for the nonprofit Autism Speaks.

He said studies like this are important because they help reveal the biology underlying autism.

"And that might point us to new therapies," Frazier said.

In general, experts believe that autism arises from a perfect storm of conditions. A child has some type of genetic vulnerability, then is exposed to one or more environmental factors during early development that, together, lead to autism.

At this point, Frazier said, researchers have found nearly 100 genes believed to contribute to autism risk.

Some genetic flaws -- like the chromosome 16 defects -- have a "major effect," Frazier said. But they, alone, are still not enough to cause autism.

If researchers can figure out why certain people with chromosome 16 defects develop autism, Frazier said, that could give insight into autism more generally.

As it stands, the chromosome 16 abnormalities are detected only if genetic tests are done after an autism diagnosis has been made based on behavior, Frazier said.

Still, researchers are interested in whether MRI can be used to "predict" autism risk in certain young children, Frazier said.

One recent study focused on babies who were at heightened risk because a sibling had autism. It found that early brain differences did show up on MRI, and accurately predicted a future autism diagnosis 80 percent of the time.

But, Frazier said, more work is needed to verify those findings.

The new study was published online Aug. 8 in the journal Radiology.

The U.S. National Institute of Neurological Disorders and Stroke has more on autism.

See original here:
Can Scans Predict Some Autism Cases? - Sioux City Journal

Posted in Genetic Medicine | Comments Off on Can Scans Predict Some Autism Cases? – Sioux City Journal

Madhuri Hegde Elected to ACMG Foundation for Genetic, Genomic … – India West

The ACMG Foundation for Genetic and Genomic Medicine announced Aug. 4 that Indian American Madhuri Hegde of Waltham, Mass.-based PerkinElmer Inc. was elected to its board of directors.

"We are delighted that Dr. Hegde has been elected to the ACMG Foundation Board of Directors. She has vast experience in genetic and genomic testing and is a longtime member of the college and supporter of both the college and the foundation," said Dr. Bruce R. Korf, president of the ACMG Foundation, in a statement.

Hegde, who will serve a two-year renewable term, joined PerkinElmer in 2016 as vice president and chief scientific officer of global genetics laboratory services. She is also an adjunct professor of human genetics in Emory Universitys human genetics department.

Previously, Hegde served as the executive director and chief scientific officer at Emory Genetics Laboratory in Atlanta, Ga.; professor of human genetics and pediatrics at Emory University; and assistant professor at Baylor College of Medicines Department of Human Genetics in Houston, Texas.

Additionally, Hegde has served on a number of scientific advisory boards for patient advocacy groups including Parent Project Muscular Dystrophy, Congenital Muscular Dystrophy and the Neuromuscular Disease Foundation.

She earned her doctorate from the University of Auckland in Auckland, New Zealand, and completed her postdoctoral fellowship in molecular genetics at Baylor College of Medicine. She also holds a masters from the University of Mumbai in India.

The foundation, a national nonprofit dedicated to facilitating the integration of genetics and genomics into medical practice, is the supporting educational foundation of the American College of Medical Genetics and Genomics.

Board members are active participants in serving as advocates for the foundation and for advancing its policies and programs.

See the original post:
Madhuri Hegde Elected to ACMG Foundation for Genetic, Genomic ... - India West

Posted in Genetic Medicine | Comments Off on Madhuri Hegde Elected to ACMG Foundation for Genetic, Genomic … – India West

A Chip That Reprograms Cells Helps Healing, At Least In Mice – NPR

The chip has not been tested in humans, but it has been used to heal wounds in mice. Wexner Medical Center/The Ohio State University hide caption

The chip has not been tested in humans, but it has been used to heal wounds in mice.

Scientists have created an electronic wafer that reprogrammed damaged skin cells on a mouse's leg to grow new blood vessels and help a wound heal.

One day, creator Chandan Sen hopes, it could be used to be used to treat wounds on humans. But that day is a long way off as are many other regeneration technologies in the works. Like Sen, some scientists have begun trying to directly reprogram one cell type into another for healing, while others are attempting to build organs or tissues from stem cells and organ-shaped scaffolding.

But other scientists have greeted Sen's mouse experiment, published in Nature Nanotechnology on Monday, with extreme skepticism. "My impression is that there's a lot of hyperbole here," says Sean Morrison, a stem cell researcher at the University of Texas Southwestern Medical Center. "The idea you can [reprogram] a limited number of cells in the skin and improve blood flow to an entire limb I think it's a pretty fantastic claim. I find it hard to believe."

When the device is placed on live skin and activated, it sends a small electrical pulse onto the skin cells' membrane, which opens a tiny window on the cell surface. "It's about 2 percent of the cell membrane," says Sen, who is a researcher in regenerative medicine at Ohio State University. Then, using a microscopic chute, the chip shoots new genetic code through that window and into the cell where it can begin reprogramming the cell for a new fate.

Sen says the whole process takes less than 0.1 seconds and can reprogram the cells resting underneath the device, which is about the size of a big toenail. The best part is that it's able to successfully deliver its genetic payload almost 100 percent of the time, he says. "No other gene delivery technique can deliver over 98 percent efficiency. That is our triumph."

Chandan Sen, a researcher at Ohio State University, holds a chip his lab created that has reprogrammed cells in mice. Wexner Medical Center/The Ohio State University hide caption

Chandan Sen, a researcher at Ohio State University, holds a chip his lab created that has reprogrammed cells in mice.

To test the device's healing capabilities, Sen and his colleagues took a few mice with damaged leg arteries and placed the chip on the skin near the damaged artery. That reprogrammed a centimeter or two of skin to turn into blood vessel cells. Sen says the cells that received the reprogramming genes actually started replicating the reprogramming code that the researchers originally inserted in the chip, repackaging it and sending it out to other nearby cells. And that initiated the growth of a new network of blood vessels in the leg that replaced the function of the original, damaged artery, the researchers say. "Not only did we make new cells, but those cells reorganized to make functional blood vessels that plumb with the existing vasculature and carry blood," Sen says. That was enough for the leg to fully recover. Injured mice that didn't get the chip never healed.

When the researchers used the chip on healthy legs, no new blood vessels formed. Sen says because injured mouse legs were was able to incorporate the chip's reprogramming code into the ongoing attempt to heal.

That idea hasn't quite been accepted by other researchers, however. "It's just a hand waving argument," Morrison says. "It could be true, but there's no evidence that reprogramming works differently in an injured tissue versus a non-injured tissue."

What's more, the role of exosomes, the vesicles that supposedly transmit the reprogramming command to other cells, has been contentious in medical science. "There are all manners of claims of these vesicles. It's not clear what these things are, and if it's a real biological process or if it's debris," Morrison says. "In my lab, we would want to do a lot more characterization of these exosomes before we make any claims like this."

Sen says that the theory that introduced reprogramming code from the chip or any other gene delivery method does need more work, but he isn't deterred by the criticism. "This clearly is a new conceptual development, and skepticism is understandable," he says. But he is steadfast in his confidence about the role of reprogrammed exosomes. When the researchers extracted the vesicles and injected them into skin cells in the lab, Sen says those cells converted into blood vessel cells in the petri dish. "I believe this is definitive evidence supporting that [these exosomes] may induce cell conversion."

Even if the device works as well as Sen and his colleagues hope it does, they only tested it on mice. Repairing deeper injuries, like vital organ damage, would also require inserting the chip into the body to reach the wound site. It has a long way to go before it can ever be considered for use on humans. Right now, scientists can only directly reprogram adult cells into a limited selection of other cell types like muscle, neurons and blood vessel cells. It'll be many years before scientists understand how to reprogram one cell type to become part of any of our other, many tissues.

Still, Morrison says the chip is an interesting bit of technology. "It's a cool idea, being able to release [genetic code] through nano channels," he says. "There may be applications where that's advantageous in some way in the future."

Read the rest here:
A Chip That Reprograms Cells Helps Healing, At Least In Mice - NPR

Posted in Genetic Medicine | Comments Off on A Chip That Reprograms Cells Helps Healing, At Least In Mice – NPR

Ohio State researchers report breakthrough in cell regeneration – The Columbus Dispatch

JoAnne Viviano The Columbus Dispatch @JoAnneViviano

In what researchers consider a major scientific leap, a team at Ohio State University has discovered a new way of turning skin cells into any type of cells the body might need, a technology that has limitless potential, from regenerating a wounded limb to repairing a brain after stroke to healing a damaged heart.

The process involves placing a square chip about the size of a fingernail on the skin, adding a droplet containing genetic code, and zapping it with an energy source.

While it hasn't been used in humans yet, the process was used in animals to healbrains after stroke and to generate blood vessels in legs wherethe femoral artery, the limbs major blood supply, had been cut, said Chandan Sen, the director of the Center for Regenerative Medicine and Cell-Based Therapies at Ohio State's Wexner Medical Center.

In leg experiments involving mice, researchers placed the chip on the animals' wounded legs, delivered the appropriate genetic material, and saw blood vessels grown to regenerate limbs within seven to 14 days, Sen said. Legs that otherwise would have turned black and required amputation were pink, and the mice were able to run again.

In brain experiments on mice, the chip was again placed on the leg, different genetic material was dropped on, and neurological cells grew in the area. Three weeks later, scientists detected firing neurons, and the new cells were taken from the leg and inserted into the brain.

The leg-healing process was duplicated in pigs after the Walter Reed National Military Medical Center in Bethesda, Maryland, expressed interest. Sen said the technology could be used to heal troops in the field. One caveat: It must be deployed within 72 hours of a limb being damaged.

Twenty-six Ohio State researchers from the fields of engineering, science and medicine worked together to make the technology a reality.

Join the conversation at Facebook.com/columbusdispatchand connect with us on Twitter @DispatchAlerts

The discovery could have countless applications across various medical disciplines, Sen said. He's hopeful other researchers will help stretch the impact of the device.

"There are many smart minds throughout the country and the world that will take this and run," Sen said.

Sen expects that human trials will come soon, after a letter on the research is published Monday in the Nature Nanotechnology journal, a peer-reviewed scientificpublication.The research was led by Sen and L. James Lee, professor of chemical and biomolecular engineering in Ohio States College of Engineering.

Sen said it takes less than a second to deliver the genetic code that spurs the skin cells to switch to something else, then several days for new cells to grow.

The equipment needed can fit in a pocket. And the process can be done anywhere; no lab or hospital is needed.

The black chip, made of silicon, acts as a carrier for the genetic code.

"Its like a syringe thats the chip but then what you load in the syringe is your cargo," Sen explained. "Based on what you intend the cells to be, the cargo will change. So if you want a vasculogenic (blood vessel) cell, the code would be different than if you wanted a neuro cell, and so on and so forth."

The genetic code is synthetically made to mirror code from the patient.

The electric field pulls the genetic material into the skin cells.

Because the research project had a high risk of failure, and because Ohio State wanted to keep it close to the vest, public money was not sought, Sen said. Instead it was funded by university and philanthropic money from Leslie and Abigail Wexner, Ohio States Center for Regenerative Medicine and Cell-Based Therapies, and the universitys Nanoscale Science and Engineering Center.

Approval from the federal Food and Drug Administration is required before Sen, Lee and the research team can try the technique in humans. He expects to get that approval and prove human feasibility within a year. Sen's hopeful that "the floodgates will open" and then thetechnology will be used widely within five years.

The chips are already being manufactured locally due to an assist from the Rev1 Ventures business incubator on the Northwest Side, and the technology has gained interest from Taiwan-based Foxconn Technology Group.

Lee called the concept very simple and said he was surprised by how well it worked.

He had developed similar technology prior to 2011, but it only worked on individual cells and only in processes separate from the body. Since then, he said, many researchers and companies have approached him to come up with a system that worked on tissue in the body.

"More and more people said, 'This technology can be very, very powerful if you can do tissue,'" he said. "It turns out that it works. It was very surprising."

This version, he said, is a very significant advancement and is "much, much more useful for the medical applications."

jviviano@dispatch

@JoAnneViviano

View post:
Ohio State researchers report breakthrough in cell regeneration - The Columbus Dispatch

Posted in Genetic Medicine | Comments Off on Ohio State researchers report breakthrough in cell regeneration – The Columbus Dispatch

Invitae CEO says the diagnostic company has big plans for genomic medicine – MedCity News

San Francisco-based genetic diagnostics company Invitae has acquired Good Start Genetics and CombiMatrix, expanding Invitaes portfolio to include prenatal and pediatric testing. Its part of their long-term plan to make genomic testing routine.

Were building a company for the coming genomic era that includes genetic capabilities through all phases of life, said Invitae CEO Sean George in a phone interview.

Invitae offers a wide range of genomic panels to detect anomalies that could contribute to heart disease, cancer, neurologic disorders and other conditions. In Good Start, Invitae picks up expertise in carrier screening and preimplantation genetic testing. CombiMatrix also provides preimplantation testing, as well as panels to analyze miscarriages and pediatric developmental disorders.

Invitae is issuing 1.65 million shares of stock, paying $18.3 million in cash and assuming $6 million in debt for privately-held Good Start. CombiMatrix shareholders will receive around $27 million in common stock.

Spun off from Genomic Health in 2012, Invitae initially focused on adult inherited diseases and has gradually expanded their portfolio. They now enter a crowded field that includes LabCorp (which acquired Sequenom last year), Illumina, Progenity and others. George believes Invitaes ability to do the hard things will carry them through these market battles.

We are building a technology engine to win the race of scale, said George. We are looking to the OB market and the perinatal space to extend our platforms capabilities. But more importantly, in order to move the world away from the current disease-by-disease, test-by-test market, its managing genetic information for an individual over the course of their life.

Good Start appealed to Invitae for their cost-effective pre-implantation screening and diagnosis. CombiMatrix brings specific expertise in chromosomal microarrays. In addition, the companies could expand Invitaes marketing reach.

The two together have a pretty good commercial presence in the IVF and reproductive medicine sector, said George. Combined, especially with our capabilities, I think its fair to say we are immediately the number one player in the IVF, reproductive medicine segment for genetic information.

These acquisitions add around 150 people to the Invitae payroll, a 20 percent workforce increase. George notes they are always looking around for potential acquisitions but will probably take a breather to focus on moving new products to market. Ultimately, Invitae wants to be the company that mainstreams clinical genomics.

With the broad capabilities we now have at all stages of life, we expect to get traction in this new age of genomic medicine, where all this information can be brought to bear, said George. The first company to have broad capabilities across all of it and to continue to lower the cost basis and deliver that information is likely in position to truly bring genetics into medicine for everybody.

Photo: mediaphotos, Getty Images

Read more here:
Invitae CEO says the diagnostic company has big plans for genomic medicine - MedCity News

Posted in Genetic Medicine | Comments Off on Invitae CEO says the diagnostic company has big plans for genomic medicine – MedCity News

Genetics expert discusses creating ground rules for human germline editing – Medical Xpress

A Stanford professor of genetics discusses the thinking behind a formal policy statement endorsing the idea that researchers continue editing genes in human germ cells.

A team of genetics experts has issued a policy statement recommending that research on editing human genes in eggs, sperm and early embryos continue, provided the work does not result in a human pregnancy.

Kelly Ormond, MS, professor of genetics at the Stanford School of Medicine, is one of three lead authors of the statement, which provides a framework for regulating the editing of human germ cells. Germ cells, a tiny subset of all the cells in the body, give rise to eggs and sperm. Edits to the genes of germ cells are passed on to offspring.

The statement, published today in the American Journal of Human Genetics, was jointly prepared by the American Society for Human Genetics and four other human genetics organizations, including the National Society of Genetic Counselors, and endorsed by another six, including societies in the United Kingdom, Canada, Australia, Africa and Asia.

Germline gene editing raises a host of technical and ethical questions that, for now, remain largely unanswered. The ASHG policy statement proposes that federal funding for germline genome editing research not be prohibited; that germline editing not be done in any human embryo that would develop inside a woman; and that future clinical germline genome editing in humans not proceed without a compelling medical rationale, evidence supporting clinical use, ethical justification, and a process incorporating input from the public, patients and their families, and other stakeholders.

Ormond recently discussed the issues that prompted the statement's creation with writer Jennie Dusheck.

Q: Why did you think it was important to issue a statement now?

Ormond: Much of the interest arose a couple of years ago when a group of researchers in China did a proof of principle study demonstrating that they could edit the genes of human embryos.

The embryos weren't viable [meaning they could not lead to a baby], but I think that paper worried people. Gene editing in human germ cells is not technically easy, and it's not likely to be a top choice for correcting genetic mutations. Still, it worried us that somebody was starting to do it.

We've been able to alter genes for many years now, but the new techniques, such as CRISPR/Cas9, that have come out in the past five years have made it a lot easier, and things are moving fast. It's now quite realistic to do human germline gene editing, and some people have been calling for a moratorium on such work.

Our organization, the American Society of Human Genetics, decided that it would be important to investigate the ethical issues and put out a statement regarding germline genome editing, and what we thought should happen in the near term moving forward.

As we got into the process, we realized that this had global impact because much of the work was happening outside of the United States. And we realized that if someone, anywhere in the world, were moving forward on germline genome editing, that it was going to influence things more broadly. So we reached out to many other countries and organizations to see if we could get global buy-in to the ideas we were thinking about.

Q: Are there regulations now in place that prevent researchers from editing human embryos that could result in a pregnancy and birth?

Ormond: Regulations vary from country to country, so research that is illegal in one country could be legal in another. That's part of the challenge and why we thought it was so important to have multiple countries involved in this statement.

Also, since 1995 the United States has had regulations against federal funding for research that creates or destroys human embryos. We worry that restricting federal funding on things like germline editing will drive the research underground so there's less regulation and less transparency. We felt it was really important to say that we support federal funding for this kind of research.

Q: Is germline editing in humans useful and valuable?

Ormond: Germline editing doesn't have many immediate uses. A lot of people argue that if you're trying to prevent genetic disease (as opposed to treating it), there are many other ways to do that. We have options like prenatal testing or IVF and pre-implantation genetic testing and then selecting only those embryos that aren't affected. For the vast majority of situations, those are feasible options for parents concerned about a genetic disease.

The number of situations where you couldn't use pre-implantation genetic diagnosis to avoid having an affected child are so few and far between. For example, if a parent was what we call a homozygote for a dominant condition such as BRCA1 or Huntington's disease, or if both members of the couple were affected with the same recessive condition, like cystic fibrosis or sickle cell anemia, it wouldn't be possible to have a biologically related child that didn't carry that gene, not unless germline editing were used.

Q: What makes germline editing controversial?

Ormond: There are families out there who see germline editing as a solution to some genetic conditions. For example, during a National Academy of Sciences meeting in December of 2015, a parent stood up and said, "I have a child who has a genetic condition. Please let this move forward; this is something that could help."

But I also work in disability studies, as it relates to genetic testing, and there are many individuals who feel strongly that genetic testing or changing genes in any way makes a negative statement about them and their worth. So this topic really edges into concerns about eugenics and about what can happen once we have the ability to change our genes.

Germline gene editing impacts not just the individual whose genes are edited, but their future offspring and future generations. We need to listen to all of those voices and try to set a path that takes all of them into account.

That's a huge debate right now. A lot of people say, "Let's not mess around with the germline. Let's only edit genes after a person is born with a medical condition." Treating an existing medical condition is different from changing someone's genes from the start, in the germline, when you don't know what else you're going to influence.

Q: There was a paper recently about gene editing that caused mutations in excessive numbers of nontargeted genes, so called "off-target effects." Did that result surprise you or change anything about what you were thinking?

Ormond: I think part of the problem is that this research is moving very fast. One of our biggest challenges was that you can't do a good ethical assessment of the risks and benefits of a treatment or technology if you don't know what those risks are, and they remain unclear.

We keep learning about potential risks, including off-target mutations and other unintended consequences. Before anyone ever tries to do germline gene editing in humans, it is very important that we do animal studies where the animals are followed through multiple generations, so that we can see what happens in the long term. There's just a lot that we don't know.

There are so many unknowns that we don't even know what guidelines to set. For example, what's an appropriate new mutation level in some of these technologies? What is the risk we're willing to take as we move forward into human studies? And I think those guidelines need to be set as we move forward into clinical trials, both in somatic cells [cells of the body, such as skin cells, neurons, blood cells] and in germline cells.

It's really hard because, of course, we're talking about, for the most part, bad diseases that significantly impact quality of life. So if you're talking about a really serious disease, maybe you're willing to take more risk there, and these new mutations aren't likely to be as bad as the genetic condition you already have. But we don't know, right?

We haven't had any public dialogue about any of this, and that's what we need to have. We need to find a way to educate the public and scientists about all of these issues so people can have informed discussions and really come together as this moves forward, so that were not in that reactive place when it potentially becomes a real choice.

And that goes back to your first question, which is why did we feel like we needed to have a statement now? We wanted to get those conversations going.

Explore further: 11 organizations urge cautious but proactive approach to gene editing

Read the original:
Genetics expert discusses creating ground rules for human germline editing - Medical Xpress

Posted in Genetic Medicine | Comments Off on Genetics expert discusses creating ground rules for human germline editing – Medical Xpress