Search Immortality Topics:

Page 111«..1020..110111112113..120..»


Category Archives: Quantum Computing

AI has great potential in transforming the world: Alphabet CEO Sundar Pichai – YourStory

In recent years, artificial intelligence (AI) has become the talk of the town. No forum seems to be complete without talking about how technology is going to impact the world.

In a conversation with Professor Klaus Schwab, Founder and Executive Chairman of World Economic Forum, Sundar Pichai, CEO of Google and Alphabet shared some valuable insights on the age of AI, the future of the open web, and technology's impact on society at the recently concluded WEF summit at Davos, Switzerland.

While several may argue that technology is negatively impacting the world by taking away jobs and comprising the safety and security of individuals, Pichai calls himself a technology optimist and believes that despite its disadvantages, AI has great potential in reforming the world from climate to healthcare.

Credit: World Economic Forum

Edited excerpt from the interview:

Professor Klaus Schwab (PKS) - Welcome Sundar Pichai. My first question is, you have called yourself a technology optimist, and we hear a lot of concerns about technologies. What makes you an optimist?

Sundar Pichai (SP) - What makes me a technology optimist?I think it's more about how I got introduced to technology. Growing up, I think, I had to wait for a long time before I got my hands on either a telephone or television when it came to our household. I discreetly remember how it changed our lives. TV allowed me access to world news, football, and cricket. So I always had this first-hand experience of how gaining access to technology changes people's lives.

Later on, I was inspired by the One Laptop per Child project, where the school was giving $100 laptops to children. They quite didn't get there. But I think it was a very inspiring goal and made a lot of progress in the industry. Later, we were able to make progress with Android. Each year, millions of people get access to computing for the first time. We do this with low-cost affordable Chromebooks. And seeing the difference it has made in people's lives, it gives me great hope for the path ahead. And more recently with AI, just in the last month, we have seen how it can help doctors better detect breast cancer with more accuracy.

We also launched a better rainfall prediction app. Over time, AI can play a role in climate change. So when you see these examples firsthand, I'm clear-eyed about the risks with technology. But the biggest risk with AI may be failing to work on it and make more progress with it because it can impact billions of people.

PKS - Can you explain what we can expect from quantum computing?

SP - Its an extraordinarily important milestone we achieved last year, something thats known in the field as quantum supremacy. It is when you can take quantum computers and they can do something which classical computers cannot. To me, nature at a fundamental level works in a quantum way. At a subatomic level, things can exist in many different states at the same time. Classical computers work in ones and zeros, so we know that's an imperfect way to simulate nature. Nature works differently. What's exciting about quantum computing and why we are so excited about the possibilities is it will allow us to understand the world more deeply. We can simulate nature better. So that means simulating molecular structures to discover better drugs, understanding the climate more deeply to predict weather patterns and tackle climate change, etc. We can design better batteries, nitrogen fixation the process by which we make the world's fertilisers, and accounts for two percent of carbon emissions. And the processes have not changed for a long time because it's very complicated.

Quantum computers will allow us the hope that we can make that process more efficient. So it's very profound. We've all been dealing in technology with the end of Moore's law. It's revolutionised in the past 40 years, but it's levelled off. So when I look at the future and say how do we drive improvements, quantum will be one of the tools in our arsenal by which we can keep something like Moore's Law continuing to evolve. The potential is huge and we'll have challenges. But in five to 10 years, quantum computing will break encryption as we know it today. But we can work around it. We need to do quantum encryption. There are challenges as always with any evolving technology. But I think the combination of AI and quantum will help us tackle some of the biggest problems we see.

PKS - And also to a certain extent, genetics. I think quantum computing and biology will have great potential positive or negative impacts.

SP - The positive one, as you're saying, rightly is to simulate molecules, protein folding, etc. It's very complex today. We cannot do it with classical computers. So with quantum computers, we can. But we have to be clear about all these powerful technologies. And this is why I think we need to be deliberate and regulate technologies like AI, and as a society, we need to engage in it.

PKS - And this leads me to the next question, actually because in an editorial in the Financial Times, which I read just before the annual meeting, you stated and I quote, Google's whole starts with recognising the need for a principle and regulated approach for applying artificial intelligence. What does it mean?

SP - You know, I've said this before that AI is one of the most profound things we are working on as humanity. It's more profound than fire, electricity, or any of the other bigger things we have worked on. It has tremendous positive sides to it. But it has real negative consequences. When you think about technologies like facial recognition, it can be used to benefit. It can be used to find missing people, but it can (also) be used for mass surveillance. And as democratic countries with a shared set of values, we need to build on those values and make sure when we approach AI we're doing it in a way that serves society. And that means making sure AI doesn't have a bias that we build and test it for safety. We make sure that there is a human agency that is ultimately accountable to people.

About 18 months ago, we published a set of principles under which we would develop as Google. But it's been very encouraging to see the European Commission has identified AI and sustainability as their top priorities. And the US put out a set of principles last week. And, be it the OECD or G20, they're all talking about this, which I think is very encouraging. And I think we need a common framework by which we approach AI.

PKS - How do you see Google in five years from now?

SP - We know we will do well, only if others do well along with us. That's how Google works today through search. We help users reach the information they want including businesses and businesses grow along with search. In the US, last year, we created $335 billion of economic opportunity. And that's true in every country around the world. We think with Alphabet, there's a real chance to take a long-term view and work on technology which can improve people's lives. But we won't do it alone. In many other bets, which we are working on where we can, we take outside investments. These companies are independent, so you can imagine we'll do it in partnerships with other companies. And Alphabet gives us the flexibility to have different structures for different areas in a way we need them to fix healthcare, and we can deeply partner with other companies. Today, we partner with the leading healthcare companies as we work on these efforts.

So we understand for Alphabet to do well, we inherently need to do it in a way that works with other companies, creating an ecosystem around it. This is why last year, just through our venture arm, we invested in over 100 companies. We are just investors in these companies, and they're going to be independent companies. We want them to thrive and succeed. And so, you know, that's the way we think about it. But I think it gives us a real chance to take a long-term view, be it self driving cars or AI.

PKS - So last question. You said you are an optimist. When you wake up at night and you cannot sleep anymore, what worries you at some time?

SP - You were pretty insightful. That is true. Yeah, I do wake up at night. What worries me at night? I think technology has a chance to transform society for the good, but we need to learn to harness it to work for society's good. But I do worry that we turn our backs on technology. And I worry that when people do that they get left behind too. And so to me, how do you do it inclusively? I was in Belgium and I went to MolenGeek, a startup incubator in Molenbeek. In that community, you see people who may not have gone to school, but when you give them access to digital skills, they're hungry for it. People want to learn technology and be a part of it. That's the desire you see around the world when we travel. When I go to emerging markets, it's a big source of opportunity. And so I think it's our duty and responsibility to drive this growth inclusively. And that keeps me up at night.

(Edited by Suman Singh)

Read the original:
AI has great potential in transforming the world: Alphabet CEO Sundar Pichai - YourStory

Posted in Quantum Computing | Comments Off on AI has great potential in transforming the world: Alphabet CEO Sundar Pichai – YourStory

ASC20 Finals to be Held in Shenzhen, Tasks Include Quantum Computing Simulation and AI Language Exam – HPCwire

BEIJING, Jan. 21, 2020 The 2020 ASC Student Supercomputer Challenge (ASC20) announced the tasks for the new season: using supercomputers to simulate Quantum circuit and training AI models to take English test. These tasks can be unprecedented challenges for the 300+ ASC teams from around the world. From April 25 to 29, 2020, top 20 finalists will fiercely compete at SUSTech in Shenzhen, China.

ASC20 set up Quantum Computing tasks for the first time. Teams are going to use the QuEST (Quantum Exact Simulation Toolkit) running on supercomputers to simulate 30 qubits in two cases: quantum random circuits (random.c), and quantum fast Fourier transform circuits (GHZ_QFT.c). Quantum computing is a disruptive technology, considered to be the next generation high performance computing. However the R&D of quantum computers is lagging behind due to the unique properties of quantum. It adds extra difficulties for scientists to use real quantum computers to solve some of the most pressing problems such as particle physics modeling, cryptography, genetic engineering, and quantum machine learning. From this perspective, the quantum computing task presented in the ASC20 challenge, hopefully, will inspire new algorithms and architectures in this field.

The other task revealed is Language Exam Challenge. Teams will take on the challenge to train AI models on an English Cloze Test dataset, vying to achieve the highest test scores. The dataset covers multiple levels of English language tests in China, including the college entrance examination, College English Test Band 4 and Band 6, and others. Teaching the machines to understand human language is one of the most elusive and long-standing challenges in the field of AI. The ASC20 AI task signifies such a challenge, by using human-oriented problems to evaluate the performance of neural networks.

Wang Endong, ASC Challenge initiator, member of the Chinese Academy of Engineering and Chief Scientist at Inspur Group, said that through these tasks, students from all over the world get to access and learn the most cutting-edge computing technologies. ASC strives to foster supercomputing & AI talents of global vision, inspiring technical innovation.

Dr. Lu Chun, Vice President of SUSTech host of the ASC20 Finals, commented that supercomputers are important infrastructure for scientific innovation and economic development. SUSTech makes focused efforts on developing supercomputing and hosting ASC20, hoping to drive the training of supercomputing talent, international exchange and cooperation, as well as inter discipline development at SUSTech.

Furthermore, during January 15-16, 2020, the ASC20 organizing committee held a competition training camp in Beijing to help student teams prepare for the ongoing competition. HPC and AI experts from the State Key Laboratory of High-end Server and Storage Technology, Inspur, Intel, NVIDIA, Mellanox, Peng Cheng Laboratory and the Institute of Acoustics of the Chinese Academy of Sciences gathered to provide on-site coaching and guidance. Previous ASC winning teams also shared their successful experiences.

About ASC

The ASC Student Supercomputer Challenge is the worlds largest student supercomputer competition, sponsored and organized by Asia Supercomputer Community in China and supported by Asian, European, and American experts and institutions. The main objectives of ASC are to encourage exchange and training of young supercomputing talent from different countries, improve supercomputing applications and R&D capacity, boost the development of supercomputing, and promote technical and industrial innovation. The annual ASC Supercomputer Challenge was first held in 2012 and has since attracted over 8,500 undergraduates from all over the world. Learn more ASC athttps://www.asc-events.org/.

Source: ASC

The rest is here:
ASC20 Finals to be Held in Shenzhen, Tasks Include Quantum Computing Simulation and AI Language Exam - HPCwire

Posted in Quantum Computing | Comments Off on ASC20 Finals to be Held in Shenzhen, Tasks Include Quantum Computing Simulation and AI Language Exam – HPCwire

New Centers Lead the Way towards a Quantum Future – Energy.gov

The world of quantum is the world of the very, very small. At sizes near those of atoms and smaller, the rules of physics start morphing into something unrecognizableat least to us in the regular world. While quantum physics seems bizarre, it offers huge opportunities.

Quantum physics may hold the key to vast technological improvements in computing, sensing, and communication. Quantum computing may be able to solve problems in minutes that would take lifetimes on todays computers. Quantum sensors could act as extremely high-powered antennas for the military. Quantum communication systems could be nearly unhackable. But we dont have the knowledge or capacity to take advantage of these benefitsyet.

The Department of Energy (DOE) recently announced that it will establish Quantum Information Science Centers to help lay the foundation for these technologies. As Congress put forth in the National Quantum Initiative Act, the DOEs Office of Science will make awards for at least two and up to five centers.

These centers will draw on both quantum physics and information theory to give us a soup-to-nuts understanding of quantum systems. Teams of researchers from universities, DOE national laboratories, and private companies will run them. Their expertise in quantum theory, technology development, and engineering will help each center undertake major, cross-cutting challenges. The centers work will range from discovery research up to developing prototypes. Theyll also address a number of different technical areas. Each center must tackle at least two of these subjects: quantum communication, quantum computing and emulation, quantum devices and sensors, materials and chemistry for quantum systems, and quantum foundries for synthesis, fabrication, and integration.

The impacts wont stop at the centers themselves. Each center will have a plan in place to transfer technologies to industry or other research partners. Theyll also work to leverage DOEs existing facilities and collaborate with non-DOE projects.

As the nations largest supporter of basic research in the physical sciences, the Office of Science is thrilled to head this initiative. Although quantum physics depends on the behavior of very small things, the Quantum Information Science Centers will be a very big deal.

The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit https://www.energy.gov/science.

Continue reading here:
New Centers Lead the Way towards a Quantum Future - Energy.gov

Posted in Quantum Computing | Comments Off on New Centers Lead the Way towards a Quantum Future – Energy.gov

Google claims to have invented a quantum computer, but IBM begs to differ – The Conversation CA

On Oct. 23, 2019, Google published a paper in the journal Nature entitled Quantum supremacy using a programmable superconducting processor. The tech giant announced its achievement of a much vaunted goal: quantum supremacy.

This perhaps ill-chosen term (coined by physicist John Preskill) is meant to convey the huge speedup that processors based on quantum-mechanical systems are predicted to exhibit, relative to even the fastest classical computers.

Googles benchmark was achieved on a new type of quantum processor, code-named Sycamore, consisting of 54 independently addressable superconducting junction devices (of which only 53 were working for the demonstration).

Each of these devices allows the storage of one bit of quantum information. In contrast to the bits in a classical computer, which can only store one of two states (0 or 1 in the digital language of binary code), a quantum bit qbit can store information in a coherent superposition state which can be considered to contain fractional amounts of both 0 and 1.

Sycamore uses technology developed by the superconductivity research group of physicist John Martinis at the University of California, Santa Barbara. The entire Sycamore system must be kept cold at cryogenic temperatures using special helium dilution refrigeration technology. Because of the immense challenge involved in keeping such a large system near the absolute zero of temperature, it is a technological tour de force.

The Google researchers demonstrated that the performance of their quantum processor in sampling the output of a pseudo-random quantum circuit was vastly better than a classical computer chip like the kind in our laptops could achieve. Just how vastly became a point of contention, and the story was not without intrigue.

An inadvertent leak of the Google groups paper on the NASA Technical Reports Server (NTRS) occurred a month prior to publication, during the blackout period when Nature prohibits discussion by the authors regarding as-yet-unpublished papers. The lapse was momentary, but long enough that The Financial Times, The Verge and other outlets picked up the story.

A well-known quantum computing blog by computer scientist Scott Aaronson contained some oblique references to the leak. The reason for this obliqueness became clear when the paper was finally published online and Aaronson could at last reveal himself to be one of the reviewers.

The story had a further controversial twist when the Google groups claims were immediately countered by IBMs quantum computing group. IBM shared a preprint posted on the ArXiv (an online repository for academic papers that have yet to go through peer review) and a blog post dated Oct. 21, 2019 (note the date!).

While the Google group had claimed that a classical (super)computer would require 10,000 years to simulate the same 53-qbit random quantum circuit sampling task that their Sycamore processor could do in 200 seconds, the IBM researchers showed a method that could reduce the classical computation time to a mere matter of days.

However, the IBM classical computation would have to be carried out on the worlds fastest supercomputer the IBM-developed Summit OLCF-4 at Oak Ridge National Labs in Tennessee with clever use of secondary storage to achieve this benchmark.

While of great interest to researchers like myself working on hardware technologies related to quantum information, and important in terms of establishing academic bragging rights, the IBM-versus-Google aspect of the story is probably less relevant to the general public interested in all things quantum.

For the average citizen, the mere fact that a 53-qbit device could beat the worlds fastest supercomputer (containing more than 10,000 multi-core processors) is undoubtedly impressive. Now we must try to imagine what may come next.

The reality of quantum computing today is that very impressive strides have been made on the hardware front. A wide array of credible quantum computing hardware platforms now exist, including ion traps, superconducting device arrays similar to those in Googles Sycamore system and isolated electrons trapped in NV-centres in diamond.

These and other systems are all now in play, each with benefits and drawbacks. So far researchers and engineers have been making steady technological progress in developing these different hardware platforms for quantum computing.

What has lagged quite a bit behind are custom-designed algorithms (computer programs) designed to run on quantum computers and able to take full advantage of possible quantum speed-ups. While several notable quantum algorithms exist Shors algorithm for factorization, for example, which has applications in cryptography, and Grovers algorithm, which might prove useful in database search applications the total set of quantum algorithms remains rather small.

Much of the early interest (and funding) in quantum computing was spurred by the possibility of quantum-enabled advances in cryptography and code-breaking. A huge number of online interactions ranging from confidential communications to financial transactions require secure and encrypted messages, and modern cryptography relies on the difficulty of factoring large numbers to achieve this encryption.

Quantum computing could be very disruptive in this space, as Shors algorithm could make code-breaking much faster, while quantum-based encryption methods would allow detection of any eavesdroppers.

The interest various agencies have in unbreakable codes for secure military and financial communications has been a major driver of research in quantum computing. It is worth noting that all these code-making and code-breaking applications of quantum computing ignore to some extent the fact that no system is perfectly secure; there will always be a backdoor, because there will always be a non-quantum human element that can be compromised.

More appealing for the non-espionage and non-hacker communities in other words, the rest of us are the possible applications of quantum computation to solve very difficult problems that are effectively unsolvable using classical computers.

Ironically, many of these problems emerge when we try to use classical computers to solve quantum-mechanical problems, such as quantum chemistry problems that could be relevant for drug design and various challenges in condensed matter physics including a number related to high-temperature superconductivity.

So where are we in the wonderful and wild world of quantum computation?

In recent years, we have had many convincing demonstrations that qbits can be created, stored, manipulated and read using a number of futuristic-sounding quantum hardware platforms. But the algorithms lag. So while the prospect of quantum computing is fascinating, it will likely be a long time before we have quantum equivalents of the silicon chips that power our versatile modern computing devices.

[ Deep knowledge, daily. Sign up for The Conversations newsletter. ]

Visit link:
Google claims to have invented a quantum computer, but IBM begs to differ - The Conversation CA

Posted in Quantum Computing | Comments Off on Google claims to have invented a quantum computer, but IBM begs to differ – The Conversation CA

What Is Quantum Computing, And How Can It Unlock Value For Businesses? – Computer Business Review

Add to favorites

We are at an inflection point

Ever since Professor Alan Turing proposed the principle of the modern computer in 1936, computing has come a long way. While advancements to date have been promising, the future is even brighter, all thanks to quantum computing, which performs calculations based on the behaviour of particles at the sub-atomic level, writes Kalyan Kumar, CVP and CTO IT Services,HCL Technologies.

Quantum computing promises to unleash unimaginable computing power thats not only capable of addressing current computational limits, but unearthing new solutions to unsolved scientific and social mysteries. Whats more, thanks to increasing advancement since the 1980s, quantum computing can now drive some incredible social and business transformations.

Quantum computing holds immense promise in defining a positive, inclusive and human centric future, which is what theWEF Future Council on Quantum Computingenvisages. The most anticipated uses of quantum computing are driven by its potential to simulate quantum structures and behaviours across chemicals and materials. This promise is being seen guardedly by current scientists who claim quantum computing is still far from making a meaningful impact.

This said, quantum computing is expected to open amazing and much-needed possibilities in medical research. Drug development time, which usually takes more than 10 to 12 years with billions of dollars of investment, is expected to reduce considerably, alongside the potential to explore unique chemical compositions that may just be beyond the limits of current classical computing. Quantum computing can also help with more accurate weather forecasting, and provide accurate information that can help save tremendous amounts of agriculture production from damage.

Quantum computing promises a better and improved future, and while humans are poised to benefit greatly from this revolution, businesses too can expect unapparelled value.

When it comes to quantum computing, it can be said that much of the world is at the they dont know what they dont know stage. Proof points are appearing, and it is seemingly becoming clear that quantum computing solves problems that cannot be addressed by todays computers. Within transportation, for example, quantum computing is being used to develop battery and self-driving technologies, while Volkswagen has also been using quantum computing to match patterns and predict traffic conditions in advance, ensuring a smoother movement of traffic. In supply chains, logistics and trading are receiving a significant boost from the greater computing power and high-resolution modelling quantum computing provides, adding a huge amount of intelligence using new approaches to machine learning.

The possibilities for businesses are immense and go way beyond these examples mentioned above, in domains such as healthcare, financial services and IT. Yet a new approach is required. The companies that succeed in quantum computing will be those that create value chains to exploit the new insights, and form a management system to match the high-resolution view of the business that will emerge.

While there are some initial stage quantum devices already available, these are still far from what the world has been envisaging. Top multinational technology companies have been investing considerably in this field, but they still have some way to go. There has recently been talk of prototype quantum computers performing computations that would have previously taken 10,000 years in just 200 seconds. Though of course impressive, this is just one of the many steps needed to achieve the highest success in quantum computing.

It is vital to understand how and when we are going to adopt quantum computing, so we know the right time to act. The aforementioned prototype should be a wakeup call to early adopters who are seeking to find ways to create a durable competitive advantage. We even recently saw a business announcing its plans to make a prototype quantum computer available on its cloud, something we will all be able to buy or access some time from now. If organisations truly understand the value and applications of quantum computing, they will be able to create new products and services that nobody else has. However, productising and embedding quantum computing into products may take a little more time.

One important question arises from all this: are we witnessing the beginning of the end for classical computing? When looking at the facts, it seems not. With the advent of complete and practical quantum computers, were seeing a hybrid computing model emerging where digital binary computers will co-process and co-exist with quantum Qbit computers. The processing and resource sharing needs are expected to be optimised using real time analysis, where quantum takes over exponential computational tasks. To say the least, quantum computing is not about replacing digital computing, but about coexistence enabling composed computing that handles different tasks at the same time similar to humans having left and right brains for analytical and artistic dominance.

If one things for sure, its that we are at an inflection point, witnessing what could arguably be one of the most disruptive changes in human existence. Having a systematic and planned approach to adoption of quantum computing will not only take some of its mystery away, but reveal its true strategic value, helping us to know when and how to become part of this once in a lifetime revolution.

Continued here:
What Is Quantum Computing, And How Can It Unlock Value For Businesses? - Computer Business Review

Posted in Quantum Computing | Comments Off on What Is Quantum Computing, And How Can It Unlock Value For Businesses? – Computer Business Review

Healthcare venture investment in 2020: Quantum computing gets a closer look – Healthcare IT News

Among the healthcare technologies venture firms be looking at most closely at in 2020, various artificial intelligence and machine learning applications are atop this list, of course. But so are more nuts-and-bolts tools like administrative process automation and patient engagement platforms, VCs say.

Other, more leading-edge technologies genomics-focused data and analytics, and even quantum computing are among the areas attracting investor interest this year.

"We expect 2020 to mark the first year where health IT venture firms will start to look at quantum computing technology for upcoming solutions," Dr. Anis Uzzaman, CEO and general partner of Pegasus Tech Ventures, told Healthcare IT News.

"With the breakthrough supremacy announcement from Google validating the technology and the subsequent launch of the service Amazon Braket in 2019, there is sure to be a new wave of entrepreneurial activity starting in 2020."

He said quantum computing technology holds a lot of promise for the healthcare industry with potential breakthroughs possible throughout the health IT stack from operations and administration to security.

Among the promising companies, Uzzaman pointed to Palo Alto-based QC Ware, a startup pioneering a software solution that enables companies to use a variety of quantum hardware platforms such as Rigetti and IBM to solve a variety of enterprise problems, including those specifically related to healthcare.

He also predicted artificial intelligence would continue to be at the forefront for health IT venture firms in 2020 as it becomes more clear which startups may be winners in their initial target sectors.

"There has been consistent growth of investment activity over the past few years into healthcare startups using artificial intelligence to target a range of areas from imaging to diagnostics," he said.

However, Uzzaman also noted regulation and long enterprise sales cycles have largely slowed the ability for these companies to significantly scale their revenues.

"Therefore, we anticipate 2020 will be the year where it will become clearer to health IT venture firms who will be winners in applying artificial intelligence to imaging, pathology, genomics, operations, diagnostics, transcription, and more," he said. "We will also continue to see moderate growth in the overall investment amount in machine learning and AI companies, but will see a notable decrease in the number of companies receiving an investment.

Uzzaman explained there were already some signs in late 2019 that there could be late in a short-term innovation cycle for artificial intelligence with many companies, particularly those applying machine learning and AI to robotics, shutting down.

"However, we anticipate many companies will reach greater scale with their solutions and separate themselves from the competition, which will translate into more mega funding rounds," he said.

Ezra Mehlman, managing partner with Health Enterprise Partners, explained that at the beginning of each year, the firm conducts a market mapping exercise to determine which healthcare IT categories are rising to the top of the prioritization queue of our network of hospital and health plan limited partners.

"In the past year, we have seen budgets meaningfully open for automation solutions in administrative processing, genomics-focused data and analytics offerings, aging-in-place technologies and, in particular, patient engagement platforms rooted in proven clinical use cases," he said. "We are actively looking at all of these spaces."

He pointed out that in 2018, more than $2 billion was invested into artificial intelligence and machine learning healthcare IT companies, which represented a quarter of the total dollars invested into digital health companies that year.

"We view this as a recognition of two things: the meteoric aspirations that the market has assigned to AI and machine learning's potential, and a general sense that the underlying healthcare data infrastructure has reached the point of maturity, where it is possible to realize ROI from AI/machine learning initiatives," he said.

However, he said Health Enterprise Partners is still waiting for the "breakout" to occur in adoption.

"We believe we have now reached the point where category leaders will emerge in each major healthcare AI subsector and the usage will become more widespread we have made one such investment in the clinical AI space in the last year," Mehlman said.

Heading into 2020, Mehlman said companies that cannot deliver high-six-figure, year-one ROI in the form of increased revenue or reduced cost will struggle, and companies that cannot crisply answer the question, "Who is the buyer and what is the budget?" will be challenged.

"If one applies these tests to some of the areas that have attracted the most healthcare VC investment--social determinants of health, blockchain and digital therapeutics to name a few the number of viable companies sharply drops off," he said.

Mehlman noted that while these sound like simple principles, the current environment of rapidly consolidating, budget-constrained hospitals, vertically integrating health plans, and big tech companies making inroads into healthcare has raised the bar on what is required for a healthcare startup to gain meaningful market traction.

View original post here:
Healthcare venture investment in 2020: Quantum computing gets a closer look - Healthcare IT News

Posted in Quantum Computing | Comments Off on Healthcare venture investment in 2020: Quantum computing gets a closer look – Healthcare IT News