Search Results for: cellular barcoding

George Church backs a startup solution to the massive gene therapy manufacturing bottleneck – Endpoints News

George Church and his graduate students have spent the last decade seeding startups on the razors edge between biology and science fiction: gene therapy to prevent aging, CRISPRed pigs that can be used to harvest organs for transplant, and home kits to test your poop for healthy or unhealthy bacteria. (OK, maybe theyre not allon that razors edge.)

But now a new spinout from the Department of Genetics second floor is tackling a far humbler problem one that major company after major company has stumbled over as they tried to get cures for rare diseases and other gene therapies into the clinic and past regulators: How the hell do you build these?

Theres a lot happening for new therapies but not enough attention around this problem, Lex Rovner, who was a post-doc at Churchs lab from 2015 to 2018, told Endpoints News. And if we dont figure out how to fix this, many of these therapies wont even reach patients.

This week, with Church and a couple other prominent scientists as co-founders, Rovner launched 64x Bio to tackle one key part of the manufacturing bottleneck. They wont be looking to retrofit plants or build gene therapy factories, as Big Pharma and big biotech are now spending billions to do. Instead, with $4.5 million in seed cash, they will try to engineer the individual cells that churn out a critical component of the therapies.

The goal is to build cells that are fine-tuned to do nothing but spit out the viral vectors that researchers and drug developers use to shuttle gene therapies into the body. Different vectors have different demands; 64x Bio will look to make efficient cellular factories for each.

While a few general ways to increase vector production may exist, each unique vector serotype and payload poses a specific challenge, Church said in an emailed statement. Our platform enables us to fine tune custom solutions for these distinct combinations that are particularly hard to overcome.

Before joining Churchs lab, Rovner did her graduate work at Yale, where she studied how to engineer bacteria to produce new kinds of protein for drugs or other purposes. And after leaving Churchs lab in 2018, she initially set out to build a manufacturing startup with a broad focus.

Yet as she spoke with hundreds of biotech executives on LinkedIn and in coffee shops around Cambridge, the same issue kept popping up: They liked their gene therapy technology in the lab but they didnt know how to scale it up.

Everyone kept saying the same thing, Rovner said. We basically realized theres this huge problem.

The issue would soon make headlines in industry publications: bluebird delaying the launch of Zynteglo, Novartis delaying the launch of Zolgensma in the EU, Axovant delaying the start of their Tay-Sachs trial.

Part of the problem, Rovner said, is that gene therapies are delivered on viral vectors. You can build these vectors in mammalian cell lines by feeding them a small circular strand of DNA called a plasmid. The problem is that mammalian cells have, over billions of years, evolved tools and defenses precisely to avoid making viruses. (Lest the mammal they live in die of infection).

There are genetic mutations that can turn off some of the internal defenses and unleash a cells ability to produce virus, but theyre rare and hard to find. Other platforms, Rovner said, try to find these mutations by using CRISPR to knock out genes in different cells and then screening each of them individually, a process that can require hundreds of thousands of different 100-well plates, with each well containing a different group of mutant cells.

Its just not practical, and so these platforms never find the cells, Rovner said.

64x Bio will try to find them by building a library of millions of mutant mammalian cells and then using a molecular barcoding technique to screen those cells in a single pool. The technique, Rovner said, lets them trace how much vector any given cell produces, allowing researchers to quickly identify super-producing cells and their mutations.

The technology was developed partially in-house but draws from IP at Harvard and the Wyss Institute. Harvards Pam Silver and Wysss Jeffrey Way are co-founders.

The company is now based in SoMa in San Francisco. With the seed cash from Fifty Years, Refactor and First Round Capital, Rovner is recruiting and looking to raise a Series A. Theyre in talks with pharma and biotech partners, while they try to validate the first preclinical and clinical applications.

Gene therapy is one focus, but Rovner said the platform works for anything that involves viral vector, including vaccines and oncolytic viruses. You just have to find the right mutation.

Its the rare cell youre looking for, she said.

The rest is here:
George Church backs a startup solution to the massive gene therapy manufacturing bottleneck - Endpoints News

Posted in Genetic Therapy | Comments Off on George Church backs a startup solution to the massive gene therapy manufacturing bottleneck – Endpoints News

New screening tool could turn up genes tied to developmental disorders – STAT

Scientists in Vienna have developed a new human tissue screening technique that has identified previously unknown genes involved in causing microcephaly, a rare genetic disorder, and that could one day be used to identify unknown genes tied to other conditions.

In a study published Thursday in Science, researchers screened lab-grown human brain tissues for 172 genes thought to be associated with microcephaly, a condition in which babies are born with smaller-than-normal brains and have severe mental impairments. The search revealed 25 new genes linked to this rare neurological condition, adding to the 27 already known genes tied to microcephaly. The researchers also uncovered the involvement of certain pathways that were previously unknown to be connected to the disease.

This is a proof of concept, said Jrgen Knoblich, a molecular biologist at the Austrian Academy of Sciences Institute of Molecular Biotechnology and co-author of the study. With our ability to query many diseased genes at the same time and ask which ones are relevant in a human tissue, we can now study other diseases and other organs.

advertisement

For decades scientists have relied on small animals as models to make sense of how a human brain develops. But it turns out that our brains are not blown-up versions of a rodent brain. Mice and rat brain surfaces, for instance, are smooth, unlike the shrivelled walnut look of a human brain, with its countless folds. Also, these rodents are born with a somewhat complete brain, in which most neurons are in place, although they continue to form new connections after birth. In a human child, on the other hand, there are a massive number of neurons that form and populate the cortex after birth.

There are some processes that happen in our brain and not in mice brains that are responsible for human brains becoming so big and powerful, Knoblich said. This generates a very big medical problem, which is how do we study processes that are only happening in humans.

advertisement

To address this problem, several scientists including Knoblich developed human brain organoids that are no bigger than a lentil, created from stem cells, and function just like a working human brain. With an interest in studying neurodevelopmental disorders like microcephaly, Knoblichs team used these miniature substitute brains to look for clues about the genes that may hamper brain development.

Typically, scientists conduct genetic screening by inactivating select genes one by one to understand their contribution to bodily functions. But screens of human genes are restricted to cells grown in petri dishes in two dimensions, in which cells dont interact very much.

Microcephaly is a tissue disease and we couldnt really study it in 2D, said Christopher Esk, a molecular biologist at the Austrian Academy of Sciences Institute of Molecular Biotechnology and co-lead author of the study.

So, the researchers developed a technique called CRISPR-Lineage Tracing at Cellular resolution in Heterogeneous Tissue, which uses the gene-editing technology to make cuts in DNA and knockout genes in combination with a barcoding technology that tracks parent stems and their progeny cells as the 3D brain organoid develops.

Using an organoid developed from cells of a microcephalus patient, they kept an eye out for mutations that gave rise to fewer cells and thus a small brain in comparison with a healthy one.

The researchers used CRISPR-LICHT to simultaneously screen 172 potential microcephaly causing gene candidates and found 25 to be involved.

Among them was a gene called Immediate Early Response 3 Interacting Protein 1 in the endoplasmic reticulum, which is the protein processing station within a cell. This protein processing is required to properly process other proteins, among them extracellular matrix proteins, which are in turn important for tissue integrity, and thus brain size, Esk said.

Kristen Brennand, a stem cell biologist at the Icahn School of Medicine at Mount Sinai in New York, who wasnt involved in the study, said she appreciated how the research captured this causal link. Clinical genetics can identify mutations in patients, but fall short of identifying causal mutations that definitively underlie disease risk, she said.

Going forward, Knoblich and his colleagues hope to use CRISPR-LICHT to screen many more genes that may be associated with other brain development disorders. Weve done it for microcephaly, and were already doing it for autism, he said. But the method can be applied to any type of organoid or any type of disease and any cell type.

Read the original:
New screening tool could turn up genes tied to developmental disorders - STAT

Posted in Genetic Medicine | Comments Off on New screening tool could turn up genes tied to developmental disorders – STAT