Search Immortality Topics:

Page 442«..1020..441442443444..450460..»


Category Archives: Stem Cell Therapy

'Master molecule' may improve stem cell treatment of heart attacks

Public release date: 20-Jun-2012 [ | E-mail | Share ]

Contact: Phil Sneiderman prs@jhu.edu 443-287-9960 Johns Hopkins University

Johns Hopkins researchers have discovered that a single protein molecule may hold the key to turning cardiac stem cells into blood vessels or muscle tissue, a finding that may lead to better ways to treat heart attack patients.

Human heart tissue does not heal well after a heart attack, instead forming debilitating scars. For reasons not completely understood, however, stem cells can assist in this repair process by turning into the cells that make up healthy heart tissue, including heart muscle and blood vessels. Recently, doctors elsewhere have reported promising early results in the use of cardiac stem cells to curb the formation of unhealthy scar tissue after a heart attack. But the discovery of a "master molecule" that guides the destiny of these stem cells could result in even more effective treatments for heart patients, the Johns Hopkins researchers say.

In a study published in the June 5 online edition of the journal Science Signaling, the team reported that tinkering with a protein molecule called p190RhoGAP shaped the development of cardiac stem cells, prodding them to become the building blocks for either blood vessels or heart muscle. The team members said that by altering levels of this protein, they were able to affect the future of these stem cells.

"In biology, finding a central regulator like this is like finding a pot of gold," said Andre Levchenko, a biomedical engineering professor and member of the Johns Hopkins Institute for Cell Engineering, who supervised the research effort.

The lead author of the journal article, Kshitiz, a postdoctoral fellow who uses only his first name, said, "Our findings greatly enhance our understanding of stem cell biology and suggest innovative new ways to control the behavior of cardiac stem cells before and after they are transplanted into a patient. This discovery could significantly change the way stem cell therapy is administered in heart patients."

Earlier this year, a medical team at Cedars-Sinai Medical Center in Los Angeles reported initial success in reducing scar tissue in heart attack patients after harvesting some of the patient's own cardiac stem cells, growing more of these cells in a lab and transfusing them back into the patient.

Using the stem cells from the patient's own heart prevented the rejection problems that often occur when tissue is transplanted from another person.

Levchenko's team wanted to figure out what, at the molecular level, causes the stem cells to change into helpful heart tissue. If they could solve this mystery, the researchers hoped the cardiac stem cell technique used by the Los Angeles doctors could be altered to yield even better results.

Go here to see the original:
'Master molecule' may improve stem cell treatment of heart attacks

Posted in Stem Cell Therapy | Comments Off on 'Master molecule' may improve stem cell treatment of heart attacks

LIFE Focuses on Stem Cell Research – Analyst Blog

Referenced Stocks: ILMN, LIFE, TMO

Given the recent flurry of activities, it seems that Life Technologies Corporation ( LIFE ) is focused on strengthening its foothold in the field of stem cell research. The company recently signed a non-exclusive agreement with iPS Academia of Japan for its induced pluripotent stem (iPS) cell patent portfolio. Based on this agreement, the company will be able to expand its portfolio for the iPS cell research community.

Besides, it is well placed to create iPS cells and differentiate them into various cell types to be used in drug discovery and pre-clinical research. The license also enables Life Technologies to provide creation, differentiation and screening services of iPS cell to scientists globally. We consider the agreement to be a significant achievement for the company in the field of stem cell research as iPS cells are gaining attention for use in the areas of drug discovery, disease research and other areas of biotechnology.

The agreement with iPS Academia of Japan comes on the heels of the partnership with Cellular Dynamics International, the world's largest producer of human cells derived from iPS cells. The partnership will aim at commercializing a set of three new products optimized to consistently develop and grow human iPS cells for both research and bioproduction.

These initiatives undertaken by Life Technologies should strengthen its Research Consumables segment. This segment includes molecular and cell biology reagents, endpoint PCR and other benchtop instruments and consumables. These products include RNAi, DNA synthesis, sample prep, transfection, cloning and protein expression profiling and protein analysis, cell culture media used in research, stem cells and related tools, cellular imaging products, antibodies and cell therapy related products. In the most recent quarter, this division recorded a 4% year-over-year increase in revenues to $420 million on the back of growth in cell culture workflow products, endpoint PCR products and molecular and cell biology consumables.

Life Technologies enjoys a strong position in the life sciences market, though management prefers to maintain a cautious but optimistic outlook for the remainder of the year. We are encouraged by the improvement in margins amidst the tight competitive scenario with the presence of players such as Thermo Fisher Scientific ( TMO ), Illumina ( ILMN ), among others.

We have a Neutral recommendation on Life Technologies. The stock retains a Zacks #3 Rank (hold) in the short term.

The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of The NASDAQ OMX Group, Inc.

See the original post here:
LIFE Focuses on Stem Cell Research - Analyst Blog

Posted in Stem Cell Therapy | Comments Off on LIFE Focuses on Stem Cell Research – Analyst Blog

LIFE Focuses on Stem Cell Research

Given the recent flurry of activities, it seems that Life Technologies Corporation (LIFE) is focused on strengthening its foothold in the field of stem cell research. The company recently signed a non-exclusive agreement with iPS Academia of Japan for its induced pluripotent stem (iPS) cell patent portfolio. Based on this agreement, the company will be able to expand its portfolio for the iPS cell research community.

Besides, it is well placed to create iPS cells and differentiate them into various cell types to be used in drug discovery and pre-clinical research. The license also enables Life Technologies to provide creation, differentiation and screening services of iPS cell to scientists globally. We consider the agreement to be a significant achievement for the company in the field of stem cell research as iPS cells are gaining attention for use in the areas of drug discovery, disease research and other areas of biotechnology.

The agreement with iPS Academia of Japan comes on the heels of the partnership with Cellular Dynamics International, the world's largest producer of human cells derived from iPS cells. The partnership will aim at commercializing a set of three new products optimized to consistently develop and grow human iPS cells for both research and bioproduction.

These initiatives undertaken by Life Technologies should strengthen its Research Consumables segment. This segment includes molecular and cell biology reagents, endpoint PCR and other benchtop instruments and consumables. These products include RNAi, DNA synthesis, sample prep, transfection, cloning and protein expression profiling and protein analysis, cell culture media used in research, stem cells and related tools, cellular imaging products, antibodies and cell therapy related products. In the most recent quarter, this division recorded a 4% year-over-year increase in revenues to $420 million on the back of growth in cell culture workflow products, endpoint PCR products and molecular and cell biology consumables.

Life Technologies enjoys a strong position in the life sciences market, though management prefers to maintain a cautious but optimistic outlook for the remainder of the year. We are encouraged by the improvement in margins amidst the tight competitive scenario with the presence of players such as Thermo Fisher Scientific (TMO), Illumina (ILMN), among others.

We have a Neutral recommendation on Life Technologies. The stock retains a Zacks #3 Rank (hold) in the short term.

Read the Full Research Report on TMO

Read the Full Research Report on ILMN

Zacks Investment Research

More From Zacks.com

See the rest here:
LIFE Focuses on Stem Cell Research

Posted in Stem Cell Therapy | Comments Off on LIFE Focuses on Stem Cell Research

Metformin treatment caused cancer stem cell death in pancreatic cancer cell lines

Public release date: 19-Jun-2012 [ | E-mail | Share ]

Contact: Jeremy Moore jeremy.moore@aacr.org 215-446-7109 American Association for Cancer Research

LAKE TAHOE, Nev. Results of some preclinical trials have shown that low doses of the antidiabetic drug metformin may effectively destroy cancer stem cells, a group of cells that are considered to be responsible for tumor initiation and, because they are resistant to standard chemotherapies, tumor relapse.

In addition, when metformin was combined with a standard chemotherapy used for pancreatic cancer, the combination treatment was able to efficiently eradicate both cancer stem cells and more differentiated cancer cells, which form the bulk of the tumor, according to data presented by Christopher Heeschen, M.D., Ph.D., at the American Association for Cancer Research's Pancreatic Cancer: Progress and Challenges conference, held in Lake Tahoe, Nev., from June 18-21, 2012. Heeschen is professor for experimental medicine at the Spanish National Cancer Research Centre in Madrid, Spain.

Most clinical trials of pancreatic cancer conducted during the last 15 years have failed to show marked improvement in median survival, suggesting that the selected approaches were not sufficient for several reasons, according to Heeschen. In recent years, researchers have identified cancer stem cells which, as opposed to the cancer cells that make up the bulk of the tumor, are a small subset of cells that are resistant to conventional therapy.

"Therefore, efficiently targeting these cells will be crucial for achieving higher cure rates in patients with pancreatic cancer," he said. "Our newly emerging data now indicate that metformin, a widely used and well-tolerated drug for the treatment of diabetes, is capable of efficiently eliminating these cells."

Specifically, the researchers found that metformin-pretreated cancer stem cells were particularly sensitive to alterations to their metabolism through the activation of AMPK. In fact, metformin treatment resulted in the death of cancer stem cells. In contrast, treatment of more differentiated cancer cells with metformin only arrested the cells' growth.

"As the cancer stem cells represent the root of pancreatic cancer, their extinction by reprogramming their metabolism with metformin in combination with the stalling of the proliferation of more differentiated cells should result in tumor regression and long-term, progression-free survival," Heeschen said.

The researchers generated data to support this idea when they treated immunocompromised mice implanted with a diverse set of patient-derived tumors with a combination of metformin and gemcitabine, the standard chemotherapeutic treatment for pancreatic cancer. They found that the treatment resulted in reduced tumor burden and the prevention of relapse as compared with treatment with either drug alone.

"Intriguingly, in all tumors treated with metformin to date, relapse of disease was efficiently prevented and there were no noticeable adverse effects," Heeschen said.

See original here:
Metformin treatment caused cancer stem cell death in pancreatic cancer cell lines

Posted in Stem Cell Therapy | Comments Off on Metformin treatment caused cancer stem cell death in pancreatic cancer cell lines

Cryopraxis, Sponsor of Stem Cell Research is Represented at Bio2012 in Boston

RIO DE JANEIRO--(BUSINESS WIRE)--

Cryopraxis established in 2001 as the pioneer private umbilical cord blood bank in Brazil will be present at Bio 2012 in Boston. Eduardo Cruz, chairman of the board, will be a speaker at the Brazilian break-out session speaking about The Brazilian Biotechnology Sector and showing the results of the company's commitment to R&D. Cryopraxis has already collected and processed more than 25000 cord blood units (CBU) and is actively involved in several R&D projects in Brazil and abroad.

A spin-off of Cryopraxis, Cellpraxis, has recently finished one of the world's first cell therapy project clinical trials in Brazil: ReACT. ReACT is a stem cell formulation. This regenerative medicine pioneer product aims on treating an orphan disease condition called refractory angina. Refractory angina patients suffer from untreatable severe chest pain and the results of the clinical trial in a 5 years follow up proved ReACT to positively interfere in the course of the pathology. Most of the individuals treated experienced relief in pain and better quality of life. ReACT will be presented at Bio2012 as an example of Brazil's dynamic biotechnology research.

Cryopraxis is accredited by the American Association of Blood Bank since 2009.

According to Tatiana Lima, Technical Director at Cryopraxis, "extensive training and strict adherence to good laboratory practices are basic principles in Cryopraxis' corporate strategy." Janaina Machado, cell lab director describes the company's primary mission: "maximizing safety and efficiency of collection procedures to make sure our clients get what they look for: the highest quality standards."

Cryopraxis is part of Axis Biotec (www.axisbiotec.com.br) and it has the largest biological cryogenic storage facility in Brazil and one of the largest in the World. It is the largest umbilical cord blood bank in Brazil. The company is involved in several research projects in Brazil and abroad.For more information, visitwww.cryopraxis.com.brand http://www.cellpraxis.com

Excerpt from:
Cryopraxis, Sponsor of Stem Cell Research is Represented at Bio2012 in Boston

Posted in Stem Cell Therapy | Comments Off on Cryopraxis, Sponsor of Stem Cell Research is Represented at Bio2012 in Boston

Stem cell market to reach $322 million by 2017

2011 saw the stem cell market earn revenues of $148.4 million in 2011 and this is forecast to reach $322 million by 2017. The segments covered include: bio-imaging and microscopy, cell biology tools, immunochemical, molecular biology tools, and protein biochemistry tools.

The US is one of the major stem cell markets in the world, and the country has been witnessing a significant level of positive growth over the past few years. The US stem cell market was estimated to reach around $830 Million in 2010, up from $500 Million in 2009.

This market growth can be attributed to a number of supporting factors, such as huge investment, strong demand, and rising disease incidences. Forecasters have predicted that these factors will lead to the US stem cell market generating revenues of $3 billion by 2013.

A key step forward for the market has been the stem cell regulations in a few countries allowing the use of certain cell lines. In some countries such as France, for instance, stem cell regulations are being renewed for the procurement and use of stem cells.

Standardised research guidelines are needed to control and encourage the development of gene therapy and stem cell treatments. Regenerative medicine is seen as an area with high future potential, as countries need ways to cope with the burden of an aging population.

Stem cell research is very dynamic with research trends, focus, and approaches evolving extremely rapidly. The tool market has to quickly adapt to these challenges and develop innovative tools that address and accelerate research accomplishments.

Organisations such as the International Society for Stem Cell Research (ISSCR) publish recommended guidelines on working with stem cells, but these are not binding. Governments must therefore come together to determine a standardised framework for innovative medical research, in order that positive results and long-term follow-up data can be produced to solidify the reputation and investment potential of the regenerative medicine market.

For more information on the stem cell market, see the latest research: Stem Cell Market Report

Follow us on Twitter @CandMResearch

About: Companiesandmarkets.com is a UK based organisation, home to one of the worlds largest databases of market research reports and company profiles from leading global publishers and industry analysts. Multinational brands across major industries rely daily on companiesandmarkets.com for strategic market research and incisive company profiles. Call +44 (0)203 086 8600.

See the article here:
Stem cell market to reach $322 million by 2017

Posted in Stem Cell Therapy | Comments Off on Stem cell market to reach $322 million by 2017