Search Results for: prof dr meyer

Layoffs plague nonprofits some more troubled than others – Generocity

In the beginning, there were nonprofit agencies about 15,000 in the five-county region.

Then COVID-19 divided them into essential and nonessential organizations. On the necessary side, are the nonprofits that provide the basics that millions of Americans depend upon to survive. On the wrong side of the coronavirus tracks is the arts and cultural organizations whose offerings are deemed wonderful but dispensable in this time of pandemic.

And that inequality has begat escalating unemployment.

Russell Johnson, president and CEO of HealthSpark Foundation, said that its too early to tell the impact statistically but anecdotally there have been many layoffs. We are carefully monitoring this question. Some agencies have laid-off staff. Some were forced to close such as child care centers, senior centers, YMCAs and have either not yet reopened or are slowing reopening.

HealthSpark was a founding partner and investor in the MontCoPA COVID-19 Response Fund, a partnership effort between local philanthropic organizations, nonprofits, government, and public citizens, which has raised nearly $800,000 towards pandemic relief efforts and has supported 127 nonprofits to date most of them health and human service agencies.

"Nearly all organizations that are not providing safety net services are laying off their staff especially as their PPP (Payroll Protection Program) runs out."Nancy Burd

Nearly all organizations that are not providing safety net services are laying off their staff especially as their PPP (Payroll Protection Program) runs out and no further allocation is on the horizon, said Nancy Burd of The Burd Group, a Philadelphia-based strategic planning consultancy for grantmakers.

According to a recent study, there were 242,000 nonprofit employees earning more than $11 billion in annual wages in the five-county Philadelphia region.

In May, the results of the Rapid Response: the PHL Nonprofits and COVID-19 Survey, showed that about one out of every five nonprofits in the 10-county region had already laid off staff and one in four anticipated more furloughs to come within the year. Most of these nonprofits were small agencies with a staff of less than 20 people, a large volunteer force and annual budgets between $1 million to $2.49 million.

The nonprofit sector is one-fourth of the economy of Montgomery County, said Johnson, (This survey) gives you a sense of what the nonprofit sector is going through.

For workers, the pandemic s longevity is turning temporary furloughs into permanent unemployment. For the nonprofits that are hibernating programs versus shutting down completely, (they) are trying to keep some programming alive virtually and would hope to re-open in 2021. At that time they would staff up as programs come back. Maybe the staff will be different, but that is the current strategy for many organizations, added Burd.

In our area, one of the first to announce furloughs was the Greater Philadelphia YMCA of Conshohocken, states largest coronavirus-related layoff. We had to make this really tough choice, CEO and President Shaun Elliott told the Philadelphia Inquirer, so that we could survive as an organization to reopen when its possible.

A $100 million organization, the Greater Philadelphia YMCA was taking in only $500,000 a month on expenses of $45 million after the state shuttered the agency.

The YMCA laid off 4,000 people, about 700 of them fulltime employees, leaving a skeletal staff of about 60 people. Elliott stopped collecting a paycheck and the pay of remaining staff was reduced.

On the stronger side of the corona divide are the health and human service agencies.

Here in Philadelphia, and elsewhere, nonprofits providing important safety net services are responding to greater demand and resources appear to be plentiful at all levels philanthropy, government and individuals, Burd said. The Covid 19 Fund run by the Philadelphia Foundation has raised $17 million+ and has distributed most all of it, but only to the social safety net nonprofits.

However, the cultural and arts sector, which was a $4 billion economic driver in Philadelphia alone, is faring much worse. Donors, who may be historically committed to the arts or their colleges are diverting their philanthropic dollars to those in need, that is their first impulse, Burd explained.

The irony is many nonprofits were traveling the right fiscal path and had diversified their revenue streams to decrease dependency on grants and government contracts. It was, in the time before COVID-19, sound business practice.

The great recession of 2008 was the wake-up call. We had encouraged the sector to increase earned income, to become less dependent upon contributed income which has too many strings attached and little control. And those that intentionally recalibrated their business model, were among the healthiest orgs. They became adept at maximizing earned income by monetizing their assets and using them aggressively all to promote financial health and growth and prepare for crisis, Burd said.

Then she added: But today, these are precisely the organizations who have been hurt the most in this pandemic.

After careful reflection, we have determined that reopening Please Touch Museum at this time presents a significant public health risk as well as a financial one. With that, The Please Touch Museum announced it was extending its temporary closure into 2021. After three rounds of layoffs in six months, the staff dropped from 71 employees to 18. Patricia D. Wellenbach, president and CEO of Please Touch Museum called the decision, agonizing.

(Photo by P. Meyer for Visit Philadelphia)

Before COVID-19 the museum had an operating budget of $700,000 per month, almost 90% of it was funded from earned revenue including ticket sales and facilities rentals. With the shutdown of the state and schools, its operating budget had slid to $200,000 per month.

The Kimmel Center too earned 93% of its income and had reduced its dependency on philanthropy. But that was before large public gatherings were forbidden. With no audience for its money-making shows and concerts, Kimmel Center President and CEO Anne C. Ewers announced it was furloughing 80% of its staff and cutting pay and hours for the others.

In general, nonprofits are waiting for state and federal budgets (to provide funding), Johnson said. In June, Moodys Analytics announced that based on their calculations, states collectively would need to find $312 billion while the local governments would need uncover close to $200 billion to balance their budgets.

We are forever changed, Johnson. We will never go back to the way things were.

Visit link:
Layoffs plague nonprofits some more troubled than others - Generocity

Posted in Human Longevity | Comments Off on Layoffs plague nonprofits some more troubled than others – Generocity

Vaccines, Antibodies and Drug Libraries. The Possible COVID-19 Treatments Researchers Are Excited About – TIME

In early April, about four months after a new, highly infectious coronavirus was first identified in China, an international group of scientists reported encouraging results from a study of an experimental drug for treating the viral disease known as COVID-19.

It was a small study, reported in the New England Journal of Medicine, but showed that remdesivir, an unapproved drug that was originally developed to fight Ebola, helped 68% of patients with severe breathing problems due to COVID-19 to improve; 60% of those who relied on a ventilator to breathe and took the drug were able to wean themselves off the machines after 18 days.

Repurposing drugs designed to treat other diseases to now treat COVID-19 is one of the quickest ways to find a new therapy to control the current pandemic. Also in April, researchers at Vanderbilt University enrolled the first patients in a much-anticipated study of hydroxychloroquine. Its already approved to treat malaria and certain autoimmune disorders like rheumatoid arthritis and lupus but hasnt been studied, until now, against coronavirus. Yet the medication has become a sought-after COVID-19 treatment after first Chinese doctors, and then President Trump touted its potential in treating COVID-19. The data from China is promising but not conclusive, and infectious disease experts, including Trumps coronavirus task force scientific advisor Dr. Anthony Fauci, arent convinced its ready for prime time yet in Americas emergency rooms and intensive care units.

But doctors facing an increasing flood of patients say they dont have time to wait for definitive data. In a survey of 5,000 physicians in 30 countries conducted by health care data company Sermo, 44% prescribed hydroxychloroquine for their COVID-19 patients, and 38% believed it was helping. Such off-label use in using a drug approved to treat one disease to treat another is allowed, especially during a pandemic when no other therapies are available. A similar percentage said remdesivir was very or extremely effective in treating COVID-19. (Although remdesivir is not approved for treating any disease, the Food and Drug Administration granted special authorization for doctors to use it to treat the sickest COVID-19 patients.)

That explains the unprecedented speed with which the hydroxychloroquine studyand others like itare popping up around the world. There are no treatments proven to disable SARS-CoV-2, the virus that causes the disease, which means all the options scientists are exploring are still very much in the trial-and-error stage. Still, they are desperate for anything that might provide even a slim chance of helping their patients survive, which is why studies are now putting dozens of different therapies and a handful of vaccines to the test. The normal road to developing new drugs is often a long oneand one that frequently meanders into dead ends and costly mistakes with no guarantees of success. But given the speed at which SARS-CoV-2 is infecting new hosts on every continent across the globe, those trials are being ushered along at a breakneck pace, telescoping the normal development and testing time by as much as half.

The newly launched Vanderbilt study, led by the National Heart, Lung, and Blood Institute of the U.S. National Institutes of Health, will enroll more than 500 people who have been hospitalized with COVID-19 and randomly assign them to receive hydroxychloroquine or placebo. It would be the first definitive trial to test whether hydroxychloroquine should be part of standard therapy for treating COVID-19, and its lead scientist expects results in a few months.

The sense of urgency is pushing other researchers at academic institutes as well as pharmaceutical companies to turn to their libraries of thousands of approved drugs or compounds that are in early testing and screening to see if any can disable SARS-CoV-2. Because these are either already approved and deemed safe for people, if any emerge as possible anti-COVID-19 therapies, companies could begin testing them in people infected with the virus within weeks. Other teams are mining recovered patients blood for precious COVID-19-fighting immune cells, and because the virus seems to attack the respiratory system, scientists are also finding clever ways to stop it from compromising lung tissue.

These are all stop-gap measures, however, since ultimately, a vaccine against COVID-19 is the only way to arm the worlds population against new waves of infection. Established pharmaceutical powers like Johnson & Johnson, Sanofi and Glaxo SmithKline are racing shoulder-to-shoulder to with startups using new technology to develop dozens of potential new vaccines, with the hope of inoculating the first people next yearnone too soon before what public health officials anticipate might be another season of either the same, or potentially new, coronavirus.

We know these viruses reside in animal species, and surely another one will emerge, says Dr. David Ho, director of the Aaron Diamond AIDS Research Center and professor of medicine at Columbia University, who is heading an effort to screen antiviral drug compounds for new COVID-19 treatments. We need to find permanent solutions to treating them, and should not repeat the mistake that once an epidemic wanes, interest and political will and funding also wanes.

Its an old-school approach that dates back to the late 19th century, but the intuitive logic behind using plasma from recovered patientstechnically called convalescent plasmaas a treatment might still apply today. Plasma treatments have been used with some success to treat measles, mumps and influenza. The idea is to use immune cells extracted from the blood of people who have recovered from COVID-19 and infuse them into those who are infected, giving them passive immunity to the disease, which could at least minimize some of its more severe symptoms.

Its part of a broader range of tactics that utilize the bodys own immune response as a molecular North Star for charting the course toward new treatments. And by far, antibodies against the virus are the most abundant and efficient targets, so a number of pharmaceutical and biotechnology companies are concentrating on isolating the ones with the strongest chance of neutralizing SARS-CoV-2.

In late March, New York Blood Center became the first U.S. facility to start collecting blood from recovered COVID-19 patients specifically to treat other people with the disease. Doctors at New Yorks Mount Sinai Health System are now referring recovered (and willing) patients to the Blood Center, which collects and processes the plasma and provides the antibody-rich therapy back to hospitals to treat other COVID-19 patients.. Its not clear yet whether the practice will work to treat COVID-19, but the Food and Drug Administration (FDA) is allowing doctors to try the passive immunity treatment in the sickest patients on a case by case basis, as long as they apply for permission to use or study the plasma an investigational new drug. If we can passively transfuse antibodies into someone who is actively sick, they might temporarily help that person fight infection more effectively, so they can get well a little bit quicker, says Dr. Bruce Sachais, chief medical officer at New York Blood Center Enterprises.

The biggest drawback to this approach, however, is the limited supply of antibodies. Each recovered donor has different levels of antibodies that target SARS-CoV-2, so collecting enough can be a problem, especially if the need continues to surge during an ongoing pandemic. At the Maryland-based pharmaceutical company Emergent BioSolutions, scientists are trying to overcome this challenge by turning to a unique source of plasma donors: horses. Their size makes them ideal donors, says Laura Saward, head of the companys therapeutic business unit. Scientists already use plasma from horses to produce treatments for botulism (a bacterial infection), and have found that the volume of plasma the animals can donate means each unit can treat more than one patient (with human donors, at this point, one unit of plasma from a donor can treat one patient). Horses plasma may also have higher concentrations of antibody, so the thought is that a smaller dose of equine plasma would be effective in people because there would be higher levels of antibody in smaller doses, says Saward. By the end of the summer, the company expects its equine plasma to be ready for testing in people.

Scientists are also looking for other ways to generate the virus-fighting antibodies produced by COVID-19 patients. At Regeneron, a biotechnology firm based in New York, researchers are turning to mice bred with human-like immune systems and infected with SARS-CoV-2. Theyre searching hundreds of antibodies these animals produce for the ones that can most effectively neutralize the virus. By mid-April, the company plans to start manufacturing the most powerful candidates and prepare them (either solo or in combination) for human testingboth in those who are already infected, as well as in healthy people, to protect from getting infected in the first place, like a vaccine.

Its not just people and animals that can produce antibodies. Scientists now have the technology to build what are essentially molecular copying machines that can theoretically churn out large volumes of the antibodies found in recovered patients. At GigaGen, a San Francisco-based biotech startup founded by Stanford University professor Dr. Everett Meyer, scientists are identifying the right antibodies from recovered COVID-19 patients and hoping to use them as a template for synthesizing new ones, in a more consistent and efficient way so a handful of donors could potentially produce enough antibodies to treat millions of patients. What GigaGens technology does is almost Xerox copy a big swath of the human repertoire of antibodies, and then takes those copies and grows it in cells [in the lab] to manufacture more antibodies outside of the human body, says Meyer. So we can essentially keep up with the virus. If all goes well and the FDA gives its green light, the company intends to start testing their antibody concoctions in COVID-19 patients early next year.

Researchers at Rockefeller University are following another clue from the human bodys virus-fighting defenses. They discovered in 2017 that human cells make a protein called LY6E that can block a viruss ability to make copies of itself. Working with scientists at the University of Bern in Switzerland and the University of Texas Southwestern Medical Center, they found that mice genetically engineered to not produce the protein became sicker, and were more likely to die after infection with other coronaviruses, including SARS and MERS, compared to mice that were able to make the protein. If the mice have the protein they pretty much survive, says John Schoggins, associate professor of microbiology at the University of Texas. If they dont have it, they dont survivebecause their immune system cant control the virus. While these studies havent yet been done on SARS-CoV-2, given its similarity to the original SARS virus, theres hope a therapy based on LY6E might be useful.

Ideally, Schoggins is hoping to start testing LY6Es potential in infected human lung cells, which SARS-CoV-2 appears to target for disease. The closest mouse model for coronavirus, created to study the original SARS virus, has been retired since research on that virus dwindled after cases wanted following the 2003 outbreak. There wasnt the need to keep the mouse around, and that tells us a lot about the state of our research, says Schoggins. We dont really work on thing unless everyones hair is on fire.

Its not just immune cells that make good targets for new drugs. Other companies are looking at broader immune-system changes triggered by stressduring cancer, for example, or infection with a new virus like SARS-CoV-2that end up making it easier for a virus to infect cells. Drugs that inhibit these stress-related changes would act like molecular gates slamming shut on the cells that viruses are trying to infect.

Because SARS-CoV-2 preferentially attacks lung tissue and causes cells in the respiratory tract to launch a hyperactive immune response, researchers are exploring ways to tame that aggressive response by dousing those cells with a familiar gas: nitric oxide, often used to relax blood vessels and open up blood flow in hospital patients on ventilators who have trouble breathing. While working on a new, portable system for delivering nitric oxide developed by Bellerophon Therapeutics to treat a breathing disorder in newborns, Dr. Roger Alvarez, an assistant professor of medicine at University of Miami, got the idea that the gas might be helpful for COVID-19 patients as well. One symptom of the viral infection is low oxygen levels in the lungs, and nitric oxide is ideally designed to grab more oxygen molecules from the air with each breath and feed it to the lungs. With this system, patients dont need to be in the ICU [Intensive Care Unit] at all, he says. The patient can be in a regular hospital bed, or even at home. So you save the cost of the ICU and from a resource standpoint, you save on needing nursing care, respiratory therapists and other ICU monitoring.

In theory, if this system could be used for COVID-19 patients with moderate symptoms, it could keep those patients from needing a ventilatora huge benefit in the current context where ventilator shortages are one of the biggest threats to the U.S. health care system. So far, Alvarez has received emergency use authorization from the FDA to test a version of his system on one COVID-19 patient at the University of Miami Health System. That patient improved and is ready to go home. Its great news and gives me the information to say that this appears at least safe to study further, he says, which is what he plans to do with the first small trial of nitric oxide for COVID-19 at his hospital.

When it comes to developing a new antiviral treatment, it doesnt always pay to start from scratch. There are dozens of drugs that have become life-saving therapies for one disease after their developers accidentally discovered that the medications had other, equally useful effects. Viagra, for example, was originally explored as a heart disease drug before its unintended effect in treating erectile dysfunction was discovered, and gabapentin was developed as an epilepsy drug, but is now also prescribed to control nerve pain.

Within weeks of COVID-19 cases spiking to alarming levels in China, researchers at Gilead in Foster City, Cal., saw an opportunity. A drug the company had developed against Ebola, remdesivir, had shown glimmers of hope in controlling that virus in the laband also showed promise as a tool to treat coronaviruses like those that caused SARS and MERS. In fact, says Merdad Parsey, chief medical officer of Gilead, We knew in the test tube that remdesivir had more activity against coronaviruses like SARS and MERS than against Ebola. So it wasnt entirely surprising that when the company began testing it in people during last years Ebola outbreak in the Democratic Republic of Congo, the results were disappointing. The early studies against Ebola werent as encouraging in people as they were in animals. So we were basically on hold with the drug, waiting to see if there would be another [Ebola] outbreak to see if we could test it earlier in the infection, says Parsey.

Then COVID-19 happened. As the infection roared through Wuhan, Chinathe original epicenter of the diseaseresearchers there reached out to Gilead, knowing that the company had released data suggesting that remdeisivir had strong antiviral effects in lab studies against coronaviruses. They launched two studies of the drug in the sickest patients.

In mid-January, a man in Everett, Wash., who had recently visited Wuhan, checked into a clinic after a few days of feeling sick. He quickly went from having a fever and cough to having difficulty breathing because of pneumonia. Concerned that the man was worsening by the day, his doctor contacted the U.S. Centers for Disease Control; suspecting this might be a case of COVID-19and knowing there was no proven treatment for the infectionexperts at the agency suggested he try an experimental therapy, remdesivir.

The CDC team felt relatively confident about the drugs safety, if not its effectiveness, since Gilead had studied it extensively in animal models and, in the early trials in people, it didnt lead to any serious side effects and appeared safe. They were also aware of the companys promising data with human cells against the original SARS.

For the Washington patient, the experimental drug might be a lifesaver. A day after receiving remdesivir intravenously, his fever dropped, and he no longer needed supplemental oxygen to breathe. About two weeks after entering the hospital, he was discharged to self-isolate for several more days at home.

That set off a rush for remdesivir as cases in the U.S. went from a trickle to a flood, and doctors grasped for anything to treat quickly declining patients. Gilead initially offered the drug on a compassionate use basis, a process that allows companies, with the FDAs permission, to provide unapproved drugs currently being studied to patients who need them as a last resort. These programs are designed for one-off uses, and companies usually receive two to three requests a month from doctors . But in this case, Gilead was flooded with requests for remdesivir at the beginning of March. And because each one is evaluated on a case-by-case basis to ensure that each patient is eligible and that the potential risks of trying an untested drug dont outweigh the benefits, a backlog developed and the company couldnt respond to the requests in a timely way, says Parsey. So on March 30, Gilead announced it would no longer provide remdesivir through that program but through an expanded access program instead. Doctors can get access to the drug for their COVID-19 patients via dozens of clinical trials of remdesivir, two of which Gilead initiated. One is focused on patients with mild symptoms and one involves those with severe symptoms. The National Institutes of Health is currently heading another large study of the drug, at multiple centers around the country.

Finding a new purpose for existing drugs is ideal; they are likely already proven safe and their developers have a substantial dossier of information on how the drugs work. Thats what happened with hydroxychloroquine, a malaria drug developed after the parasite that causes the illness became resistant to the chloroquine, a drug discovered during World War II and since used widely to fight the disease. As researchers studied hydroxychloroquine in the lab in recent decades , they learned it can block viruses, including coronaviruses, from infecting cells. In lab studies, when researchers infected human cells with different viruses and then bathed them in hydroxychloroquine, those cells could generally stop viruses like influenza, SARS-CoV-2, and the original SARS virus, another type of coronavirus, from infecting the cells. The problem is that what happens in the lab often doesnt predict what happens in a patient, says Dr. Otto Yang, from the department of microbiology, immunology and molecular genetics at the David Geffen School of Medicine at the University of California Los Angeles. In fact, in the case of influenza, the drug wasnt as successful in stopping infection in animals or in people. Similarly, when scientists brought hydroxychloroquine out of the lab and tested it in people, the drug failed to block infection with HIV and dengue as well.

Thats why doctors are approaching hydroxychloroquine with healthy skepticism when it comes to COVID-19 and are only using it on the sickest patients with no other options. Doctors at a number of hospitals, including Johns Hopkins, the University of California Los Angeles, and Brigham and Womens, for example, are starting to use hydroxychloroquine to treat patients with severe COVID-19 symptoms when they dont improve on current supportive treatments. Its not ideal, but If someone is sick in the ICU you try everything possible you can for that person, says Dr. David Boulware, a professor of medicine at the University of Minnesota, who is conducting a study of hydroxychloroquine effectiveness both in treating those with severe disease and in protecting health people from infection.

Other researchers are attempting to trace the same path with other repurposed drugs, including a flu treatment from Toyama Chemical, a pharmaceutical division of the Japanese conglomerate Fujifilm, called favipiravir, which Chinese researchers used to treat patients with COVID-19. More rigorous studies of both remdesivir and favipirivir against SARS-CoV-2 are ongoing; all researchers can say at this point is that they are worth studying further, and that they appear to be safe.

Even cancer drugs are showing promise as COVID-19 treatments, not by neutralizing the virus but by healing the damage infection does to the immune system. The Swiss pharmaceutical giant Novartis, for example, has ruxolitinib (sold under the trade name Jakavi), which was approved by the FDA in 2011 to treat a number of different cancers, and is designed to tamp down an exaggerated immune responsewhich can be caused by both tumor cells and a virus. In the case of SARS-CoV-2, a hyperactive immune response can trigger breathing problems, called a cytokine storm, that require extra oxygen therapy or mechanical ventilation. In theory, ruxolitinib could suppress this virus-caused cytokine storm. Novartis is making its drug available on an emergency use basis for doctors willing to try it on their sickest patients.

Eli Lilly is also testing one of its anti-inflammatory drugs, baricitinib, in severe COVID-19 patients. Like ruxolitinib, baricitinib interferes with the revved up signalling among immume cells that can trigger the inflammatory cytokine storm. According to president of Lilly Bio-Medicines Patrik Jonsson, there are even early hints from case studies of doctors treating COVID-19 patients that the drug may target the virus too, which could mean that it helps to lower the viral load in infected patients. The company is working with NIAID to confirm whether this is the case in a more rigorous study of severe COVID-19 patients, and expects to see results by summer.

It wasnt immediately obvious that baricitinib could potentially treat COVID-19; it took an artificial intelligence effort by UK-based BenevolentAI to scour existing medical literature and descriptions of drug structures to identify baricitinib as a possible therapy.

Such machine learning-based techniques are making the search for new therapies far more efficient than ever before. Chloroquine, hydroxychloroquines parent, came out of a massive war-time drug discovery effort in the 1940s, when governments and pharmaceutical companies combed through existing drug libraries for promising new ways to treat malaria. With computing power that is orders of magnitude greater now, its now possible to single out not just existing drugs with antiviral potential, but entirely new ones that may have gone unnoticed.

When Sumit Chanda first heard of the mysterious pneumonia-like illnesses spiking in Wuhan, China, he had an eerie feeling that the world was about to face a formidable viral foe. He had spent his entire career studying all the clever and devilish ways that bacteria, viruses and pathogens find hospitable hosts and then take up residence, oblivious to how much illness, disease and devastation they may cause. And as director of the immunity and pathogenesis program at Sanford Burnham Prebys Medical Discovery Institute in San Diego, Chanda knew that if the mystery illness striking in China was indeed caused by a new virus or bacteria, then doctors would need new ways to treat itand quickly.

So, he and his team started canvassing a 13,000 drug library, which is funded by the Bill and Melinda Gates Foundation and created by Scripps Research. Our strategy is to take existing drugs and see if they might have any efficacy as an antiviral to fight COVID-19, he says. The advantage of this approach is that you can shave years upon years off the development process and the studies on safety. We want to move things quickly into [testing] in people. In a matter of weeks, he has narrowed down the list of potential coronavirus drug candidates, and because these are already existing drugs and approved for treating other diseases, they are relatively safe, and can quickly be tested in people infected with SARS-CoV-2.

Chandas team isnt the only one taking advantage of this approach. Researchers at numerous pharmaceutical companies, biotech outfits and academic centers are screening their libraries of drugsboth approved and in developmentfor any anti-COVID-19 potential.

At Columbia University, Dr. David Ho, who pioneered ways of creating cocktails of drugs to make them more potent against HIV, is scouring a different library of virus-targeting drugs to pluck out ones that could be effective against SARS-CoV-2. Altogether, he has some 4,700 drugs (approved and in development) to look through, and he believes there is a strong chance of finding something that might be effective against not just SARS-CoV-2 but any other coronavirus that might pop up in coming years. The key, says Ho, is to be prepared for the next outbreak so the work on finding antiviral drugs doesnt have to start from scratch. We know these viruses reside in animal species, he says. We predict in the coming decade there will be more [outbreaks]. And we need to find permanent solutions. We should not repeat the mistake we made after SARS and after MERS, that once the epidemic wanes, the interest and the political will and the funding also wanes. If we had followed through with the work that had begun with SARS, we would be so much better off today.

But today, we are in the midst of a pandemic, and scientists are eager to leave no potentially promising technology untried. Banking on the growing body of science looking at how newborn babies are able to avoid life-threatening infections in their first days in the world, researchers at New Jersey-based Celularity are investigating how placental cells, rich with immune cells that protect the baby in utero, might also become a source of immune defense therapy against COVID-19. Its part of a broader strategy of cell-based treatments that scientists are beginning to explore for treating cancer as well as infectious disease.

On April 1, the company received FDA clearance for its placental cell treatment, based on a group of immune cells called natural killer cells that circulate in the placenta, and are designed to protect the developing fetus from infection. They are programmed to recognize red flags typically sent up by cells infected with viruses like SARS-CoV-2, and destroy them. After the 2002-2003 SARS epidemic, researchers in China found that people who had more severe symptoms of that disease also had deficient populations of natural killer cells.

The FDA green light means the company can launch a small human study using placental natural killer cells against COVID-19. Dr. Robert Hariri, Celularitys founder and CEO, wants to test them first in people who are infected, to see if they can stop the infection from getting worse. Our approach is to flatten the immunologic curve, he says. Our hope is to decrease the size of the viral load and keep it below the threshold of serious symptomatic disease until the patients own immune system can be revved up and respond. If those studies are encouraging, then the company will look at how natural killer cells might be used to pre-charge the immune system to prevent infection with SARS-CoV-2 in the first place.

As effective and critical as these therapies might be, they are a safety net for the best weapon against an infectious disease: a vaccine.

The main reason that a new virus like SARS-CoV-2 has such free license to infect hundreds of thousands of people around the world is because its an entirely new enemy for the human immune system making the planets population an open target for infection. But a vaccine that can prime the body to build an army of antibodies and immune cells trained to recognize and destroy the coronavirus would act as an impenetrable molecular fortress blocking invasion and preventing disease.

Unfortunately, vaccines take time to developyears, if not decades. Scientists at Johnson & Johnson are currently working on a vaccine using fragments of the SARS-CoV-2 spike protein, an easy protein target that sprinkles the surface of the virus like a crown (hence the name coronavirus, from the Latin for crown). The company loads the viral gene for the spike protein into a disabled common-cold virus vector that delivers the genetic material to human cells. The immune system then recognizes the viral fragments as foreign and deploys defensive cells to destroy it. In the process, the immune system learns to recognize the genetic material of the virus, so when the body is confronted by the actual virus, its ready to attack.

Given the manufacturing requirements to build the vaccine, and the studies in animals needed to get a hint of whether the vaccine will work, however, J&Js project is unlikely to come to fruition until mid-2021. We plan to have the first data on the vaccine before the end of the year, says Paul Stoffels, chief science officer at J&J. I would hope that in the first half of next year, we should be able to get vaccines ready for people in high risk groups like health care workers on the front lines.

That timeline is already accelerated quite a bit compared to vaccine research in non-pandemic contexts. But new technology that doesnt require a live transport system could shrink the time to human tests even further. Working with the National Institute of Allergy and Infectious Diseases, Moderna Therapeutics, a biotech based in Cambridge, Mass., developed its mRNA vaccine in a record 42 days after the genetic sequence of the new coronavirus was released in mid January. Its system turns the human body into a living lab to churn out the viral proteins that activate the immune system.

Researchers at Moderna hot wired the traditional vaccine-making process by packing their shot with mRNA, the genetic material that comes from DNA and makes proteins. The viral mRNA is encased in a lipid vessel that is injected into the body. Once inside, immune cells in the lymphatic system process the mRNA and use it like a genetic beacon to attract immune cells that can mount toxic responses against the virus. Our vaccine is like the software program for the body, says Dr. Stephen Hoge, president of Moderna. So which then goes and makes the [viral] proteins that can generate an immune response.

Because this method doesnt involve live or dead virusesall it requires is a lab that can synthesize the correct genetic viral sequencesit can be scaled up quickly since researchers dont have to wait for viruses to grow. Almost exactly two months after the genetic sequence of SARS-CoV-2 was first published by Chinese researchers, the first volunteer received an injection of the Moderna vaccine. The companys first study of the vaccine, which will include 45 healthy participants, will monitor its safety. Hoge is already gearing up to produce hundreds and thousands of more doses to prepare for the next stage of testing, which will enroll hundreds of people, most likely those at high risk of getting infected, like health care workers.

If those results arent as promising as health experts hope, there are other innovative options in the works. At the University of Pittsburgh, scientists who had been developing a vaccine against the original SARS virus have switched to making a shot against the new one. Their technology involves hundreds of microneedles in a band-aid like patch that deliver parts of the coronavirus protein directly into the skin. From there, the foreign viral proteins are swept into the blood and into the lymph system, where immune cells recognize them as invaders and develop antibodies against them. After seeing animals inoculated with their vaccine develop strong antibodies against SARS-CoV-2, the team is ready to submit an application to the FDA to begin testing in people.

Whats different about these new coronavirus efforts is the fact that they arent all designed to control SARS-CoV-2 alone. Recognizing that this coronavirus is the third in recent decades to cause pandemic disease, scientists are focusing on building therapies, including vaccines, that can quickly be adapted to target different coronaviruses that might emerge in coming years. We hope these new technologies become the kinds of things we build in our tool kits that as humans will allow us to respond in a much more accelerated way to the next pandemic, says Modernas Hoge. Because we expect continuing threats from viruses in the future.

Thank you! For your security, we've sent a confirmation email to the address you entered. Click the link to confirm your subscription and begin receiving our newsletters. If you don't get the confirmation within 10 minutes, please check your spam folder.

Contact us at editors@time.com.

Excerpt from:
Vaccines, Antibodies and Drug Libraries. The Possible COVID-19 Treatments Researchers Are Excited About - TIME

Posted in Gene Medicine | Comments Off on Vaccines, Antibodies and Drug Libraries. The Possible COVID-19 Treatments Researchers Are Excited About – TIME

COVID-19 will overwhelm Austin-area hospitals unless social contact is drastically cut, UT researchers say – Austin American-Statesman

Researchers at the University of Texas say hospitals in the Austin-Round Rock area will be overwhelmed by coronavirus cases unless the community takes action to drastically reduce person-to-person contact.

In the report released Thursday, lead author and UT professor Lauren Ancel Meyers presented a number of scenarios based on the assumed rate of transmission and the severity of the coronavirus for different age groups. Meyers, a professor of integrative biology and statistics and data sciences, found the number of cases in the Austin-Round Rock area doubles about every four days. The report also found each infected person passes the virus on to 2.2 others, and about 1 in 20 people who contract the coronavirus in the area will be hospitalized.

Meyers emphasized much of the data is still preliminary.

"There is still much we do not understand about the transmission dynamics of this virus, including the extent of asymptomatic infection and transmission. We update our model inputs on a daily basis, as our understanding of the virus improves," she said.

UTs pandemic model shows that reducing daily contacts in the community by 50% or 75% may not be sufficient to prevent an unmanageable surge in COVID-19 hospitalizations in Travis, Williamson, Bastrop, Caldwell and Hays counties. Even if the community reduces contacts by 75%, researchers predict more than 18,000 people will need hospitalization. The estimated total daily hospital capacity in the area is about 4,000 beds, according to the report.

In order to ensure the Austin-Round Rock area has enough hospital beds, ventilators and other resources, the community must reduce daily contacts with people by 90%, projections suggest.

The report was shared with Austin city leaders earlier this week, researchers said. On Thursday, coronavirus cases rose to 137 in Travis County, with 27 cases being reported in Williamson County and 13 in Hays County. Gov. Greg Abbott said Thursday 1,424 people in Texas have tested positive for the virus, including family members of UT President Gregory L. Fenves and the UT dean of undergraduate studies.

Travis and Williamson counties issued shelter-in-place orders this week, restricting residents from leaving their homes, except for necessary errands like medicine, groceries and individual physical exercise. But Meyers and Clay Johnston, dean of the Dell Medical School, say its hard to understand just how effective those measures are. On Wednesday, for instance, dozens of Austinites were seen gathered on the shores of Barton Creek, despite a mandate from city and county officials to stay home.

"Its not just policies, its attitudes," Johnston said. "Its all of us being concerned, even before the mayor and county judge change rules about the number of social contacts."

While theres no definite way of tracking peoples social contacts, data analysts at the business strategy company Unacast have attempted to analyze Americans travel habits by creating a social distancing scoreboard, which calculates the average distance a person travels by tracking cell phone activity.

According to the analysis, Texans have reduced their travel distances by nearly 40% since the start of March. But Johnston said such a model could underestimate the impact of social distancing policies like a shelter-in-place mandate, because they dont account for isolated travel, like walking the dog or going for a run.

Still, Meyers and Johnston said the impact of social distancing on reducing the transmission of COVID-19 is immediate.

"As soon as we stop coming in contact with each other, we are preventing infected people from in contact with people who could become infected," Meyers said.

Area hospitals have already begun making room for the anticipated onslaught of coronavirus cases, and are identifying possibilities for surge capacity, such as converting clinic spaces or unused parts of the building to treat more patients, Johnston said. If hospitals run out of space, they may look to places like the Austin Convention Center, the Frank Erwin Center, or other large public buildings to set up treatment centers, he said.

"We are preparing for the worst and hoping thats unnecessary," Johnston said. "But it all depends on the behavior today of the public."

Read the original post:
COVID-19 will overwhelm Austin-area hospitals unless social contact is drastically cut, UT researchers say - Austin American-Statesman

Posted in Integrative Medicine | Comments Off on COVID-19 will overwhelm Austin-area hospitals unless social contact is drastically cut, UT researchers say – Austin American-Statesman

Demographics Linked to Choice Not to Vaccinate Children in Texas, Study Finds – UT News | The University of Texas at Austin

AUSTIN, Texas Texans who are college-educated, live in suburban or urban areas, have higher median incomes and are ethnically white are less likely to vaccinate their children, according to analysis by researchers at The University of Texas at Austin. The findings could help public health officials identify pockets of low vaccination rates where communities within the state are at higher risk for an outbreak of vaccine-preventable diseases such as measles.

In a paper published today in the journal PLoS Medicine, professor of integrative biology Lauren Ancel Meyers, a computational epidemiologist, and her team at UT Austin compared publicly available census data with the number of conscientious vaccination exemptions from public, private and charter school systems across Texas. The state is one of 15 to allow families who cite a philosophical objection to vaccines to opt out of immunizations for their children that are otherwise required for enrolling in school. A total of 45 states and Washington, D.C., allow religious objections to immunizations.

The study not only provides a window into local vaccination patterns throughout Texas, but also allows us to make predictions, Meyers said. If you dont have data on the vaccination rate for a given community, you can use demographic factors to predict outbreak risks for vaccine-preventable diseases.

Researchers consider vaccination exemption rates of 3% or higher in a school or school district to be the threshold for high risk of an outbreak of vaccine-preventable illness. A growing number of schools exceed that threshold in Texas. Between the 2012-2013 school year and the 2017-2018 school year, the percentage of school districts reporting high-risk levels of exemptions doubled in public school districts across the state, rising from 3% to 6%. High-risk private schools increased from 20% to 26%, and charter schools increased from 17% to 22%.

The study examined the top 10 metropolitan areas in Texas, including rural, suburban and urban communities within each area. Suburban and higher-income urban communities were more likely to have high vaccination exemption rates than rural counties, the study found. Austin, Dallas-Fort Worth and Houston were the cities with the highest risk of vaccine opt-outs. Areas with higher percentages of young children, ethnically white people and people with a bachelors degree were more likely to have higher vaccination exemption rates.

On the flip side, researchers found that counties with lower median income and a higher percentage of people who spoke a non-English language at home were more likely to have a lower vaccine opt-out rate.

We wanted to identify potential pockets of hidden risk throughout Texas stemming from declining childhood vaccination rates, Meyers said.

To do this, Meyers and colleagues took a more detailed look at the data. Prior studies looked at average exemption rates within counties and concluded that most Texas counties did not cross the 3% exemption rate. By instead tracking the number of individual schools and districts above this threshold, the team identified unseen pockets of risk. Travis County, for instance, has a 2.3% conscientious exemption rate across all grade levels, according to the Department of State Health Services. But using her more fine-tuned model, Meyers was able to predict pockets within Travis County where the vaccination exemption rate in schools with grades K-8 was higher than 3%.

This study allows us to detect potential hot spots at a finer geographic scale, she said. The increasing numbers of exemptions are already alarming. In addition, the clustering of unvaccinated children in tight communities only amplifies the risk of an outbreak.

Similar studies have been performed in other states, such as California. Meyers study was the first to look at Texas, which is considered a high-risk state for an outbreak of vaccine-preventable illness, at such a granular level. Meyers and her team estimate that 5% of public schools in metropolitan areas of Texas, 28% of private schools and 22% of charter schools are at risk for an outbreak.

The study did not offer any clues about why some demographic groups are opting out of vaccinating their children at such a high rate.

Undergraduate Maike Morrison, a member of the Deans Scholars Honors program at The University of Texas at Austin, and Lauren A. Castro of Los Alamos National Laboratory co-authored the paper. Meyers holds the Denton A. Cooley Centennial Professorship in Zoology at The University of Texas at Austin.

The researchers were supported by the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program and the National Institutes of Health Models of Infectious Disease Agent Study Grant.

Follow this link:
Demographics Linked to Choice Not to Vaccinate Children in Texas, Study Finds - UT News | The University of Texas at Austin

Posted in Integrative Medicine | Comments Off on Demographics Linked to Choice Not to Vaccinate Children in Texas, Study Finds – UT News | The University of Texas at Austin

My top three lifestyle tweaks that will support people’s journey towards better wellbeing with Dr. William Seeds & Carolyn Zaumeyer – Thrive…

As time goes by, our bodies do not process white foods as well as they used to. By eliminating sugar, flour, potatoes, bread, pasta, bagels, crackers, etc. many people are able to shed the extra weight that sneaks up on us over time.

Nurse Practitioner Carolyn Zaumeyer has been specializing in womens health (gynecology) for more than 28 years. She is the author of two books and more than 33 publications, has served on the Advisory Board of the Duke/Johnson & Johnson Nurse Leadership Program and is an established public speaker, having presented nationally and internationally at more than 100 conferences. After establishing the first independent nurse practitioner practice in Florida in 1994, Carolyn has become a well-known expert and resource for nurse practitioners embarking on business ownership, womens health, and Bio-Identical Hormone Replacement Therapy. She is currently the #2 provider of Bio-Identical Hormones in the entire US. For more information, visithttps://lowteflorida.com.

Thank you so much for doing this with us! What is your backstory?

I am a Nurse Practitioner with a passion for helping people age healthier and live happier with hormone optimization.

Can you share your top three lifestyle tweaks that you believe will help support peoples journey towards better wellbeing?

Our hormones naturally decline as we age ~ optimizing hormones not only helps you feel better, but there are many health benefits to aging with hormones than without (Less incidence of osteoporosis, arthritis, heart disease, breast cancer, prostate cancer, and even Alzheimers disease!

Many people have a sluggish thyroid, meaning it is no longer functioning as it did when we were younger. Optimizing your thyroid through natural treatments can help with your metabolism (weight), mental clarity, energy, hair, and much more.

As time goes by, our bodies do not process white foods as well as they used to. By eliminating sugar, flour, potatoes, bread, pasta, bagels, crackers, etc. many people are able to shed the extra weight that sneaks up on us over time.

Can you share the most interesting story that happened to you since you started your career?

I have had the pleasure of working with Suzanne Somers on a couple of projects. There is an interview we did together on LowTEFlorida.com talking about Sex After 50! She loves talking about sex I tend to squirm a little, she makes me laugh.

Can you share a story about the biggest mistake you made when you were first starting?

I think my biggest issue was self-doubt ~ doubting that I could be a successful businesswoman.

Can you tell us what lesson you learned from that?

I learned that those doubting thoughts were a waste of time!

When it comes to health and wellness, how is the work you are doing helping to make a bigger impact in the world?

It is amazing what I hear from my patients that I have treated: this is life-changing, my osteoporosis is correcting, your saved my marriage, my cholesterol has gone down, and all I did was your treatment. So, my treatments are changing my patients health and changing my patients lives. With my treatments, there are studies documenting less incidence of heart disease, osteoporosis, breast cancer, prostate cancer, Alzheimers Disease, and maybe even divorce!

None of us are able to achieve success without some help along the way. Is there a particular person who you are grateful towards who helped get you to where you are? Can you share a story about that?

I have had many professionals that have been excellent mentors and teachers. My family and friends have always been available to lend an ear and help me problem solve. My biggest cheerleader is my life, love, and business partner, Alex.

Alex has worked with me side by side for the past many years, helping me with my speaking engagements, exhibiting at expos, and meetings. He has heard me speak so many times he could give my talks! He is so well versed on the topic of Bio-Identical hormones; hearing him speak, you would never guess that he was a high-end millwork and cabinet maker!

If you could start a movement that would bring the most amount of wellness to the most amount of people, what would that be?

I feel that if we could optimize the worlds hormones, we would have less war, happier people, and less divorce.

What are your 3 Things I Wish Someone Told Me Before I Started and why?

Do you have someone you admire in this industry?

Dr. Gary Donovitz is the Founder and Chairman of BioTE Medical. His teachings gave me the confidence that I was treating my patients in the best possible way, using the right hormone (bio-identical), the right dose (scientifically calculated), and the right delivery system (pellets the safest way to bring hormones into your body).

If you could take one person to brunch, who would it be?

Suzanne Somers I have worked with her on several projects. We laugh because we both feel we could talk non-stop for a week and not run out of things to say! She is so knowledgeable and inspiring ~ love her!

Sustainability, veganism, mental health and environmental changes are big topics at the moment. Which one of these causes is dearest to you, and why?

Mental Health With all of the senseless tragedies we see every day on the news, I always think that if we had better screening and treatment for mental illness ~ many of these shootings, murders, and crimes could have been prevented.

What is the best way our readers can follow you on social media?

LowTE Florida on Facebook; we post when our seminars and specials are happening.

Originally posted here:
My top three lifestyle tweaks that will support people's journey towards better wellbeing with Dr. William Seeds & Carolyn Zaumeyer - Thrive...

Posted in Hormone Optimization | Comments Off on My top three lifestyle tweaks that will support people’s journey towards better wellbeing with Dr. William Seeds & Carolyn Zaumeyer – Thrive…

Female Hormone Optimization – Dr. Hagmeyer

Night sweats that keep you awake at all hours. Fatigue that makes everything such an effort even time with family and friends. Mood swings and lack of sexual desire that strain relationships with your partner. Anxiety, Depression,Thinning hair, wrinkles, weight gain, and dry skin that dont let you feel good about yourself.

Our endocrine system is devised of glands which produce and send hormones to all areas of our body to regulate essential function such as temperature, metabolism, reproduction, growth, immunity and aging. It stands to reason that this is the hub of vitality, longevity and well-being. With proper testing and monitoring, hormoneimbalances can be completely reversed with a Functional and Integrative approach and without standard prescribed medicines.

Our Seven-Step Natural hormone re-balancing and hormone make over program will address your major symptoms and ensure optimal results.

Here is just a glimpse into our Comprehensive Hormone Makeover and Restoration program. Read More

Complete a quick profile questionnaire to find out if this treatment is right for you!

Read more here:
Female Hormone Optimization - Dr. Hagmeyer

Posted in Hormone Optimization | Comments Off on Female Hormone Optimization – Dr. Hagmeyer