Search Immortality Topics:

Page 42«..1020..41424344..5060..»


Category Archives: Quantum Computing

IonQ and South Korea’s Q Center Announce Three-Year Quantum Alliance – PRNewswire

COLLEGE PARK, Md., Jan. 19, 2021 /PRNewswire/ --IonQ, the leader in quantum computing, today announced a three-year alliance with South Korea's Quantum Information Research Support Center, or Q Center. The Q Center is an independent organization at Sungkyunkwan University (SKKU) focused on the creation of a rich research ecosystem in the field of quantum information science. The partnership will make IonQ's trapped-ion quantum computers available for research and teaching across South Korea.

IonQ's systems have the potential to solve the world's most complex problems with the greatest accuracy. To date, the company's quantum computers have a proven track record of outperforming all other available quantum hardware.

Researchers and students across South Korea will be able to immediately start running jobs on IonQ's quantum computers. This partnership will enable researchers, scientists, and students to learn, develop, and deploy quantum applications on one of the world's leading quantum systems.

"I am proud to see IonQ enter this alliance with Q Center," said Peter Chapman, CEO & President of IonQ. "IonQ's hardware will serve as the backbone for quantum research. Our technology will play a critical role not only in the advancement of quantum, but also in fostering the next generation of quantum researchers and developers in South Korea."

"Our mission is to cultivate and promote the advancement of quantum information research in South Korea," said SKKU Professor of SAINT (SKKU Advanced Institute of NanoTechnology), Yonuk Chong. "We believe IonQ has the most advanced quantum technology available, and through our partnership, we will be able to make tremendous strides in the advancement of the industry."

This alliance builds on IonQ's continued success. IonQ recently released a product roadmap to deploy rack mounted quantum computers by 2023, and achieve broad quantum advantage by 2025. IonQ also recently unveiled a new $5.5 million, 23,000 square foot Quantum Data Center in Maryland's Discovery District. IonQ has raised $84 million in funding to date, announcing new investment from Lockheed Martin, Robert Bosch Venture Capital GmbH (RBVC) and Cambium earlier this year. Previous investors include Samsung Electronics, Mubadala Capital, GV, Amazon, and NEA. The company's two co-founders were also recently named to the National Quantum Initiative Advisory Committee (NQIAC).

About IonQIonQ is the leader in quantum computing. By making our quantum hardware accessible through the cloud, we're empowering millions of organizations and developers to build new applications to solve the world's most complex problems in business, and across society. IonQ's unique approach to quantum computing is to start with nature: using individual atoms as the heart of our quantum processing units. We levitate them in space with electric potentials applied to semiconductor-defined electrodes on a chip, and then use lasers to do everything from initial preparation to final readout and the quantum gate operations in between. The unique IonQ architecture of random-access processing of qubits in a fully connected and modular architecture will allow unlimited scaling. The IonQ approach requires atomic physics, precision optical and mechanical engineering, and fine-grained firmware control over a variety of components. Leveraging this approach, IonQ provides both a viable technological roadmap to scale and the flexibility necessary to explore a wide range of application spaces in the near term. IonQ was founded in 2015 by Jungsang Kim and Christopher Monroe and their systems are based on foundational research at The University of Maryland and Duke University.

About SKKUSungkyunkwan University (SKKU) is a leading research university located in Seoul, South Korea. SKKU is known around the world for the quality of its research and invests heavily in research and development. SKKU has more than 600 years of history as a leading educational institution, and is guided by the founding principles of benevolence, righteousness, propriety, wisdom, and self-cultivation.

SOURCE IonQ

https://ionq.com

Read the original:
IonQ and South Korea's Q Center Announce Three-Year Quantum Alliance - PRNewswire

Posted in Quantum Computing | Comments Off on IonQ and South Korea’s Q Center Announce Three-Year Quantum Alliance – PRNewswire

Securing the DNS in a Post-Quantum World: New DNSSEC Algorithms on the Horizon – CircleID

This is the fourth in a multi-part series on cryptography and the Domain Name System (DNS).

One of the "key" questions cryptographers have been asking for the past decade or more is what to do about the potential future development of a large-scale quantum computer.

If theory holds, a quantum computer could break established public-key algorithms including RSA and elliptic curve cryptography (ECC), building on Peter Shor's groundbreaking result from 1994.

This prospect has motivated research into new so-called "post-quantum" algorithms that are less vulnerable to quantum computing advances. These algorithms, once standardized, may well be added into the Domain Name System Security Extensions (DNSSEC) thus also adding another dimension to a cryptographer's perspective on the DNS.

(Caveat: Once again, the concepts I'm discussing in this post are topics we're studying in our long-term research program as we evaluate potential future applications of technology. They do not necessarily represent Verisign's plans or position on possible new products or services.)

The National Institute of Standards and Technology (NIST) started a Post-Quantum Cryptography project in 2016 to "specify one or more additional unclassified, publicly disclosed digital signature, public-key encryption, and key-establishment algorithms that are capable of protecting sensitive government information well into the foreseeable future, including after the advent of quantum computers."

Security protocols that NIST is targeting for these algorithms, according to its 2019 status report (Section 2.2.1), include: "Transport Layer Security (TLS), Secure Shell (SSH), Internet Key Exchange (IKE), Internet Protocol Security (IPsec), and Domain Name System Security Extensions (DNSSEC)."

The project is now in its third round, with seven finalists, including three digital signature algorithms, and eight alternates.

NIST's project timeline anticipates that the draft standards for the new post-quantum algorithms will be available between 2022 and 2024.

It will likely take several additional years for standards bodies such as the Internet Engineering Task (IETF) to incorporate the new algorithms into security protocols. Broad deployments of the upgraded protocols will likely take several years more.

Post-quantum algorithms can therefore be considered a long-term issue, not a near-term one. However, as with other long-term research, it's appropriate to draw attention to factors that need to be taken into account well ahead of time.

The three candidate digital signature algorithms in NIST's third round have one common characteristic: all of them have a key size or signature size (or both) that is much larger than for current algorithms.

Key and signature sizes are important operational considerations for DNSSEC because most of the DNS traffic exchanged with authoritative data servers is sent and received via the User Datagram Protocol (UDP), which has a limited response size.

Response size concerns were evident during the expansion of the root zone signing key (ZSK) from 1024-bit to 2048-bit RSA in 2016, and in the rollover of the root key signing key (KSK) in 2018. In the latter case, although the signature and key sizes didn't change, total response size was still an issue because responses during the rollover sometimes carried as many as four keys rather than the usual two.

Thanks to careful design and implementation, response sizes during these transitions generally stayed within typical UDP limits. Equally important, response sizes also appeared to have stayed within the Maximum Transmission Unit (MTU) of most networks involved, thereby also avoiding the risk of packet fragmentation. (You can check how well your network handles various DNSSEC response sizes with this tool developed by Verisign Labs.)

The larger sizes associated with certain post-quantum algorithms do not appear to be a significant issue either for TLS, according to one benchmarking study, or for public-key infrastructures, according to another report. However, a recently published study of post-quantum algorithms and DNSSEC observes that "DNSSEC is particularly challenging to transition" to the new algorithms.

Verisign Labs offers the following observations about DNSSEC-related queries that may help researchers to model DNSSEC impact:

A typical resolver that implements both DNSSEC validation and qname minimization will send a combination of queries to Verisign's root and top-level domain (TLD) servers.

Because the resolver is a validating resolver, these queries will all have the "DNSSEC OK" bit set, indicating that the resolver wants the DNSSEC signatures on the records.

The content of typical responses by Verisign's root and TLD servers to these queries are given in Table 1 below. (In the table, . are the final two labels of a domain name of interest, including the TLD and the second-level domain (SLD); record types involved include A, Name Server (NS), and DNSKEY.)

For an A or NS query, the typical response, when the domain of interest exists, includes a referral to another name server. If the domain supports DNSSEC, the response also includes a set of Delegation Signer (DS) records providing the hashes of each of the referred zone's KSKs the next link in the DNSSEC trust chain. When the domain of interest doesn't exist, the response includes one or more Next Secure (NSEC) or Next Secure 3 (NSEC3) records.

Researchers can estimate the effect of post-quantum algorithms on response size by replacing the sizes of the various RSA keys and signatures with those for their post-quantum counterparts. As discussed above, it is important to keep in mind that the number of keys returned may be larger during key rollovers.

Most of the queries from qname-minimizing, validating resolvers to the root and TLD name servers will be for A or NS records (the choice depends on the implementation of qname minimization, and has recently trended toward A). The signature size for a post-quantum algorithm, which affects all DNSSEC-related responses, will therefore generally have a much larger impact on average response size than will the key size, which affects only the DNSKEY responses.

Post-quantum algorithms are among the newest developments in cryptography. They add another dimension to a cryptographer's perspective on the DNS because of the possibility that these algorithms, or other variants, may be added to DNSSEC in the long term.

In my next post, I'll make the case for why the oldest post-quantum algorithm, hash-based signatures, could be a particularly good match for DNSSEC. I'll also share the results of some research at Verisign Labs into how the large signature sizes of hash-based signatures could potentially be overcome.

Read the previous posts in this six-part blog series:

Read more:
Securing the DNS in a Post-Quantum World: New DNSSEC Algorithms on the Horizon - CircleID

Posted in Quantum Computing | Comments Off on Securing the DNS in a Post-Quantum World: New DNSSEC Algorithms on the Horizon – CircleID

2020 Rewind: SciTech discoveries of the year – McGill Tribune

2020 was a year characterized by uncertainty, despair, and drastic change. However, several scientific and technological achievements provide hope for the future.

Google stakes its claim on quantum supremacy

Googles quantum computer, Sycamore, is the first instance of such a device outcompeting a classical computer. While a classical computer reads information as bits valued at 0 or 1, a quantum computers qubits can exist as both 0 and 1 at the same time, allowing for more data processing. Google announced that Sycamore performed a calculation in three minutes and 20 seconds that would otherwise have taken the most advanced classical computer 10,000 years. The applications of quantum computing are limitless, ranging from drug development to accurate weather forecasts to identifying which exoplanets likely harbour life. Although we may be five to 10 years away from having quantum computers that are useful for applications like these, Googles achievement is proof that such a future is possible.

Cave excavations push back arrival of first humans in the Americas by 15,000 years

New research published in Natureshows that humans may have arrived in the Americas as early as 30,000 years ago15,000 years earlier than current estimates. After painstaking excavations of the Chiquihuite Cave in Mexico, archaeologists uncovered nearly 2,000 stone tools and charcoal bits dating back 30,000 years. Further DNA analysis of the cave sediment, composed of plant and animal remains, corroborates these findings. The discovery challenges the commonly held theory that the Clovis people were the first inhabitants of the Americas 15,000 years ago. However, identifying factors of these mysterious early inhabitants, such as human DNA, were not found, suggesting they did not stay in the cave for long.

CRISPR-Cas9 edits genes in the human body

Doctors performed the first gene editing project in the human body using CRISPR-Cas9, a genome editing tool that can remove, add, or change parts of an organisms DNA sequence. The CRISPR method is based on a natural mechanism bacteria use to protect themselves from viral infections. Previous methods involved editing the genome after extracting DNA from the body. The treatment was administered to a patient with Lebers Congenital Amaurosis, an inherited form of blindness caused by a genetic mutation. Scientists deleted the harmful mutation by making two cuts on either side of the gene and allowing the ends of the DNA to reconnect. Although the patients vision showed some improvement, scientists are hopeful that further research into gene editing technologies will allow a permanent fix. This is one of many development efforts to use CRISPR-Cas9 technology to treat different diseases.

Anti-aging drugs: Senolytics

Growing old is a fight that many of us resist, but cannot win. Anti-aging drugs called senolytics could potentially delay aging and treat a number of associated diseases, although they do not prolong ones life. In the body, cells that are damaged beyond repair enter a senescence phase in which they stop dividing and begin programmed death. However, sometimes senescent cells resist their fate, build up in our bodies as we age, and seriously harm surrounding cells. Scientists believe that they are linked to diseases caused by aging and that targeting these cells using senolytics could be the solution. Anti-aging drugs entered human trials in 2020 and are predicted to become available in less than five years.

Virti: Training surgeons and front-line workers using virtual reality

Virti is an immersive video platform that allows users to visualize a high-stress situation in virtual reality in order to train ones decision-making skills under pressure and access real-time feedback. As part of efforts to mitigate the spread of COVID-19 this year and help train clinicians while avoiding in-person contact, Vitri designed an AI-powered virtual patient that can role play life-like scenarios. Their COVID-19 modules also teach frontline workers how to put on personal protective equipment, administer treatments, and ventilate patients. A company study by Virti found that their approaches increase knowledge retention by 230 per cent compared to training in person.

See the rest here:
2020 Rewind: SciTech discoveries of the year - McGill Tribune

Posted in Quantum Computing | Comments Off on 2020 Rewind: SciTech discoveries of the year – McGill Tribune

Defense Secretary Nominee: US Faces Enemies Both at Home and Abroad – Voice of America

WASHINGTON - U.S. President-elect Joe Bidens pick to lead the Pentagon warns the country is facing a series of enemies, both at home and abroad, and that it will fall, in part, to the United States military to overcome the dangers.

Retired General Lloyd Austin appeared before lawmakers Tuesday and said his first priority if confirmed as the countrys next secretary of defense would be to make sure all military resources are brought to bear against the coronavirus pandemic.

"The greatest challenge to our country right now ... is the pandemic," Austin told members of the Senate Armed Services Committee, wearing a suit and tie instead of the Army dress uniform he wore when he testified in Congress as the commander of U.S. military forces across the Middle East and South Asia.

"It's killed over 400,000 of our American citizens. That's just an incredible, incredible loss of life," he said. We have to do everything we can to break the cycle of transmission and begin to turn this thing around."

Austin did not offer specifics about how he would ramp up the Pentagons current efforts to distribute the coronavirus vaccines as part of what has been known as Operation Warp Speed. But he said he does believe there is more the Pentagon can do to counter what he described as the most immediate national security challenge.

Countering extremism at home

Austin spoke shortly after U.S. defense officials announced 12 National Guard troops initially assigned to help provide security for Bidens inauguration Wednesday were removed due to extremist ties. Austin pledged to take on what he called the enemy within.

The job of the Department of Defense is to keep America safe from our enemies, but we can't do that if some of those enemies lie with our own ranks," he said.

This [extremism] has no place in the military of the United States of America, Austin added, describing it as part of a broader battle.

I will fight hard to stamp out sexual assault and to rid our ranks of racists and extremists and to create a climate where everyone fit and willing has the opportunity to serve," he told U.S. lawmakers.

The 67-year-old Austin is a familiar face to many of the lawmakers who will vote on whether to confirm him, though his nomination is not without controversy.

U.S. law requires former active-duty military officers to be retired for seven years before they can serve as defense secretary a law meant to ensure civilian control of the military. But Austin retired just five years ago, stepping down as the leader of U.S. Central Command in 2016.

Waivers have been granted just twice, most recently in 2017 for retired General Jim Mattis, who served as outgoing President Donald Trumps first defense secretary.

On Tuesday, some lawmakers, including Republican Senator Tom Cotton and Democratic Senator Richard Blumenthal, told Austin they would not support a waiver. Cotton went as far as to call his support of a waiver for Mattis a mistake.

Austin said he understood the concerns about "having another recently retired general" take the reins at the Pentagon and promised, that if confirmed, the voices of civilian defense officials would be heard.

"The safety and security of our democracy demands competent civilian control of our armed forces," he said. "I have spent my entire life committed to that."

Like many of President-elect Bidens Cabinet selections, Austin focused on a change in course after four years under Trump and his America First policy.

Reaffirming alliances

Austin, in particular, noted the importance of the countrys military alliances, saying that one of his first trips would be to visit Japan, South Korea and Australia, key allies in the Indo-Pacific, where competition with China is heating up.

China is the most concerning competitor that we're facing," he said.

"Their goal is to be a dominant world power," Austin added. We have to make sure that we begin to check their aggression."

The retired general promised lawmakers a laser-like focus on making sure the U.S. maintains a competitive edge over the growing Chinese military, though he said to do so will require investment in new technologies, including artificial intelligence and quantum computing areas in which China has been closing the gap.

Austin said Russia, long viewed as Washingtons other key adversary in what Trump officials have described as an era of great power competition, remains a concern but not in the same way as Beijing.

"Russia is also a threat but it's in decline," he said, warning Moscow can still do "a great deal of damage" in cyberspace, like with the SolarWinds hack, and with influence operations.

In addition to Russia and China, lawmakers questioned Austin about the incoming Biden administrations position on Iran and talk the U.S. might seek to rejoin the so-called Iran nuclear deal.

Iran - a destabilizing element

Austin indicated any reentry to the nuclear deal would require movement by Tehran.

The preconditions for us considering to reenter into that agreement would be that Iran meet the conditions outlined in the agreement back to where they should have been," Austin said.

And while the former CENTCOM commander said while the Trump administrations successful efforts to help normalize ties between Israel and Arab countries in the region may be helping put additional pressure on the regime, the danger remains.

"Iran continues to be a destabilizing element," Austin told lawmakers. [Iran] does present a threat to our partners in the region and those forces that we have stationed in the region."

As for Afghanistan, where a Trump administration drawdown has left just 2,500 U.S. troops, Austin expressed a cautious hope.

"This conflict needs to come to an end. We need to see an agreement reached," he said.

If confirmed by the Senate, the former four-star general would be the first African American to serve as defense secretary.

Originally posted here:
Defense Secretary Nominee: US Faces Enemies Both at Home and Abroad - Voice of America

Posted in Quantum Computing | Comments Off on Defense Secretary Nominee: US Faces Enemies Both at Home and Abroad – Voice of America

Quantum computing research helps IBM win top spot in patent race – CNET

An IBM patent shows a hexagonal array of qubits in a quantum computer, arranged to minimize problems controlling the finicky data processing elements.

IBM secured 9,130 US patents in 2020, more than any other company as measured by an annual ranking, and this year quantum computing showed up as part of Big Blue's research effort. The company wouldn't disclose how many of the patents were related to quantum computing -- certainly fewer than the 2,300 it received for artificial intelligence work and 3,000 for cloud computing -- but it's clear the company sees them as key to the future of computing.

The IFI Claims patent monitoring service compiles the list annually, and IBM is a fixture at the top. The IBM Research division, with labs around the globe, has for decades invested in projects that are far away from commercialization. Even though the work doesn't always pay dividends, it's produced Nobel prizes and led to entire industries like hard drives, computer memory and database software.

Get the latest tech stories with CNET Daily News every weekday.

"A lot of the work we do in R&D really is not just about the number of patents, but a way of thinking," Jerry Chow, director of quantum hardware system development, said in an exclusive interview. "New ideas come out of it."

IFI's US patent list is dominated by computer technology companies. Second place went to Samsung with 6,415 patents, followed by Canon with 3,225, Microsoft with 2,905 and Intel with 2,867. Next on the list are Taiwan Semiconductor Manufacturing Corp., LG, Apple, Huawei and Qualcomm. The first non-computing company is Toyota, in 14th place.

Internationally, IBM ranked second to Samsung in patents for 2020, and industrial companies Bosch and General Electric cracked the top 10. Many patents are duplicative internationally since it's possible to file for a single patent in 153 countries.

Quantum computing holds the potential to tackle computing problems out of reach of conventional computers. During a time when it's getting harder to improve ordinary microprocessors, quantum computers could pioneer new high-tech materials for solar panels and batteries, improve chemical processes, speed up package delivery, make factories more efficient and lower financial risks for investors.

Industrywide, quantum computing is a top research priority, with dozens of companies investing millions of dollars even though most don't expect a payoff for years. The US government is bolstering that effort with a massive multilab research effort. It's even become a headline event at this year's CES, a conference that more typically focuses on new TVs, laptops and other consumer products.

"Tactical and strategic funding is critical" to quantum computing's success, said Hyperion Research analyst Bob Sorensen. That's because, unlike more mature technologies, there's not yet any virtuous cycle where profits from today's quantum computing products and services fund the development of tomorrow's more capable successors.

IBM has taken a strong early position in quantum computing, but it's too early to pick winners in the market, Sorensen added.

The long-term goal is what's called a fault tolerant quantum computer, one that uses error correction to keep calculations humming even when individual qubits, the data processing element at the heart of quantum computers, are perturbed. In the nearer term, some customers like financial services giant JPMorgan Chase, carmaker Daimler and aerospace company Airbus are investing in quantum computing work today with the hope that it'll pay off later.

Quantum computing is complicated to say the least, but a few patents illustrate what's going on in IBM's labs.

Patent No. 10,622,536 governs different lattices in which IBM lays out its qubits. Today's 27-qubit "Falcon" quantum computers use this approach, as do the newer 65-qubit "Hummingbird" machines and the much more powerful 1,121-qubit "Condor" systems due in 2023.

A close-up view of an IBM quantum computer. The processor is in the silver-colored cylinder.

IBM's lattices are designed to minimize "crosstalk," in which a control signal for one qubit ends up influencing others, too. That's key to IBM's ability to manufacture working quantum processors and will become more important as qubit counts increase, letting quantum computers tackle harder problems and incorporate error correction, Chow said.

Patent No. 10,810,665 governs a higher-level quantum computing application for assessing risk -- a key part of financial services companies figuring out how to invest money. The more complex the options being judged, the slower the computation, but the IBM approach still outpaces classical computers.

Patent No. 10,599,989 describes a way of speeding up some molecular simulations, a key potential promise of quantum computers, by finding symmetries in molecules that can reduce computational complexity.

More comprehensible is patent No. 10,614,370, which describes quantum computing as a service. Because quantum computers typically must be supercooled to within a hair's breadth of absolute zero to avoid perturbing the qubits, and require spools of complicated wiring, most quantum computing customers are likely to tap into online services from companies like IBM, Google, Amazon and Microsoft that offer access to their own carefully managed machines.

See original here:
Quantum computing research helps IBM win top spot in patent race - CNET

Posted in Quantum Computing | Comments Off on Quantum computing research helps IBM win top spot in patent race – CNET

Surprising Discovery of Unexpected Quantum Behavior in Insulators Suggests Existence of Entirely New Type of Particle – SciTechDaily

In a surprising discovery, Princeton physicists have observed an unexpected quantum behavior in an insulator made from a material called tungsten ditelluride. This phenomenon, known as quantum oscillation, is typically observed in metals rather than insulators, and its discovery offers new insights into our understanding of the quantum world. The findings also hint at the existence of an entirely new type of quantum particle.

The discovery challenges a long-held distinction between metals and insulators, because in the established quantum theory of materials, insulators were not thought to be able to experience quantum oscillations.

If our interpretations are correct, we are seeing a fundamentally new form of quantum matter, said Sanfeng Wu, assistant professor of physics at Princeton University and the senior author of a recent paper in Nature detailing this new discovery. We are now imagining a wholly new quantum world hidden in insulators. Its possible that we simply missed identifying them over the last several decades.

The observation of quantum oscillations has long been considered a hallmark of the difference between metals and insulators. In metals, electrons are highly mobile, and resistivity the resistance to electrical conduction is weak. Nearly a century ago, researchers observed that a magnetic field, coupled with very low temperatures, can cause electrons to shift from a classical state to a quantum state, causing oscillations in the metals resistivity. In insulators, by contrast, electrons cannot move and the materials have very high resistivity, so quantum oscillations of this sort are not expected to occur, no matter the strength of magnetic field applied.

The discovery was made when the researchers were studying a material called tungsten ditelluride, which they made into a two-dimensional material. They prepared the material by using standard scotch tape to increasingly exfoliate, or shave, the layers down to what is called a monolayer a single atom-thin layer. Thick tungsten ditelluride behaves like a metal. But once it is converted to a monolayer, it becomes a very strong insulator.

This material has a lot of special quantum properties, Wu said.

The researchers then set about measuring the resistivity of the monolayer tungsten ditelluride under magnetic fields. To their surprise, the resistivity of the insulator, despite being quite large, began to oscillate as the magnetic field was increased, indicating the shift into a quantum state. In effect, the material a very strong insulator was exhibiting the most remarkable quantum property of a metal.

This came as a complete surprise, Wu said. We asked ourselves, Whats going on here? We dont fully understand it yet.

Wu noted that there are no current theories to explain this phenomenon.

Nonetheless, Wu and his colleagues have put forward a provocative hypothesis a form of quantum matter that is neutrally charged. Because of very strong interactions, the electrons are organizing themselves to produce this new kind of quantum matter, Wu said.

But it is ultimately no longer the electrons that are oscillating, said Wu. Instead, the researchers believe that new particles, which they have dubbed neutral fermions, are born out of these strongly interacting electrons and are responsible for creating this highly remarkable quantum effect.

Fermions are a category of quantum particles that include electrons. In quantum materials, charged fermions can be negatively charged electrons or positively charged holes that are responsible for the electrical conduction. Namely, if the material is an electrical insulator, these charged fermions cant move freely. However, particles that are neutral that is, neither negatively nor positively charged are theoretically possible to be present and mobile in an insulator.

Our experimental results conflict with all existing theories based on charged fermions, said Pengjie Wang, co-first author on the paper and postdoctoral research associate, but could be explained in the presence of charge-neutral fermions.

The Princeton team plans further investigation into the quantum properties of tungsten ditelluride. They are particularly interested in discovering whether their hypothesis about the existence of a new quantum particle is valid.

This is only the starting point, Wu said. If were correct, future researchers will find other insulators with this surprising quantum property.

Despite the newness of the research and the tentative interpretation of the results, Wu speculated about how this phenomenon could be put to practical use.

Its possible that neutral fermions could be used in the future for encoding information that would be useful in quantum computing, he said. In the meantime, though, were still in the very early stages of understanding quantum phenomena like this, so fundamental discoveries have to be made.

Reference: Landau quantization and highly mobile fermions in an insulator by Pengjie Wang, Guo Yu, Yanyu Jia, Michael Onyszczak, F. Alexandre Cevallos, Shiming Lei, Sebastian Klemenz, Kenji Watanabe, Takashi Taniguchi, Robert J. Cava, Leslie M. Schoop and Sanfeng Wu, Nature.DOI: 10.1038/s41586-020-03084-9

In addition to Wu and Wang, the team included co-first authors Guo Yu, a graduate student in electrical engineering, and Yanyu Jia, a graduate student in physics. Other key Princeton contributors were Leslie Schoop, assistant professor of chemistry; Robert Cava, the Russell Wellman Moore Professor of Chemistry; Michael Onyszczak, a physics graduate student; and three former postdoctoral research associates: Shiming Lei, Sebastian Klemenz and F. Alexandre Cevallos, who is also a 2018 Princeton Ph.D. alumnus. Kenji Watanabe and Takashi Taniguchi of the National Institute for Material Science in Japan also contributed.

Landau quantization and highly mobile fermions in an insulator, by Pengjie Wang, Guo Yu, Yanyu Jia, Michael Onyszczak, F. Alexandre Cevallos, Shiming Lei, Sebastian Klemenz, Kenji Watanabe, Takashi Taniguchi, Robert J. Cava, Leslie M. Schoop, and Sanfeng Wu, was published Jan. 4 in the journal Nature (DOI: 10.1038/s41586-020-03084-9).

This work was primarily supported by the National Science Foundation (NSF) through the Princeton University Materials Research Science and Engineering Center (DMR-1420541 and DMR-2011750) and a CAREER award (DMR-1942942). Early measurements were performed at the National High Magnetic Field Laboratory, which is supported by an NSF Cooperative Agreement (DMR-1644779), and the State of Florida. Additional support came from the Elemental Strategy Initiative conducted by the Ministry of Education, Culture, Sports, Science and Technology of Japan (JPMXP0112101001), the Japan Society for the Promotion of Sciences KAKENHI program (JP20H00354) and the Japan Science and Technology Agencys CREST program (JPMJCR15F3). Further support came from the U.S. Army Research Office Multidisciplinary University Research Initiative on Topological Insulators (W911NF1210461), the Arnold and Mabel Beckman Foundation through a Beckman Young Investigator grant, and the Gordon and Betty Moore Foundation (GBMF9064).

Read the rest here:
Surprising Discovery of Unexpected Quantum Behavior in Insulators Suggests Existence of Entirely New Type of Particle - SciTechDaily

Posted in Quantum Computing | Comments Off on Surprising Discovery of Unexpected Quantum Behavior in Insulators Suggests Existence of Entirely New Type of Particle – SciTechDaily