Search Immortality Topics:



The potential of CO2-based production cycles in biotechnology to … – Nature.com

Posted: November 2, 2023 at 11:54 am

Paraschiv, S. & Paraschiv, L. S. Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Rep. 6, 237242 (2020).

Article Google Scholar

International Energy Agency (IEA). CO2 Emissions in 2022. CO2 Emiss. 2022 (2023). https://doi.org/10.1787/12ad1e1a-en.

Vom Berg, C., Carus, M., Stratmann, M. & Dammer, L. Renewable Carbon as a Guiding Principle for Sustainable Carbon Cycles. Renew. Carbon Initiat. (2022).

Wang, H., Peng, X., Zhang, H., Yang, S. & Li, H. Microorganisms-promoted biodiesel production from biomass: A review. Energy Convers. Manag. X 12, 100137 (2021).

CAS Google Scholar

Shears, J. Is there a role for synthetic biology in addressing the transition to a new lowcarbon energy system? Microb. Biotechnol. 12, 824827 (2019).

Article PubMed PubMed Central Google Scholar

Srisawat, P., Higuchi-Takeuchi, M. & Numata, K. Microbial autotrophic biorefineries: Perspectives for biopolymer production. Polym. J. 54, 11391151 (2022).

Article CAS Google Scholar

Lee, R. A. & Lavoie, J.-M. From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Front 3, 611 (2013).

Article Google Scholar

Caltzontzin-Rabell, V. et al. Raw materials for a biomass-based industry. in Biofuels and Biorefining 2552 (Elsevier, 2022). https://doi.org/10.1016/B978-0-12-824116-5.00010-6.

Yang, F., Hanna, M. A. & Sun, R. Value-added uses for crude glycerola byproduct of biodiesel production. Biotechnol. Biofuels 5, 13 (2012).

Article CAS PubMed PubMed Central Google Scholar

Food and Agriculture Organization of the United Nations (FAO). Sustainable Food and Agriculture. online at https://www.fao.org/sustainability/news/detail/en/c/1274219/ (2020).

Gitz, V., Meybeck, A., Lipper, L., Young, C. & Braatz, S. Climate change and food security: Risks and responses. Food and Agriculture Organization of the United Nations (2016).

Cotton, C. A., Claassens, N. J., Benito-Vaquerizo, S. & Bar-Even, A. Renewable methanol and formate as microbial feedstocks. Curr. Opin. Biotechnol. 62, 168180 (2020).

Article CAS PubMed Google Scholar

Jiang, W. et al. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat. Chem. Biol. 17, 845855 (2021).

Article CAS PubMed Google Scholar

Ewis, D. et al. Electrochemical reduction of CO2 into formate/formic acid: A review of cell design and operation. Sep. Purif. Technol. 316, 123811 (2023).

Article CAS Google Scholar

Li, P., Gong, S., Li, C. & Liu, Z. Analysis of routes for electrochemical conversion of CO2 to methanol. Clean. Energy 6, 967975 (2022).

Article Google Scholar

Lee, M. Y. et al. Current achievements and the future direction of electrochemical CO2 reduction: A short review. Crit. Rev. Environ. Sci. Technol. 50, 769815 (2020).

Article CAS Google Scholar

Izadi, P. & Harnisch, F. Microbial | electrochemical CO2 reduction: To integrate or not to integrate? Joule 6, 935940 (2022).

Article Google Scholar

Nitopi, S. et al. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 119, 76107672 (2019).

Article CAS PubMed Google Scholar

Santos Correa, S., Schultz, J., Lauersen, K. J. & Soares Rosado, A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J. Adv. Res. 47, 7592 (2023).

Article CAS PubMed Google Scholar

Bar-Even, A., Noor, E. & Milo, R. A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63, 23252342 (2012).

Article CAS PubMed Google Scholar

Claassens, N. J. Reductive Glycine Pathway: A Versatile Route for One-Carbon Biotech. Trends Biotechnol. 39, 327329 (2021).

Article CAS PubMed Google Scholar

Stephens, S., Mahadevan, R. & Allen, D. G. Engineering Photosynthetic Bioprocesses for Sustainable Chemical Production: A Review. Front. Bioeng. Biotechnol. 8, 610723 (2021).

Article PubMed PubMed Central Google Scholar

Zhang, S. et al. Main components of free organic carbon generated by obligate chemoautotrophic bacteria that inhibit their CO2 fixation. iScience 25, 105553 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Sarma, S. et al. Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery. 3 Biotech 11, 378 (2021).

Article PubMed PubMed Central Google Scholar

Veaudor, T. et al. Recent Advances in the Photoautotrophic Metabolism of Cyanobacteria: Biotechnological Implications. Life 10, 71 (2020).

Article ADS CAS PubMed PubMed Central Google Scholar

Yoon, J. & Oh, M.-K. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. Bioresour. Technol. 344, 126307 (2022).

Article CAS PubMed Google Scholar

Bengelsdorf, F. R. et al. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis. Front. Microbiol. 7, 115 (2016).

Article Google Scholar

Bourgade, B., Minton, N. P. & Islam, M. A. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiol. Rev. 45, 120 (2021).

Article Google Scholar

Liew, F. E. et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. Biotechnol. 40, 335344 (2022).

Article CAS PubMed Google Scholar

Yurimoto, H., Shiraishi, K. & Sakai, Y. Physiology of Methylotrophs Living in the Phyllosphere. Microorganisms 9, 809 (2021).

Article CAS PubMed PubMed Central Google Scholar

Pea, D. A., Gasser, B., Zanghellini, J., Steiger, M. G. & Mattanovich, D. Metabolic engineering of Pichia pastoris. Metab. Eng. 50, 215 (2018).

Article PubMed Google Scholar

Zhang, W. et al. Current advance in bioconversion of methanol to chemicals. Biotechnol. Biofuels 11, 111 (2018).

Article Google Scholar

Nattermann, M. et al. Engineering a new-to-nature cascade for phosphate-dependent formate to formaldehyde conversion in vitro and in vivo. Nat. Commun. 14, 2682 (2023).

Article ADS CAS PubMed PubMed Central Google Scholar

Collas, F. et al. Engineering the biological conversion of formate into crotonate in Cupriavidus necator. bioRxiv (2023). https://doi.org/10.1101/2023.03.14.532570.

Gregory, G. J., Bennett, R. K. & Papoutsakis, E. T. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs. Metab. Eng. 71, 99116 (2022).

Article CAS PubMed Google Scholar

Guerrero-Cruz, S. et al. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Front. Microbiol. 12, 128 (2021).

Article Google Scholar

Fei, Q. et al. Bioconversion of natural gas to liquid fuel: Opportunities and challenges. Biotechnol. Adv. 32, 596614 (2014).

Article CAS PubMed Google Scholar

Kalyuzhnaya, M. G. et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4, 2785 (2013).

Article ADS CAS PubMed Google Scholar

Kwon, M., Ho, A. & Yoon, S. Novel approaches and reasons to isolate methanotrophic bacteria with biotechnological potentials: recent achievements and perspectives. Appl. Microbiol. Biotechnol. 103, 18 (2019).

Article CAS PubMed Google Scholar

Bar-Even, A., Noor, E., Lewis, N. E. & Milo, R. Design and analysis of synthetic carbon fixation pathways. Proc. Natl Acad. Sci. USA. 107, 88898894 (2010).

Article ADS CAS PubMed PubMed Central Google Scholar

Liang, B., Zhao, Y. & Yang, J. Recent Advances in Developing Artificial Autotrophic Microorganism for Reinforcing CO2 Fixation. Front. Microbiol. 11, 592631 (2020).

Article PubMed PubMed Central Google Scholar

Klein, V. J., Irla, M., Gil Lpez, M., Brautaset, T. & Fernandes Brito, L. Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy. Microorganisms 10, 220 (2022).

Article CAS PubMed PubMed Central Google Scholar

Keller, P. et al. Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle. Nat. Commun. 13, 113 (2022).

Article Google Scholar

Zhan, C. et al. Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph. Nat. Catal. 6, 435450 (2023).

Article ADS CAS Google Scholar

Tuyishime, P. et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab. Eng. 49, 220231 (2018).

Article CAS PubMed Google Scholar

Chen, F. Y. H., Jung, H. W., Tsuei, C. Y. & Liao, J. C. Converting Escherichia coli to a Synthetic Methylotroph Growing Solely on Methanol. Cell 182, 933946.e14 (2020).

Article CAS PubMed Google Scholar

Gassler, T. et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat. Biotechnol. 38, 210216 (2020).

Article CAS PubMed Google Scholar

Gassler, T., Baumschabl, M., Sallaberger, J., Egermeier, M. & Mattanovich, D. Adaptive laboratory evolution and reverse engineering enhances autotrophic growth in Pichia pastoris. Metab. Eng. 69, 112121 (2022).

Article CAS PubMed Google Scholar

Gleizer, S. et al. Conversion of Escherichia coli to Generate All Biomass Carbon from CO2. Cell 179, 12551263.e12 (2019).

Article CAS PubMed PubMed Central Google Scholar

Baumschabl, M. et al. Conversion of CO2 into organic acids by engineered autotrophic yeast. Proc. Natl Acad. Sci. 119, 110 (2022).

Article Google Scholar

Noor, E., Flamholz, A., Liebermeister, W., Bar-Even, A. & Milo, R. A note on the kinetics of enzyme action: A decomposition that highlights thermodynamic effects. FEBS Lett. 587, 27722777 (2013).

Article CAS PubMed Google Scholar

Flamholz, A., Noor, E., Bar-Even, A. & Milo, R. EQuilibrator - The biochemical thermodynamics calculator. Nucl. Acids Res. 40, 770775 (2012).

Article Google Scholar

Noor, E. et al. Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism. PLoS Comput. Biol. 10, e1003483 (2014).

Article PubMed PubMed Central Google Scholar

Read the original post:
The potential of CO2-based production cycles in biotechnology to ... - Nature.com

Recommendation and review posted by G. Smith