Search Immortality Topics:

Page 93«..1020..92939495..100110..»


Category Archives: Quantum Computing

Trump betting millions to lay the groundwork for quantum internet in the US – CNBC

In the 1960s the U.S. government funded a series of experiments developing techniques to shuttle information from one computer to another. Devices in single labs sprouted connections, then neighboring labs linked up. Soon the network had blossomed between research institutions across the country, setting down the roots of what would become the internet and transforming forever how people use information. Now, 60 years later, the Department of Energy is aiming to do it again.

The Trump administration's 2021 budget request currently under consideration by Congress proposes slashing the overall funding for scientific research by nearly 10% but boosts spending on quantum information science by about 20%, to $237 million. Of that, the DOE has requested $25 million to accelerate the development of a quantum internet. Such a network would leverage the counterintuitive behavior of nature's particles to manipulate and share information in entirely new ways, with the potential to reinvent fields including cybersecurity and material science.

Whilethetraditional internet for general useisn't going anywhere, a quantum networkwouldoffer decisive advantages for certain applications: Researchers could use it to develop drugs and materials by simulating atomic behavior onnetworked quantum computers, for instance, and financial institutions and governments would benefit from next-level cybersecurity. Many countries are pursuing quantum research programs, and with the 2021 budget proposal, the Trumpadministration seeks to ramp up thateffort.

"That level of funding will enable us to begin to develop the groundwork for sophisticated, practical and high-impact quantum networks," says David Awschalom, a quantum engineer at the University of Chicago. "It's significant and extremely important."

A quantum internet will develop in fits and starts, much like the traditional internet did and continues to do. China has already realized an early application, quantum encryption, between certain cities, but fully quantum networks spanning entire countries will take decades, experts say. Building it willrequire re-engineering the quantum equivalent of routers, hard drives, and computers from the ground up foundational work already under way today.

Where the modern internet traffics in bits streaming between classical computers (a category that now includes smart phones, tablets, speakers and thermostats), a quantum internet would carry a fundamentally different unit of information known as the quantum bit, or qubit.

Bits all boil down to instances of nature's simplest eventsquestions with yes or no answers. Computer chips process cat videos by stopping some electric currents while letting others flow. Hard drives store documents by locking magnets in either the up or down position.

Qubits represent a different language altogether, one based on the behavior of atoms, electrons, and other particles, objects governed by the bizarre rules of quantum mechanics. These objects lead more fluid and uncertain lives than their strait-laced counterparts in classical computing. A hard drive magnet must always point up or down, for instance, but an electron's direction is unknowable until measured. More precisely, the electron behaves in such a way that describing its orientation requires a more complex concept known as superposition that goes beyond the straightforward labels of "up" or "down."

Quantum particles can also be yoked together in a relationship called entanglement, such as when two photons (light particles) shine from the same source. Pairs of entangled particles share an intimate bond akin to the relationship between the two faces of a coin when one face shows heads the other displays tails. Unlike a coin, however, entangled particles can travel far from each other and maintain their connection.

Quantum information science unites these and other phenomena, promising a novel, richer way to process information analogous to moving from 2-D to 3-D graphics, or learning to calculate with decimals instead of just whole numbers. Quantum devices fluent in nature's native tongue could, for instance, supercharge scientists' ability to design materials and drugs by emulating new atomic structures without having to test their properties in the lab. Entanglement, a delicate link destroyed by external tampering, could guarantee that connections between devices remain private.

But such miracles remain years to decades away. Both superposition and entanglement are fragile states most easily maintained at frigid temperatures in machines kept perfectly isolated from the chaos of the outside world. And as quantum computer scientists search for ways to extend their control over greater numbers of finicky particles, quantum internet researchers are developing the technologies required to link those collections of particles together.

The interior of a quantum computer prototype developed by IBM. While various groups race to build quantum computers, Department of Energy researchers seek ways to link them together.

IBM

Just as it did in the 1960s, the DOE is again sowing the seeds for a future network at its national labs. Beneath the suburbs of western Chicago lie 52 miles of optical fiber extending in two loops from Argonne National Laboratory. Early this year, Awschalom oversaw the system's first successful experiments. "We created entangled states of light," he says, "and tried to use that as a vehicle to test how entanglement works in the real world not in a lab going underneath the tollways of Illinois."

Daily temperature swings cause the wires to shrink by dozens of feet, for instance, requiring careful adjustment in the timing of the pulses to compensate. This summer the team plans to extend their network with another node, bringing the neighboring Fermi National Accelerator Laboratory into the quantum fold.

Similar experiments are under way on the East Coast, too, where researchers have sent entangled photons over fiber-optic cables connecting Brookhaven National Laboratory in New York with Stony Brook University, a distance of about 11 miles. Brookhaven scientists are also testing the wireless transmission of entangled photons over a similar distance through the air. While this technique requires fair weather, according to Kerstin Kleese van Dam, the director of Brookhaven's computational science initiative, it could someday complement networks of fiber-optic cables. "We just want to keep our options open," she says.

Such sending and receiving of entangled photons represent the equivalent of quantum routers, but next researchers need a quantum hard drive a way to save the information they're exchanging. "What we're on the cusp of doing," Kleese van Dam says, "is entangled memories over miles."

When photons carry information in from the network, quantum memory will store those qubits in the form of entangled atoms, much as current hard drives use flipped magnets to hold bits. Awschalom expects the Argonne and University of Chicago groups to have working quantum memories this summer, around the same time they expand their network to Fermilab, at which point it will span 100 miles.

But that's about as far as light can travel before growing too dim to read. Before they can grow their networks any larger, researchers will need to invent a quantum repeater a device that boosts an atrophied signal for another 100-mile journey. Classical internet repeaters just copy the information and send out a new pulse of light, but that process breaks entanglement (a feature that makes quantum communications secure from eavesdroppers). Instead, Awschalom says, researchers have come up with a scheme to amplify the quantum signal by shuffling it into other forms without ever reading it directly. "We have some prototype quantum repeaters currently running. They're not good enough," he says, "but we're learning a lot."

Department of Energy Under Secretary for Science Paul M. Dabbar (left) sends a pair of entangled photons along the quantum loop. Also shown are Argonne scientist David Awschalom (center) and Argonne Laboratory Director Paul Kearns.

Argonne National Laboratory

And if Congress approves the quantum information science line in the 2021 budget, researchers like Awschalom and Kleese van Dam will learn a lot more. Additional funding for their experiments could lay the foundations for someday extending their local links into a country-wide network. "There's a long-term vision to connect all the national labs, coast to coast," says Paul Dabbar, the DOE's Under Secretary for Science.

In some senses the U.S. trails other countries in quantum networking. China, for example, has completed a 1,200-mile backbone linking Beijing and Shanghai that banks and other companies are already using for nearly perfectly secure encryption. But the race for a fully featured quantum internet is more marathon than sprint, and China has passed only the first milestone. Kleese van Dam points out that without quantum repeaters, this network relies on a few dozen "trusted" nodes Achilles' heels that temporarily put the quantum magic on pause while the qubits are shoved through bit-based bottlenecks. She's holding out for truly secure end-to-end communication. "What we're planning to do goes way beyond what China is doing," she says.

More from Tech Drivers:With America at home, Facebook, Google make moves to win more of gaming marketThe 87-year-old doctor who invented the rubella vaccine now working to fight the coronavirus

Researchers ultimately envision a whole quantum ecosystem of computers, memories, and repeaters all speaking the same language of superposition and entanglement, with nary a bit in sight. "It's like a big stew where everything has to be kept quantum mechanical," Awschalom says. "You don't want to go to the classical world at all."

After immediate applications such as unbreakable encryptions, he speculates that such a network could also lead to seismic sensors capable of logging the vibration of the planet at the atomic level, but says that the biggest consequences will likely be the ones no one sees coming. He compares the current state of the field to when electrical engineers developed the first transistors and initially used them to improve hearing aids, completely unaware that they were setting off down a path that would someday bring social media and video conferencing.

As researchers at Brookhaven, Argonne, and many other institutions tinker with the quantum equivalent of transistors, but they can't help but wonder what the quantum analog of video chat will be. "It's clear there's a lot of promise. It's going to move quickly," Awschalom says. "But the most exciting part is that we don't know exactly where it's going to go."

See the original post:
Trump betting millions to lay the groundwork for quantum internet in the US - CNBC

Posted in Quantum Computing | Comments Off on Trump betting millions to lay the groundwork for quantum internet in the US – CNBC

Wiring the Quantum Computer of the Future: Researchers from Japan and Australia propose a novel 2D design – QS WOW News

The basic units of a quantum computer can be rearranged in 2D to solve typical design and operation challenges. Efficient quantum computing is expected to enable advancements that are impossible with classical computers. A group of scientists from Tokyo University of Science, Japan, RIKEN Centre for Emergent Matter Science, Japan, and the University of Technology, Sydney have collaborated and proposed a novel two-dimensional design that can be constructed using existing integrated circuit technology. This design solves typical problems facing the current three-dimensional packaging for scaled-up quantum computers, bringing the future one step closer.

Quantum computing is increasingly becoming the focus of scientists in fields such as physics and chemistry, and industrialists in the pharmaceutical, airplane, and automobile industries. Globally, research labs at companies like Google and IBM are spending extensive resources on improving quantum computers, and with good reason. Quantum computers use the fundamentals of quantum mechanics to process significantly greater amounts of information much faster than classical computers. It is expected that when the error-corrected and fault-tolerant quantum computation is achieved, scientific and technological advancement will occur at an unprecedented scale.

But, building quantum computers for large-scale computation is proving to be a challenge in terms of their architecture. The basic units of a quantum computer are the quantum bits or qubits. These are typically atoms, ions, photons, subatomic particles such as electrons, or even larger elements that simultaneously exist in multiple states, making it possible to obtain several potential outcomes rapidly for large volumes of data. The theoretical requirement for quantum computers is that these are arranged in two-dimensional (2D) arrays, where each qubit is both coupled with its nearest neighbor and connected to the necessary external control lines and devices. When the number of qubits in an array is increased, it becomes difficult to reach qubits in the interior of the array from the edge. The need to solve this problem has so far resulted in complex three-dimensional (3D) wiring systems across multiple planes in which many wires intersect, making their construction a significant engineering challenge. https://youtu.be/14a__swsYSU

The team of scientists led by Prof Jaw-Shen Tsai has proposed a unique solution to this qubit accessibility problem by modifying the architecture of the qubit array. Here, we solve this problem and present a modified superconducting micro-architecture that does not require any 3D external line technology and reverts to a completely planar design, they say. This study has been published in the New Journal of Physics.

The scientists began with a qubit square lattice array and stretched out each column in the 2D plane. They then folded each successive column on top of each other, forming a dual one-dimensional array called a bi-linear array. This put all qubits on the edge and simplified the arrangement of the required wiring system. The system is also completely in 2D. In this new architecture, some of the inter-qubit wiringeach qubit is also connected to all adjacent qubits in an arraydoes overlap, but because these are the only overlaps in the wiring, simple local 3D systems such as airbridges at the point of overlap are enough and the system overall remains in 2D. As you can imagine, this simplifies its construction considerably.

The scientists evaluated the feasibility of this new arrangement through numerical and experimental evaluation in which they tested how much of a signal was retained before and after it passed through an airbridge. The results of both evaluations showed that it is possible to build and run this system using existing technology and without any 3D arrangement.

The scientists experiments also showed them that their architecture solves several problems that plague the 3D structures: they are difficult to construct, there is crosstalk or signal interference between waves transmitted across two wires, and the fragile quantum states of the qubits can degrade. The novel pseudo-2D design reduces the number of times wires cross each other, thereby reducing the crosstalk and consequently increasing the efficiency of the system.

At a time when large labs worldwide are attempting to find ways to build large-scale fault-tolerant quantum computers, the findings of this exciting new study indicate that such computers can be built using existing 2D integrated circuit technology. The quantum computer is an information device expected to far exceed the capabilities of modern computers, Prof Tsai states. The research journey in this direction has only begun with this study, and Prof Tsai concludes by saying, We are planning to construct a small-scale circuit to further examine and explore the possibility.

Continued here:
Wiring the Quantum Computer of the Future: Researchers from Japan and Australia propose a novel 2D design - QS WOW News

Posted in Quantum Computing | Comments Off on Wiring the Quantum Computer of the Future: Researchers from Japan and Australia propose a novel 2D design – QS WOW News

Enterprise Quantum Computing Market is Projected to Grow Massively in Near Future with Profiling Eminent Players- Intel Corporation, QRA Corp, D-Wave…

New Study Industrial Forecasts on Enterprise Quantum Computing Market 2020-2026: Enterprise Quantum Computing Market report provides in-depth review of the Expansion Drivers, Potential Challenges, Distinctive Trends, and Opportunities for market participants equip readers to totally comprehend the landscape of the Enterprise Quantum Computing market. Major prime key manufactures enclosed within the report alongside Market Share, Stock Determinations and Figures, Sales, Capacity, Production, Price, Cost, Revenue. The main objective of the Enterprise Quantum Computing industry report is to Supply Key Insights on Competition Positioning, Current Trends, Market Potential, Growth Rates, and Alternative Relevant Statistics.

TheMajorPlayers Covered in this Report: Intel Corporation, QRA Corp, D-Wave Systems, Computing, Cambridge Quantum, QC Ware, QxBranch, Rigetti, IBM Corporation, Quantum Circuits, Google, Microsoft Corporation, Atos SE, Cisco Systems & More.

To get holistic SAMPLE of the report, please click:https://www.reportsmonitor.com/request_sample/905067

The global Enterprise Quantum Computing market is brilliantly shed light upon in this report which takes into account some of the most decisive and crucial aspects anticipated to influence growth in the near future. With important factors impacting market growth taken into consideration, the analysts authoring the report have painted a clear picture of how the demand for Enterprise Quantum Computing Driver could increase during the course of the forecast period. Readers of the report are expected to receive useful guidelines on how to make your companys presence known in the market, thereby increasing its share in the coming years.

Regional Glimpses:The report shed light onthe manufacturing processes, cost structures, and guidelinesand regulations. The regions targeted areEurope, United States, Central & South America, Southeast Asia, Japan, China, and Indiawith their export/import, supply and demand trendswith cost, revenue, and gross margin.The Enterprise Quantum Computing Market is analyzed on the basis of the pricing of the products, the dynamics of demand and supply, total volume produced, and the revenue produced by the products. The manufacturing is studied with respect to various contributors such as manufacturing plant distribution, industry production, capacity, research, and development.

To get this report at a profitable rate @https://www.reportsmonitor.com/check_discount/905067

Major points of the Global Enterprise Quantum Computing Market:

1. The market summary for the global Enterprise Quantum Computing market is provided in context to region, share and market size.2. Innovative strategies used by key players in the market.3. Other focus points in the Global Enterprise Quantum Computing Market report are upcoming opportunities, growth drivers, limiting factors, restrainers, challenges, technical advancements, flourishing segments and other major market trends.4. The comprehensive study is carried by driving market projections and forecast for the important market segments and sub-segments throughout the forecast time period 2020-2026.5. The data has been categorized ans summarized on the basis of regions, companies, types and applications of the product.6. The report has studied developments such as expansions, agreements, latest product launches and mergers in this market.

Reasons to buy the report:

The report would help new entrants as well as established players in the Enterprise Quantum Computing hose market in the following ways:

1. This report segments the Enterprise Quantum Computing market holistically and provides the nearest approximation of the overall, as well as segment-based, market size across different industry, materials, media, and regions.2. The report would support stakeholders in understanding the pulse of the market and present information on key drivers, constraints, challenges, and opportunities for the growth of the market.3. This report would help stakeholders become fully aware of their competition and gain more insights to enhance their position in the business. The competitive landscape section includes competitor ecosystem, along with the product launches and developments; partnerships, agreement, and contracts; and acquisitions strategies implemented by key players in the market.

View this report with a detailed description and TOC @https://www.reportsmonitor.com/report/905067/Enterprise-Quantum-Computing-Market

Any special requirements about this report, please let us know and we can provide custom report.

Contact UsJay MatthewsDirect: +1 513 549 5911 (U.S.)+44 203 318 2846 (U.K.)Email: sales@reportsmonitor.com

View original post here:
Enterprise Quantum Computing Market is Projected to Grow Massively in Near Future with Profiling Eminent Players- Intel Corporation, QRA Corp, D-Wave...

Posted in Quantum Computing | Comments Off on Enterprise Quantum Computing Market is Projected to Grow Massively in Near Future with Profiling Eminent Players- Intel Corporation, QRA Corp, D-Wave…

Deltec Bank, Bahamas – Quantum Computing Will bring Efficiency and Effectiveness and Cost Saving in Baking Sec – marketscreener.com

When you add AI and machine learning capabilities to the mix, we could potentially develop pre-warning systems that detect fraud before it even happens.

As online banking grows it is becoming a hot target for cybercriminals around the world as they become ever more adept at cracking bank security. Now, banks are looking into the technology behind quantum computing as a potential solution to this threat as well as its many other benefits. Currently, the technology is still in development but it is expected to take over from traditional computing in the next five to ten years.

What is quantum computing?

With quantum computing, the amount of processing power available is far larger than even the fastest silicon chips in existence today. Rather than using the traditional 1 and 0 method of binary computer processing, quantum computing uses qubits. Utilizing the theory of quantum superposition, these provide a way of processing 1s and 0s simultaneously, increasing the speed of the computer by several orders of magnitude.

For example, in October 2019, Google's 'Sycamore' quantum computer solved an equation in 200 seconds that would have taken a normal supercomputer 10,000 years to complete. This gives you an idea of the power that we are talking about.

So how does this help the banking sector?

1. Fraud Detection

Fraud is quickly becoming the biggest threat to online banking and data security. Customers need to feel confident that their money and their personal information is kept secure and with data leaks happening more frequently, this problem must be addressed.

Quantum computing offers significant benefits in the fight against fraud, offering enough computing power to automatically and instantly detect patterns that are commonly associated with fraudulent activity. When you add AI and machine learning capabilities to the mix, we could potentially develop pre-warning systems that detect fraud before it even happens.

2. Quantum Cryptography

Cryptography is an area of science that has recently gained popularity. The technology has proven incredibly useful in helping to secure the blockchain networks.

Quantum cryptography takes this security to an entirely new level, particularly when applied to financial data. It provides the ability to store data in a theoretical state of constant flux, making it near impossible for hackers to read or steal.

However, it could also be used to easily crack existing cryptographic security methods. Currently, the strongest 2048-bit encryption would take normal computer ages to break in to, whereas a quantum computer could do it in a matter of seconds.

3. Distributed Keys

Distributed key generation (DKG) is already being used by many online platforms for increased protection against data interception. Now, quantum technology provides a new system known as Measurement-Device Independent Quantum Key Distribution (MKI-QKD) which secures communications to a level that even quantum computers can't hack.

The technology is already being investigated by several financial institutions, notably major Dutch bank ABN-AMRO for their online and mobile banking applications.

4. Trading and Data

Artificial intelligence, machine learning, and big data are all new technologies that are currently being tested enthusiastically by banks. However, one of the biggest pain points with these technologies is the amount of processing power required.

According to Deltec Bank - "Quantum computing could quickly accelerate this research past the testing level and provide instant solutions to many problems currently facing the banking world. Time-consuming activities like mortgage and loan approvals would become instant and high-frequency trading could become automated and near error-proof."

Banks that are looking into quantum

Many major banks around the world are already investigating the potential benefits of quantum computing.

UK banking giant Barclays has worked in conjunction with IBM to develop a proof-of-concept that utilizes quantum computing to settle transactions. When applied to trading, the concept could successfully complete massive amounts of complex trades in seconds.

Major US bank JPMorgan has also expressed an interest in the technology for its security and data processing abilities. The bank has tasked its senior engineer with creating a 'quantum culture' in the business and meeting fortnightly with scientists to explore developments in the field.

Banco Bilbao Vizcaya Argentaria (BBVA) is working with the Spanish National Research Council (CISC) to explore various applications of quantum computing. The team believes the technology could reduce risk and improve customer service.

Quantum Computing though still in an early stage will have a significant impact on the Banking sectors in years to come.

Disclaimer: The author of this text, Robin Trehan, has an Undergraduate degree in economics, Masters in international business and finance and MBA in electronic business. Trehan is Senior VP at Deltec International http://www.deltecbank.com. The views, thoughts, and opinions expressed in this text are solely the views of the author, and not necessarily reflecting the views of Deltec International Group, its subsidiaries and/or employees.

About Deltec Bank

Headquartered in The Bahamas, Deltec is an independent financial services group that delivers bespoke solutions to meet clients' unique needs. The Deltec group of companies includes Deltec Bank & Trust Limited, Deltec Fund Services Limited, and Deltec Investment Advisers Limited, Deltec Securities Ltd. and Long Cay Captive Management.

Media Contact

Company Name: Deltec International Group

Contact Person: Media Manager

Email: rtrehan@deltecial.com

Phone: 242 302 4100

Country: Bahamas

Website: https://www.deltecbank.com/

Source: http://www.abnewswire.com

.

Original post:
Deltec Bank, Bahamas - Quantum Computing Will bring Efficiency and Effectiveness and Cost Saving in Baking Sec - marketscreener.com

Posted in Quantum Computing | Comments Off on Deltec Bank, Bahamas – Quantum Computing Will bring Efficiency and Effectiveness and Cost Saving in Baking Sec – marketscreener.com

Quantum Computing Market Segmentation, Application, Technology, Analysis Research Report and Forecast to 2026 – Cole of Duty

1qb Information Technologies

Global Quantum Computing Market Segmentation

This market was divided into types, applications and regions. The growth of each segment provides an accurate calculation and forecast of sales by type and application in terms of volume and value for the period between 2020 and 2026. This analysis can help you develop your business by targeting niche markets. Market share data are available at global and regional levels. The regions covered by the report are North America, Europe, the Asia-Pacific region, the Middle East, and Africa and Latin America. Research analysts understand the competitive forces and provide competitive analysis for each competitor separately.

To get Incredible Discounts on this Premium Report, Click Here @ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=24845&utm_source=COD&utm_medium=002

Quantum Computing Market Region Coverage (Regional Production, Demand & Forecast by Countries etc.):

North America (U.S., Canada, Mexico)

Europe (Germany, U.K., France, Italy, Russia, Spain etc.)

Asia-Pacific (China, India, Japan, Southeast Asia etc.)

South America (Brazil, Argentina etc.)

Middle East & Africa (Saudi Arabia, South Africa etc.)

Some Notable Report Offerings:

-> We will give you an assessment of the extent to which the market acquire commercial characteristics along with examples or instances of information that helps your assessment.

-> We will also support to identify standard/customary terms and conditions such as discounts, warranties, inspection, buyer financing, and acceptance for the Quantum Computing industry.

-> We will further help you in finding any price ranges, pricing issues, and determination of price fluctuation of products in Quantum Computing industry.

-> Furthermore, we will help you to identify any crucial trends to predict Quantum Computing market growth rate up to 2026.

-> Lastly, the analyzed report will predict the general tendency for supply and demand in the Quantum Computing market.

Have Any Query? Ask Our Expert @ https://www.verifiedmarketresearch.com/product/Quantum-Computing-Market/?utm_source=COD&utm_medium=002

Table of Contents:

Study Coverage: It includes study objectives, years considered for the research study, growth rate and Quantum Computing market size of type and application segments, key manufacturers covered, product scope, and highlights of segmental analysis.

Executive Summary: In this section, the report focuses on analysis of macroscopic indicators, market issues, drivers, and trends, competitive landscape, CAGR of the global Quantum Computing market, and global production. Under the global production chapter, the authors of the report have included market pricing and trends, global capacity, global production, and global revenue forecasts.

Quantum Computing Market Size by Manufacturer: Here, the report concentrates on revenue and production shares of manufacturers for all the years of the forecast period. It also focuses on price by manufacturer and expansion plans and mergers and acquisitions of companies.

Production by Region: It shows how the revenue and production in the global market are distributed among different regions. Each regional market is extensively studied here on the basis of import and export, key players, revenue, and production.

About us:

Verified market research partners with the customer and offer an insight into strategic and growth analyzes, Data necessary to achieve corporate goals and objectives. Our core values are trust, integrity and authenticity for our customers.

Analysts with a high level of expertise in data collection and governance use industrial techniques to collect and analyze data in all phases. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise and years of collective experience to produce informative and accurate research reports.

Contact us:

Mr. Edwyne FernandesCall: +1 (650) 781 4080Email: [emailprotected]

Tags: Quantum Computing Market Size, Quantum Computing Market Trends, Quantum Computing Market Growth, Quantum Computing Market Forecast, Quantum Computing Market Analysis

Go here to see the original:
Quantum Computing Market Segmentation, Application, Technology, Analysis Research Report and Forecast to 2026 - Cole of Duty

Posted in Quantum Computing | Comments Off on Quantum Computing Market Segmentation, Application, Technology, Analysis Research Report and Forecast to 2026 – Cole of Duty

New way of developing topological superconductivity discovered – Chemie.de

Hybrid material nanowires with pencil-like cross section (A) at low temperatures and finite magnetic field display zero-energy peaks (B) consistent with topological superconductivity as verified by numerical simulations (C).

A pencil shaped semiconductor, measuring only a few hundred nanometers in diameter, is what researches from the Center for Quantum Devices, Niels Bohr Institute, at University of Copenhagen, in collaboration with Microsoft Quantum researchers, have used to uncover a new route to topological superconductivity and Majorana zero modes in a study recently published in Science.

The new route that the researchers discovered uses the phase winding around the circumference of a cylindrical superconductor surrounding a semiconductor, an approach they call "a conceptual breakthrough".

"The result may provide a useful route toward the use of Majorana zero modes as a basis of protected qubits for quantum information. We do not know if these wires themselves will be useful, or if just the ideas will be useful," says Charles Marcus, Villum Kann Rasmussen Professor at the Niels Bohr Institute and Scientific Director of Microsoft Quantum Lab in Copenhagen.

"What we have found appears to be a much easier way of creating Majorana zero modes, where you can switch them on and off, and that can make a huge difference"; says postdoctoral research fellow, Saulius Vaitieknas, who was the lead experimentalist on the study.

The new research merges two already known ideas used in the world of quantum mechanics: Vortex-based topological superconductors and the one-dimensional topological superconductivity in nanowires.

"The significance of this result is that it unifies different approaches to understanding and creating topological superconductivity and Majorana zero modes", says professor Karsten Flensberg, Director of the Center for Quantum Devices.

Looking back in time, the findings can be described as an extension of a 50-year old piece of physics known as the Little-Parks effect. In the Little-Parks effect, a superconductor in the shape of a cylindrical shell adjusts to an external magnetic field, threading the cylinder by jumping to a "vortex state" where the quantum wavefunction around the cylinder carries a twist of its phase.

Charles M. Marcus, Saulius Vaitieknas, and Karsten Flensberg from the Niels Bohr Institute at the Microsoft Quantum Lab in Copenhagen.

What was needed was a special type of material that combined semiconductor nanowires and superconducting aluminum. Those materials were developed in the Center for Quantum Devices in the few years. The particular wires for this study were special in having the superconducting shell fully surround the semiconductor. These were grown by professor Peter Krogstrup, also at the Center for Quantum Devices and Scientific Director of the Microsoft Quantum Materials Lab in Lyngby.

The research is the result of the same basic scientific wondering that through history has led to many great discoveries.

"Our motivation to look at this in the first place was that it seemed interesting and we didn't know what would happen", says Charles Marcus about the experimental discovery, which was confirmed theoretically in the same publication. Nonetheless, the idea may indicate a path forward for quantum computing.

'+_msgObj.message+'

'+_msgObj.message+'

'+_msgObj.message+'

'+_msgObj.message+'

'+_msgObj.message+'

You are currently not logged in to my.chemeurope.com .Your changes will in fact be stored however can be lost at all times.

Originally posted here:
New way of developing topological superconductivity discovered - Chemie.de

Posted in Quantum Computing | Comments Off on New way of developing topological superconductivity discovered – Chemie.de