Search Immortality Topics:

Page 134«..1020..133134135136..140150..»


Category Archives: Gene Medicine

The 9 Biggest Technology Trends That Will Transform Medicine And Healthcare In 2020 – Forbes

Healthcare is an industry that is currently being transformed using the latest technology, so it can meet the challenges it is facing in the 21st century. Technology can help healthcare organizations meet growing demand and efficiently operate to deliver better patient care. Here are 9 technology trends that will transform medicine and healthcare in 2020.

The 9 Biggest Technology Trends That Will Transform Medicine And Healthcare In 2020

AI and Machine Learning

As the world population continues to grow, and age, artificial intelligence, and machine learning offer new and better ways to identify disease, diagnose conditions, crowdsource and develop treatment plans, monitor health epidemics, create efficiencies in medical research and clinical trials, and make operations more efficient to handle the increased demands on the healthcare system. By 2020, medical data will double every 73 days. McKinsey estimates that there could be $100 billion in annual savings for medicine and pharma by leaning on big data as well as the artificial intelligence and machine learning tools to process it. Artificial intelligence algorithms powered by recent advances in computational power learn from the data and can predict the probability of a condition to help doctors provide a diagnosis and treatment plans. Ultimately, AI and machine learning can assist with many clinical problems as long as governing and regulatory bodies can determine how to regulate the use of algorithms in healthcare.

Robotics

When it comes to life or death, would you trust a robot with yours? Currently, collaborative robotssuch as the da Vinci surgical robot are already assisting humans with tasks in the operating room. However, the potential for robots in healthcare expands beyond surgical uses. With tremendous growth expected in the industrythe global medical robotics market is expected to reach $20 billion by 2023theres no doubt that robots used in healthcare will continue to conduct more varied tasks. These already include helping doctors examine and treat patients in rural areas via telepresence," transporting medical supplies, disinfecting hospital rooms, helping patients with rehabilitation or with prosthetics, and automating labs and packaging medical devices. Other medical robots that are promising include a micro-bot that can target therapy to a specific part of the body, such as radiation to a tumor or clear bacterial infections.

Computer and Machine Vision

Training computers to "see" the world and understand visual input is no small feat. Since there has been significant progress in machine vision, there are more ways computers and machine vision are being used in medicine for diagnostics, viewing scans and medical images, surgery, and more. Machine vision is helping doctors definitively know how much blood a woman loses in childbirth so that appropriate care can be given to reduce the mortality of mothers from post-partum hemorrhaging. Computers provide accurate intel, while previously this was a guessing game. The applications where computers are being used to view CT scans to detect neurological and cardiovascular illnesses and spot tumors in X-ray images are growing rapidly.

Wearable Tech

Wearable fitness technology can do much more than tell you how many steps you walk each day. With more than 80% of people willing to wear wearable tech, there are tremendous opportunities to use these devices for healthcare. Today's smartwatches can not only track your steps but can monitor your heart rhythms. Other forms of wearable devices are ECG monitors that can detect atrial fibrillation and send reports to your doctor, blood pressure monitors, self-adhesive biosensor patches that track your temperature, heart rate, and more. Wearable tech will help consumers proactively get health support if there are anomalies in their trackers.

Genomics

Artificial intelligence and machine learning help advance genomic medicinewhen a person's genomic info is used to determine personalized treatment plans and clinical care. In pharmacology, oncology, infectious diseases, and more, genomic medicine is making an impact. Computers make the analysis of genes and gene mutations that cause medical conditions much quicker. This helps the medical community better understand how diseases occur, but also how to treat the condition or even eradicate it. There are many research projects in place covering such medical conditions as organ transplant rejection, cystic fibrosis, and cancers to determine how best to treat these conditions through personalized medicine.

3D Printing

Just as it's done for other industries, 3D printing enabled prototyping, customization, research, and manufacturing for healthcare. Surgeons can replicate patient-specific organs with 3D printing to help prepare for procedures, and many medical devices and surgical tools can be 3D printed. 3D printing makes it easier to cost-effectively develop comfortable prosthetic limbs for patients and print tissues and organs for transplant. Also, 3D printing is used in dentistry and orthodontics.

Extended Reality (Virtual, Augmented and Mixed Reality)

Extended reality is not just for entertainment; its being used for important purposes in healthcare. The VR/AR healthcare market should reach $5.1 billion by 2025. Not only is this technology extremely beneficial for training and surgery simulation, but it's also playing an important part in patient care and treatment. Virtual reality has helped patients with visual impairment, depression, cancer, and autism. Augmented reality helps provide another layer of support for healthcare practitioners and aided physicians during brain surgery and reconnecting blood vessels. In mixed reality, the virtual and real worlds are intertwined, so it provides important education capabilities for medical professionals as well as to help patients understand their conditions or treatment plans.

Digital Twins

A digital twin is a near real-time replica of something in the physical worldin healthcare, that replica is the life-long data record of an individual. Digital twins can assist a doctor in determining the possibilities for a successful outcome of a procedure, help make therapy decisions, and manage chronic diseases. Ultimately, digital twins can help improve patient experience through effective, patient-centric care. The use of digital twins in healthcare is still in its early stages, but its potential is extraordinary.

5G

As the capabilities for healthcare centers to provide care in remote or under-served areas through telemedicine increase, the quality and speed of the network are imperative for positive outcomes. 5G can better support healthcare organizations by enabling the transmission of large imaging files so specialists can review and advise on care; allow for the use of AI and Internet of Things technology; enhance a doctor's ability to deliver treatments through AR, VR and mixed reality; and allow for remote and reliable monitoring of patients.

These technologies offer incredible opportunities to provide better healthcare to billions of people and make help our healthcare systems cope with the ever-increasing demands.

More:
The 9 Biggest Technology Trends That Will Transform Medicine And Healthcare In 2020 - Forbes

Posted in Gene Medicine | Comments Off on The 9 Biggest Technology Trends That Will Transform Medicine And Healthcare In 2020 – Forbes

Willowbrook-based research facility receives $1.95 million grant to study rare diseases – SILive.com

The National Institute of Health (NIH) has awarded the Willowbrook-based Institute for Basic Research (IBR) a $1.95 million grant over five years to support the study of rare diseases linked to genetic abnormalities.

Although the state-operated facility has expanded its mission in recent years, scientific research into developmental disabilities has been at the core of IBRs work since its founding more than five decades ago.

In that tradition, the NIH award will fund research led by Dr. Gholson Lyon, an IBR psychiatrist and scientist who heads the Genomic Medicine Laboratory in the Department of Human Genetics.

The grantprovides science investigators who have demonstrated ability to make major contributions to medical science the freedom to embark on ambitious, creative, and/or longer-term research projects, the New York State Office for People With Developmental Disabilities (OPWDD) said in a press release.

According to OPWDD, the research will further understanding of the genetic basis for rare diseases that include Ogden syndrome, which was discovered and named by Dr. Lyon.

Occurring in an estimated one of 1,000,000 births, Ogden syndrome is characterized by craniofacial abnormalities, hypotonia, global developmental delays, cryptorchidism, cardiac anomalies, and cardiac arrhythmias, says OPWDD.

The disease is connected to mutation of the NAA10 gene, which affects the bodys proteins and the ability of cells to proliferate. In addition to Ogden Syndrome, Dr. Lyons clinical studies will also focus on other diseases tied to NAA10, and a related gene, NAA15.

These diseases have a profound impact on families, said Dr. Lyon. I am grateful for this support from OPWDD and [the National Institute of Healths National Institute of General Medical Sciences].

Dr. Lyon also works with families at IBRs George A. Jervis Clinic, which offers diagnostic and consultative services for children and adults with intellectual and developmental disabilities.

In addition to Ogden syndrome and related diseases, Dr. Lyon also researches Fragile X syndrome, autism syndromes, and investigates the physiological basis of neuropsychiatric conditions, with the goal of expanding access to preventive services and treatment for those disorders, according to his online bio.

IBR Acting Director Joseph J. Maturi said, Dr. Lyons extensive medical and scientific training and experience will help him successfully undertake these ambitious and important studies."

Continued here:
Willowbrook-based research facility receives $1.95 million grant to study rare diseases - SILive.com

Posted in Gene Medicine | Comments Off on Willowbrook-based research facility receives $1.95 million grant to study rare diseases – SILive.com

What is ‘IndiGen’ project that is sequencing Indian genes? – The Hindu

The story so far: The Council of Scientific and Industrial Research (CSIR) recently announced the conclusion of a six-month exercise (from April 2019) of conducting a whole-genome sequence of a 1,008 Indians. The project is part of a programme called IndiGen and is also seen as a precursor to a much larger exercise involving other government departments to map a larger swathe of the population in the country. Project proponents say this will widen public understanding in India about genomes and the information that genes hide about ones susceptibility to disease.

A genome is the DNA, or sequence of genes, in a cell. Most of the DNA is in the nucleus and intricately coiled into a structure called the chromosome. The rest is in the mitochondria, the cells powerhouse. Every human cell contains a pair of chromosomes, each of which has three billion base pairs or one of four molecules that pair in precise ways. The order of base pairs and varying lengths of these sequences constitute the genes, which are responsible for making amino acids, proteins and, thereby, everything that is necessary for the body to function. It is when these genes are altered or mutated that proteins sometimes do not function as intended, leading to disease.

Sequencing a genome means deciphering the exact order of base pairs in an individual. This deciphering or reading of the genome is what sequencing is all about. Costs of sequencing differ based on the methods employed to do the reading or the accuracy stressed upon in decoding the genome. Since an initial rough draft of the human genome was made available in 2000, the cost of generating a fairly accurate draft of any individual genome has fallen to a tenth, or to a ball park figure of around $1,000 (70,000 approximately). It has been known that the portion of the genes responsible for making proteins called the exome occupies about 1% of the actual gene. Rather than sequence the whole gene, many geneticists rely on exome maps (that is the order of exomes necessary to make proteins). However, it has been established that the non-exome portions also affect the functioning of the genes and that, ideally, to know which genes of a persons DNA are mutated the genome has to be mapped in its entirety. While India, led by the CSIR, first sequenced an Indian genome in 2009, it is only now that the organisations laboratories have been able to scale up whole-genome sequencing and offer them to the public.

Under IndiGen, the CSIR drafted about 1,000 youth from across India by organising camps in several colleges and educating attendees on genomics and the role of genes in disease. Some students and participants donated blood samples from where their DNA sequences were collected.

Globally, many countries have undertaken genome sequencing of a sample of their citizens to determine unique genetic traits, susceptibility (and resilience) to disease. This is the first time that such a large sample of Indians will be recruited for a detailed study. The project ties in with a much larger programme funded by the Department of Biotechnology to sequence at least 10,000 Indian genomes. The CSIRs IndiGen project, as it is called, selected the 1,000-odd from a pool of about 5,000 and sought to include representatives from every State and diverse ethnicities. Every person whose genomes are sequenced would be given a report. The participants would be informed if they carry gene variants that make them less responsive to certain classes of medicines. For instance, having a certain gene makes some people less responsive to clopidogrel, a key drug that prevents strokes and heart attack. The project involved the Hyderabad-based Centre for Cellular and Molecular Biology (CCMB), the CSIR-Institute of Genomics and Integrative Biology (IGIB), and cost 18 crore.

Anyone looking for a free mapping of their entire genome can sign up for IndiGen. Those who get their genes mapped will get a card and access to an app which will allow them and doctors to access information on whether they harbour gene variants that are reliably known to correlate with genomes with diseases. However, there is no guarantee of a slot, as the scientists involved in the exercise say there is already a backlog. The project is free in so far as the CSIR scientists have a certain amount of money at their disposal. The driving motive of the project is to understand the extent of genetic variation in Indians, and learn why some genes linked to certain diseases based on publications in international literature do not always translate into disease. Once such knowledge is established, the CSIR expects to tie up with several pathology laboratories who can offer commercial gene testing services.

View original post here:
What is 'IndiGen' project that is sequencing Indian genes? - The Hindu

Posted in Gene Medicine | Comments Off on What is ‘IndiGen’ project that is sequencing Indian genes? – The Hindu

Editing mosquito’s gene wards off malaria and halts reproduction – Yale News

Scientists have looked for immune system factors that might help mosquitoes ward off pathogens such as malarial parasites and indirectly protect humans from infection. Yale researchers found one by editing a single gene, which turns out to be crucial for female reproduction.

Researchers in the lab of Erol Fikrig, the Waldemar Von Zedtwitz Professor of Medicine (infectious diseases) and professor of epidemiology and of microbial pathogenesis, edited out a gene suspected of suppressing the mosquito immune system in females of the species Anopheles. They found that the reproductive systems of the mutant mosquitoes were severely disrupted and that the level of parasites that cause malaria was dramatically reduced, researchers report Oct. 28 in the Journal of Experimental Medicine.

When a mosquito does not have functional ovaries, the parasite that causes malaria will not survive well in the mosquito, Fikrig said. If we understand how malaria interacts with a mosquito, we can perhaps interfere with that process. However that is a long, long way off. This is not a new vaccine or treatment.

Read this article:
Editing mosquito's gene wards off malaria and halts reproduction - Yale News

Posted in Gene Medicine | Comments Off on Editing mosquito’s gene wards off malaria and halts reproduction – Yale News

The Roivant-Sumitomo Deal: $3 Billion, 5 Companies, $550 Million in Loans and an Option on 6 More Companies – BioSpace

In September, Roivant Sciences, Vivek Ramaswamys umbrella biotech company, agreed to sell ownership of five of its Vant companies to Japans Sumitomo Dainippon Pharma for $3 billion. Sumitomo Dainippon also was buying an equity stake of more than 10% of Roivant shares.

The companies have released more details of the deal, which includes an option on six more Vant companies until 2024. The agreement was formally signed yesterday. Sumitomo will create an as-yet unnamed company to shift the five companies into. They will be run by Myrtle Potter, a former Genentech executive who has been the operating chair of Roivant since July 2018.

There is a $3 billion upfront fee. In addition, Sumitomo will offer a $350 million loan facility to Myovant to fund the launch of relugolix, its Phase III candidate for uterine fibroids if it is approved. The Japanese firm will also loan Urovant $200 million for its vibegron for overactive bladder.

If Sumitomo options the other six companies, will have acquired a pipeline of more than 25 clinical programs with multiple possible launches from 2020 to 2022. In addition to buying the five initial companies, the deal gives Sumitomo access to Roivants proprietary technology platforms, DrugOme and Digital Innovation. It will also enter separate strategic client relationships with Datavant and Alyvant.

The five Vant companies are Myovant Sciences, Urovant Sciences, Enzyvant Therapeutics, Altavant Sciences, and Spirovant Sciences. Spirovant is a new Vant that focuses on developing gene therapies for cystic fibrosis.

In addition to Potter, other Roivant team members will move to the new entity. They include Adele Gulfo, Roivants chief of Commercial Development, Sam Azoulay, Roivants chief medical officer, and Dan Rothman, Roivants chief information officer.

I am happy to announce that we have reached an agreement on the Strategic Alliance with Roivant, one of the strategic investments that we are making to address our challenges laid out in the Mid-Term Business Plan 2022, said Hiroshi Nomura, representative director, president and chief executive officer of Sumitomo Dainippon Pharma. This Strategic Alliance allows us to not only acquire potential blockbusters and innovative health technology platforms developed by Roivant, but it will also enable us to deepen our relationship with Roivant, a company that possesses an innovative business model and underlying culture. We expect this relationship will contribute significantly to the establishment of a position as a Global Specialized Player which we aspire to be in by 2033.

Spirovant is working to develop two therapies for cystic fibrosis. SPIRO-2101 uses an adeno-associated virus vector (AAV), like most gene therapies, to deliver a functional l CFTR gene to airway epithelial cells. SPIRO-2102 uses a proprietary lentiviral vector to deliver the gene. In animal models, both have showed restoration of CFTR function. The companys aerosolization technology is designed to maximize uptake in the lungs.

The two therapeutics leverage technology out of the University of Iowa Center for Gene Therapy at the Carver College of Medicine. Its collaboration with Childrens Hospital of Philadelphia (CHOP) was involved with the manufacture of the preclinical supply of the AAV products.

We are proud to enter this unique Alliance with Sumitomo Dainippon Pharma, said Ramaswamy. We hope that our contributions to this Alliance will enable Sumitomo Dainippon Pharma to realize its vision to be a global leader in the biopharmaceutical industry. In addition, we believe that this Alliance will increase the long-term value of each Vant in the Alliance through a combination of strong financial backing and other capabilities.

Read more from the original source:
The Roivant-Sumitomo Deal: $3 Billion, 5 Companies, $550 Million in Loans and an Option on 6 More Companies - BioSpace

Posted in Gene Medicine | Comments Off on The Roivant-Sumitomo Deal: $3 Billion, 5 Companies, $550 Million in Loans and an Option on 6 More Companies – BioSpace

Veracyte Announces New Data That Advance Understanding of Genomic Alterations Targeted by Precision Medicine Therapies for Thyroid Cancer – Business…

SOUTH SAN FRANCISCO, Calif.--(BUSINESS WIRE)--Veracyte, Inc. (Nasdaq: VCYT) today announced new data that advance understanding of the frequency, positive predictive value and co-occurrence of genomic alterations that are targeted by newly available and investigational precision medicine therapies for thyroid cancer. The findings were enabled by Afirma Xpression Atlas analyses, which uses RNA sequencing, of Veracytes extensive biorepository of thyroid nodule fine needle aspiration (FNA) samples from patients undergoing evaluation for thyroid cancer. The data were presented this week during the 89th Annual Meeting of the American Thyroid Association (ATA).

In one study, researchers assessed the frequency of ALK, BRAF, NTRK and RET fusions in nearly 48,000 consecutive patients whose thyroid nodule FNA samples were deemed indeterminate, suspicious for malignancy or malignant (Bethesda III/IV, V and VI categories, respectively) by cytopathology. The researchers found that 425 (0.89 percent) of the FNA samples harbored one of the alterations, with NTRK fusions the most common at 0.38 percent, followed by RET (0.32 percent), BRAF (0.13 percent) and ALK (0.06 percent). Additionally, RNA whole transcriptome sequencing demonstrated differences in the prevalence of these four fusions across Bethesda categories, with Bethesda V being the highest.

NTRK fusion inhibitors have received pan-cancer FDA approval and clinical trials have included selective inhibitors of ALK, BRAF, NTRK and RET, which makes their detection in patients with thyroid cancer of interest to physicians, said Mimi I. Hu, M.D., professor at The University of Texas MD Anderson Cancer Center, who presented the findings in a poster. As our understanding of the role of genomics in thyroid cancer advances, this information offers the potential to optimize initial treatment, predict response to treatment and prioritize selective targeted therapy should systemic treatment be needed.

In another study, researchers evaluated the positive predictive value of the NTRK, RET, BRAF and ALK fusions in 58 patients with indeterminate thyroid nodules (Bethesda III/IV categories) from Veracytes biorepository for whom surgical pathology diagnoses were available. They found that NTRK and RET fusions were associated with malignancy in 28 of 30 nodules, while risk of malignancy was lower among nodules with ALK (67 percent) or BRAF (75 percent). In a third study, researchers found that when using RNA sequencing data on a large sample of nearly 48,000 thyroid nodule FNA samples (Bethesda categories III-VI), they identified 263 co-occurrences of gene fusions and variants that were previously considered mutually exclusive.

The findings from these three studies underscore the power of our extensive biorepository of thyroid nodule FNA samples and our optimized RNA sequencing platform to advance understanding of the genomic underpinnings of thyroid cancer and to better capture the biology of thyroid lesions, said Richard T. Kloos, M.D., senior medical director, endocrinology, at Veracyte. As precision medicine therapies that target specific gene alterations emerge, understanding individual patients genomic profiles becomes increasingly important to physicians. Our Afirma Xpression Atlas provides this information at the same time as initial diagnosis with the Afirma Genomic Sequencing Classifier, or GSC, to help inform treatment decisions.

Also during the ATA meeting, Veracyte unveiled its new Afirma patient report, which in addition to identifying patients with benign or suspicious-for-cancer nodules among those deemed indeterminate by cytopathology, based on Afirma GSC results, now provides individualized and actionable variant and fusion information on each patient. This information includes: risk of malignancy, associated neoplasm type, relative risk of lymph node metastasis and extrathyroidal extension; availability of FDA-approved therapy; and genetic counseling and germline testing considerations. This information is also provided for patients with cytopathology results that are suspicious for malignancy or malignant (Bethesda V and VI).

About Afirma

The Afirma Genomic Sequencing Classifier (GSC) and Xpression Atlas provide physicians with a comprehensive solution for a complex landscape in thyroid nodule diagnosis. The Afirma GSC was developed with RNA whole-transcriptome sequencing and machine learning and helps identify patients with benign thyroid nodules among those with indeterminate cytopathology results in order to help patients avoid unnecessary diagnostic thyroid surgery. The Afirma Xpression Atlas provides physicians with genomic alteration content from the same fine needle aspiration samples that are used in Afirma GSC testing and may help physicians decide with greater confidence on the surgical or therapeutic pathway for their patients. The Afirma Xpression Atlas includes 761 DNA variants and 130 RNA fusion partners in over 500 genes that are associated with thyroid cancer.

About Veracyte

Veracyte (Nasdaq: VCYT) is a leading genomic diagnostics company that improves patient care by providing answers to clinical questions that inform diagnosis and treatment decisions without the need for costly, risky surgeries that are often unnecessary. The company's products uniquely combine RNA whole-transcriptome sequencing and machine learning to deliver results that give patients and physicians a clear path forward. Since its founding in 2008, Veracyte has commercialized seven genomic tests and is transforming the diagnosis of thyroid cancer, lung cancer and idiopathic pulmonary fibrosis. Veracyte is based in South San Francisco, California. For more information, please visit http://www.veracyte.com and follow the company on Twitter (@veracyte).

Cautionary Note Regarding Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements can be identified by words such as: "anticipate," "intend," "plan," "expect," "believe," "should," "may," "will" and similar references to future periods. Examples of forward-looking statements include, among others, the ability of Veracytes Afirma Xpression Atlas to analyze FNA samples to help diagnose thyroid cancer, the expected impacts of Veracytes collaboration with Johnson & Johnson in developing interventions for lung cancer, on Veracytes financial and operating results, on the timing of the commercialization of the Percepta classifier, and on the size of Veracytes addressable market. Forward-looking statements are neither historical facts nor assurances of future performance, but are based only on our current beliefs, expectations and assumptions. These statements involve risks and uncertainties, which could cause actual results to differ materially from our predictions, and include, but are not limited to: our ability to achieve milestones under the collaboration agreement with Johnson & Johnson; our ability to achieve and maintain Medicare coverage for our tests; the benefits of our tests and the applicability of clinical results to actual outcomes; the laws and regulations applicable to our business, including potential regulation by the Food and Drug Administration or other regulatory bodies; our ability to successfully achieve and maintain adoption of and reimbursement for our products; the amount by which use of our products are able to reduce invasive procedures and misdiagnosis, and reduce healthcare costs; the occurrence and outcomes of clinical studies; and other risks set forth in our filings with the Securities and Exchange Commission, including the risks set forth in our quarterly report on Form 10-Q for the quarter ended September 30, 2019. These forward-looking statements speak only as of the date hereof and Veracyte specifically disclaims any obligation to update these forward-looking statements or reasons why actual results might differ, whether as a result of new information, future events or otherwise, except as required by law.

Veracyte, Afirma, Percepta, Envisia and the Veracyte logo are trademarks of Veracyte, Inc.

Excerpt from:
Veracyte Announces New Data That Advance Understanding of Genomic Alterations Targeted by Precision Medicine Therapies for Thyroid Cancer - Business...

Posted in Gene Medicine | Comments Off on Veracyte Announces New Data That Advance Understanding of Genomic Alterations Targeted by Precision Medicine Therapies for Thyroid Cancer – Business…