Search Immortality Topics:

Page 5«..4567..1020..»

Digital Cell-Sorting System Market Is Set for a Rapid Growth and is Expected to Reach USD Billion by 2027 | Top Vendors: Bio-Rad Laboratories, Beckman…

Posted: May 28, 2020 at 11:45 am

Digital Cell-Sorting System Market Research Report How Effective in Covid-19 with latest technology, growth rate, prices, market size, trading, and key vendors of the industrys information with forecast from 2020 to 2027. This research report also combines industry-wide statistically relevant quantitative data and relevant and insightful qualitative analysis. This report has published stating that the global Digital Cell-Sorting System Market is anticipated to expand significantly at Million US$ in 2020 and is projected to reach Million US$ by 2027, at a CAGR of during the forecast period.

A complete study of the competitive landscape of the global Digital Cell-Sorting System Market has been given, presenting insights into the company profiles, financial status, recent developments, mergers and acquisitions, and the SWOT analysis. This study also provides an in-depth analysis of the global market with future estimates to identify current trends and investment trends for the forecast year 2020-2027.

Request Sample Copy of this Report @:

Some of the key players operated in this report are:

Key questions answered in this report:

Factors that drive global opportunities have been surveyed in this research report to understand the current and prospective growth of the businesses. This study also offers an in-depth analysis of the global market with future estimates to identify current trends and investment trends for the forecast year 2020-2027.

Get Up To 40% Discount on this Premium Report @:

Regional Analysis:

Finally, all aspects of the global Digital Cell-Sorting System Market are quantitatively as well qualitatively assessed to study the global as well as regional market comparatively. This market study presents critical information and factual data about the market providing an overall statistical study of this market on the basis of market drivers, limitations and its future prospects.

Major TOC points:

For More Information:

*If you need anything more than these then let us know and we will prepare the report according to your requirement.

About Us:

HealthCare Intelligence Markets Reports provides market intelligence & consulting services to a global clientele spread over 145 countries. Being a B2B firm, we help businesses to meet the challenges of an ever evolving market with unbridled confidence. We craft customized and syndicated market research reports that help market players to build game changing strategies. Besides, we also provide upcoming trends & future market prospects in our reports pertaining to Drug development, Clinical & healthcare industries. Our intelligence enables our clients to take decisions with which in turn proves a game-changer for them. We constantly strive to serve our clients better by directly allowing them sessions with our research analysts so the report is at par with their expectations.

Contact Us:

Marvella Lit

Address: 90, State Office Center,

90, State Street Suite 700,

Albany, NY 12207

Email: [emailprotected]


Phone: +44-753-712-1342

See the original post:
Digital Cell-Sorting System Market Is Set for a Rapid Growth and is Expected to Reach USD Billion by 2027 | Top Vendors: Bio-Rad Laboratories, Beckman...

Recommendation and review posted by G. Smith

Nanomedicine Market: Industry Analysis and forecast 2026: By Modality, Diseases, Application and… – Azizsalon News

Posted: May 28, 2020 at 11:44 am

Nanomedicine Market was valued US$ XX Bn in 2018 and is expected to reach US$ XX Bn by 2026, at CAGR of XX% during forecast period of 2019 to 2026.

Nanomedicine Market Drivers and Restrains:Nanomedicine is an application of nanotechnology, which are used in diagnosis, treatment, monitoring, and control of biological systems. Nanomedicine usages nanoscale manipulation of materials to improve medicine delivery. Therefore, nanomedicine has facilitated the treatment against various diseases. The nanomedicine market includes products that are nanoformulations of the existing drugs and new drugs or are nanobiomaterials. The research and development of new devices as well as the diagnostics will become, more effective, enabling faster response and the ability to treat new diseases are likely to boost the market growth.


The nanomedicine markets are driven by factors such as developing new technologies for drug delivery, increase acceptance of nanomedicine across varied applications, rise in government support and funding, the growing need for therapies that have fewer side effects and cost-effective. However, long approval process and risks associated with nanomedicine (environmental impacts) are hampering the market growth at the global level. An increase in the out-licensing of nanodrugs and growth of healthcare facilities in emerging economies are likely to create lucrative opportunities in the nanomedicine market.

The report study has analyzed revenue impact of covid-19 pandemic on the sales revenue of market leaders, market followers and disrupters in the report and same is reflected in our analysis.

Nanomedicine Market Segmentation Analysis:Based on the application, the nanomedicine market has been segmented into cardiovascular, neurology, anti-infective, anti-inflammatory, and oncology. The oncology segment held the dominant market share in 2018 and is projected to maintain its leading position throughout the forecast period owing to the rising availability of patient information and technological advancements. However, the cardiovascular and neurology segment is projected to grow at the highest CAGR of XX% during the forecast period due to presence of opportunities such as demand for specific therapeutic nanovectors, nanostructured stents, and implants for tissue regeneration.

Nanomedicine Market Regional Analysis:Geographically, the Nanomedicine market has been segmented into North America, the Europe, Asia Pacific, Latin America, and Middle East & Africa. North America held the largest share of the Nanomedicine market in 2018 due to the rising presence of patented nanomedicine products, the availability of advanced healthcare infrastructure and the rapid acceptance of nanomedicine. The market in Asia Pacific is expected to expand at a high CAGR of XX% during the forecast period thanks to rise in number of research grants and increase in demand for prophylaxis of life-threatening diseases. Moreover, the rising investments in research and development activities for the introduction of advanced therapies and drugs are predicted to accelerate the growth of this region in the near future.

Nanomedicine Market Competitive landscapeMajor Key players operating in this market are Abbott Laboratories, CombiMatrix Corporation, General Electric Company, Sigma-Tau Pharmaceuticals, Inc, and Johnson & Johnson. Manufacturers in the nanomedicine are focusing on competitive pricing as the strategy to capture significant market share. Moreover, strategic mergers and acquisitions and technological innovations are also the key focus areas of the manufacturers.

The objective of the report is to present a comprehensive analysis of Nanomedicine Market including all the stakeholders of the industry. The past and current status of the industry with forecasted market size and trends are presented in the report with the analysis of complicated data in simple language. The report covers all aspects of the industry with a dedicated study of key players that includes market leaders, followers and new entrants by region. PORTER, SVOR, PESTEL analysis with the potential impact of micro-economic factors by region on the market are presented in the report. External as well as internal factors that are supposed to affect the business positively or negatively have been analyzed, which will give a clear futuristic view of the industry to the decision-makers. The report also helps in understanding Nanomedicine Market dynamics, structure by analyzing the market segments and project the Nanomedicine Market size. Clear representation of competitive analysis of key players By Type, Price, Financial position, Product portfolio, Growth strategies, and regional presence in the Nanomedicine Market make the report investors guide.


Scope of the Nanomedicine Market:

Nanomedicine Market by Modality:

Diagnostics TreatmentsNanomedicine Market by Diseases:

Oncological Diseases Infectious Diseases Cardiovascular Diseases Orthopedic Disorders Neurological Diseases Urological Diseases Ophthalmological Diseases Immunological DiseasesNanomedicine Market by Application:

Neurology Cardiovascular Anti-Inflammatory Anti-Infectives OncologyNanomedicine Market by Region:

Asia Pacific North America Europe Latin America Middle East AfricaNanomedicine Market Major Players:

Abbott Laboratories CombiMatrix Corporation General Electric Company Sigma-Tau Pharmaceuticals, Inc Johnson & Johnson Mallinckrodt plc. Merck & Company, Inc. Nanosphere, Inc. Pfizer, Inc. Teva Pharmaceutical Industries Ltd. Celgene Corporation UCB (Union Chimique Belge) S.A. AMAG Pharmaceuticals Nanospectra Biosciences, Inc. Arrowhead Pharmaceuticals, Inc. Leadiant Biosciences, Inc. Epeius Biotechnologies Corporation Cytimmune Sciences, Inc.


Chapter One: Nanomedicine Market Overview

Chapter Two: Manufacturers Profiles

Chapter Three: Global Nanomedicine Market Competition, by Players

Chapter Four: Global Nanomedicine Market Size by Regions

Chapter Five: North America Nanomedicine Revenue by Countries

Chapter Six: Europe Nanomedicine Revenue by Countries

Chapter Seven: Asia-Pacific Nanomedicine Revenue by Countries

Chapter Eight: South America Nanomedicine Revenue by Countries

Chapter Nine: Middle East and Africa Revenue Nanomedicine by Countries

Chapter Ten: Global Nanomedicine Market Segment by Type

Chapter Eleven: Global Nanomedicine Market Segment by Application

Chapter Twelve: Global Nanomedicine Market Size Forecast (2019-2026)

Browse Full Report with Facts and Figures of Nanomedicine Market Report at:

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:

Name: Vikas Godage



Contact: +919607065656/ +919607195908

More here:
Nanomedicine Market: Industry Analysis and forecast 2026: By Modality, Diseases, Application and... - Azizsalon News

Recommendation and review posted by G. Smith

The University of New Mexico Becomes IBM Q Hub’s First University Member – UNM Newsroom

Posted: May 27, 2020 at 12:47 pm

Q Hub membership and new faculty hire will build on existing quantum expertise and investments

Under the direction of Michael Devetsikiotis, chair of the Department of Electrical and Computer Engineering (ECE), The University of New Mexico recently joined the IBM Q Hub at North Carolina State University as its first university member.

The NC State IBM Q Hub is a cloud-based quantum computing hub, one of six worldwide and the first in North America to be part of the global IBM Q Network. This global network links national laboratories, tech startups, Fortune 500 companies, and research universities, providing access to IBMs largest quantum computing systems.

Michael Devetsikiotis, chair, Department of Electrical and Computer Engineering

Mainstream computer processors inside our laptops, desktops, and smartphones manipulate bits, information that can only exist as either a 1 or a 0. In other words, the computers we are used to function through programming, which dictates a series of commands with choices restricted to yes/no or if this, then that.Quantum computers, on the other hand, process quantum bits or qubits, that are not restricted to a binary choice. Quantum computers can choose if this, then that or both through complex physics concepts such as quantum entanglement. This allows quantum computers to process information more quickly, and in unique ways compared to conventional computers.

Access to systems such as IBMs newly announced 53 qubit processor (as well as several 20 qubit machines) is just one of the many benefits to UNMs participation in the IBM Q Hub when it comes to data analysis and algorithm development for quantum hardware. Quantum knowledge will only grow with time, and the IBM Q Hub will provide unique training and research opportunities for UNM faculty and student researchers for years to come.

Quantum computer developed by IBM Research in Zrich, Switzerland.

How did this partnership come to be? Two years ago, a sort of call to arms was sent out among UNM quantum experts, saying now was the time for big ideas because federal support for quantum research was gaining traction. Devetsikiotis vision was to create a quantum ecosystem, one that could unite the foundational quantum research in physics atUNM's Center for Quantum Information and Control(CQuIC) with new quantum computing and engineering initiatives for solving big real-world mathematical problems.

At first, I thought [quantum] was something for physicists, explains Devetsikiotis. But I realized its a great opportunity for the ECE department to develop real engineering solutions to these real-world problems.

CQuIC is the foundation of UNMs long-standing involvement in quantum research, resulting in participation in the National Quantum Initiative (NQI) passed by Congress in 2018 to support multidisciplinary research and training in quantum information science. UNM has been a pioneer in quantum information science since the field emerged 25 years ago, as CQuIC Director Ivan Deutsch knows first-hand.

This is a very vibrant time in our field, moving from physics to broader activities, says Deutsch, and [Devetsikiotis] has seen this as a real growth area, connecting engineering with the existing strengths we have in the CQuIC.

With strategic support from the Office of the Vice President for Research, Devetsikiotis secured National Science Foundation funding to support a Quantum Computing & Information Science (QCIS) faculty fellow. The faculty member will join the Department of Electrical and Computer Engineering with the goal to unite well-established quantum research in physics with new quantum education and research initiatives in engineering. This includes membership in CQuIC and implementation of the IBM Q Hub program, as well as a partnership with Los Alamos National Lab for a Quantum Computing Summer School to develop new curricula, educational materials, and mentorship of next-generation quantum computing and information scientists.

IBM Q Hub at North Carolina State University.

As part of the Q Hub at NC State, UNM gains access to IBMs largest quantum computing systems for commercial use cases and fundamental research. It also allows for the restructuring of existing quantum courses to be more hands-on and interdisciplinary than they have in the past, as well as the creation of new courses, a new masters degree program in QCIS, and a new university-wide Ph.D. concentration in QCIS that can be added to several departments including ECE, Computer Science, Physics and Astronomy, and Chemistry.

Theres been a lot of challenges, Devetsikiotis says, but there has also been a lot of good timing, and thankfully The University has provided support for us. UNM has solidified our seat at the quantum table and can now bring in the industrial side.

Continued here:
The University of New Mexico Becomes IBM Q Hub's First University Member - UNM Newsroom

Recommendation and review posted by Ashlie Lopez

Riverlane partner with bio-tech company Astex – Quantaneo, the Quantum Computing Source

Posted: May 27, 2020 at 12:47 pm

Riverlane builds ground-breaking software to unleash the power of quantum computers. Chemistry is a key application in which quantum computing can be of significant value, as high-level quantum chemistry calculations can be solved far faster than using classical methods.

World leaders in drug discovery and development, Astex Pharmaceuticals apply innovative solutions to treat cancer and diseases of the central nervous system.The two companies will join forces to combine their expertise in quantum computing software and quantum chemistry applications to speed up drug development and move us closer to quantum advantage.

As part of the collaboration, Astex are funding a post-doctoral research scientist at Riverlane. They will apply very high levels of quantum theory to study the properties of covalent drugs, in which protein function is blocked by the formation of a specific chemical bond.So far in this field of research, only empirical methods and relatively low levels of quantum theory have been applied. Riverlane will provide access to specialised quantum software to enable simulations of the target drug-protein complexes.

Dave Plant, Principal Research Scientist at Riverlane, said: This collaboration will produce newly enhanced quantum chemical calculations to drive efficiencies in the drug discovery process. It will hopefully lead to the next generation of quantum inspired pharmaceutical products.

Chris Murray, SVP of Discovery Technology at Astex said: "We are excited about the prospect of exploring quantum computing in drug discovery applications. It offers the opportunity to deliver much more accurate calculations of the energetics associated with the interaction of drugs with biological molecules, leading to potential improvements in drug discovery productivity."

Riverlane partner with bio-tech company Astex - Quantaneo, the Quantum Computing Source

Recommendation and review posted by Ashlie Lopez

Quantum Physicist Invents Code to Achieve the Impossible – Interesting Engineering

Posted: May 27, 2020 at 12:47 pm

A physicist at the University of Sydney has achieved something that many researchers previously thought was impossible. He has developed a type of error-correcting code for quantum computers that will free up more hardware.

His solution also delivers an approach that will allow companies to build better quantum microchips. Dr. Benjamin Brown from the School of Physics achieved this impressive feat by applying a three-dimensional code to a two-dimensional framework.

"The trick is to use time as the third dimension. I'm using two physical dimensions and adding in time as the third dimension," Brown said in a statement. "This opens up possibilities we didn't have before."

"It's a bit like knitting," he added. "Each row is like a one-dimensional line. You knit row after row of wool and, over time, this produces a two-dimensional panel of material."

Quantum computing is rampant with errors. As such, one of the biggest obstacles scientists face before they can build machines large enough to solve problems is reducing these errors.

"Because quantum information is so fragile, it produces a lot of errors," said Brown.

Getting rid of these errors entirely is impossible. Instead, researchers are seeking to engineer a new error-tolerant system where useful processing operations outweigh error-correcting ones. This is exactly what Brown achieved.

"My approach to suppressing errors is to use a code that operates across the surface of the architecture in two dimensions. The effect of this is to free up a lot of the hardware from error correction and allow it to get on with the useful stuff," Brown explained.

The result is an approach that could change quantum computing forever.

"This result establishes a new option for performing fault-tolerant gates, which has the potential to greatly reduce overhead and bring practical quantum computing closer," saidDr. Naomi Nickerson, Director of Quantum Architecture at PsiQuantum in Palo Alto, California, who is not connected to the research.

Read the original here:
Quantum Physicist Invents Code to Achieve the Impossible - Interesting Engineering

Recommendation and review posted by Ashlie Lopez

Virtual ICM Seminar: ‘The Promises of the One Health Concept in the Age of Anthropocen’ – HPCwire

Posted: May 27, 2020 at 12:47 pm

May 27, 2020 The Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) at the University of Warsaw invites enthusiasts of HPC and all people interested in challenging topics in Computer and Computational Science to the ICM Seminar in Computer and Computational Science that will be held on May 28, 2020 (16:00 CEST). The event is free.

On May 28, 2020, Dr. Aneta Afelt from the Interdisciplinary Centre for Mathematical and Computational Modelling department at the University of Warsaw, Espace-DEV, IRD Institut de Recherche pour le Dveloppement, will present a lecture titled, The Promises of the One Health Concept in the Age of Anthropocen

The lecture will dive into the One Health concept. In May 2019 an article was published: Anthropocene now: influential panel votes to recognize Earths new epoch situating at the stratigraphy of Earths history a new geological epoch the domination of human influence on shaping the Earths environment. When humans are a central figure in an ecological niche it results in massive subordination and transformation of the environment for their needs. Unfortunately, the outcome of such actions is a robbery of natural resources. The consequences are socially unexpected a global epidemiological crisis. The current COVID-19 pandemic is an excellent example. It seems that one of the most important questions of the anthropocene era is how to maintain stable epidemiological conditions for now and in the future. The One Health concept proposes a new paradigm a deep look at the sources of humanitys well-being: humanitys relationship with the environment. Humanitys health status is interdependent with the well-being of the environment. It is clear that the socio-ecological niche disturbance results in the spread of pathogens. Can sustainable development of socio-ecological niches help? The lecture dives into the results!

To register, visit

ICM Seminars is an extension of the international Supercomputing Frontiers Europe conference, which took place March 23-25th in virtual space.

The digital edition of SCFE gathered of the order of 1000 participants we want to continue this formula ofOpen Sciencemeetings despite the pandemic and use this forum to present the results of the most current research in the areas of HPC, AI, quantum computing, Big Data, IoT, computer and data networks and many others, says Dr. Marek Michalewicz, chair of the Organising Committee, SCFE2020 and ICM Seminars in Computer and Computational Science.

Registrationfor all weekly events is free. The ICM Seminars began with an inaugural lecture on April 1st by Scott Aronson, David J. Bruton Centennial Professor of Computer Science at the University of Texas. Aronson led the presentation titled Quantum Computational Supremacy and Its Applications.

For more information, visit

About the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of Warsaw (UW)

Established by a resolution of the Senate of the University of Warsaw dated 29 June 1993, the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of Warsaw, is one of the top HPC centres in Poland. ICM is engaged in serving the needs of a large community of computational researchers in Poland through provision of HPC and grid resources, storage, networking and expertise. It has always been an active research centre with high quality research contributions in computer and computational science, numerical weather prediction, visualisation, materials engineering, digital repositories, social network analysis and other areas.

Source: ICM UW

View original post here:
Virtual ICM Seminar: 'The Promises of the One Health Concept in the Age of Anthropocen' - HPCwire

Recommendation and review posted by Ashlie Lopez

Page 5«..4567..1020..»