Search Immortality Topics:


Molecular nanotechnology – Wikipedia, the free encyclopedia

Posted: May 21, 2015 at 10:45 am

Molecular nanotechnology (MNT) is a technology based on the ability to build structures to complex, atomic specifications by means of mechanosynthesis.[1] This is distinct from nanoscale materials. Based on Richard Feynman’s vision of miniature factories using nanomachines to build complex products (including additional nanomachines), this advanced form of nanotechnology (or molecular manufacturing[2]) would make use of positionally-controlled mechanosynthesis guided by molecular machine systems. MNT would involve combining physical principles demonstrated by chemistry, other nanotechnologies, and the molecular machinery of life with the systems engineering principles found in modern macroscale factories.

While conventional chemistry uses inexact processes obtaining inexact results, and biology exploits inexact processes to obtain definitive results, molecular nanotechnology would employ original definitive processes to obtain definitive results. The desire in molecular nanotechnology would be to balance molecular reactions in positionally-controlled locations and orientations to obtain desired chemical reactions, and then to build systems by further assembling the products of these reactions.

A roadmap for the development of MNT is an objective of a broadly based technology project led by Battelle (the manager of several U.S. National Laboratories) and the Foresight Institute.[3] The roadmap was originally scheduled for completion by late 2006, but was released in January 2008.[4] The Nanofactory Collaboration[5] is a more focused ongoing effort involving 23 researchers from 10 organizations and 4 countries that is developing a practical research agenda[6] specifically aimed at positionally-controlled diamond mechanosynthesis and diamondoid nanofactory development. In August 2005, a task force consisting of 50+ international experts from various fields was organized by the Center for Responsible Nanotechnology to study the societal implications of molecular nanotechnology.[7]

One proposed application of MNT is so-called smart materials. This term refers to any sort of material designed and engineered at the nanometer scale for a specific task. It encompasses a wide variety of possible commercial applications. One example would be materials designed to respond differently to various molecules; such a capability could lead, for example, to artificial drugs which would recognize and render inert specific viruses. Another is the idea of self-healing structures, which would repair small tears in a surface naturally in the same way as self-sealing tires or human skin.

A MNT nanosensor would resemble a smart material, involving a small component within a larger machine that would react to its environment and change in some fundamental, intentional way. A very simple example: a photosensor might passively measure the incident light and discharge its absorbed energy as electricity when the light passes above or below a specified threshold, sending a signal to a larger machine. Such a sensor would supposedly cost less and use less power than a conventional sensor, and yet function usefully in all the same applications for example, turning on parking lot lights when it gets dark.

While smart materials and nanosensors both exemplify useful applications of MNT, they pale in comparison with the complexity of the technology most popularly associated with the term: the replicating nanorobot.

MNT nanofacturing is popularly linked with the idea of swarms of coordinated nanoscale robots working together, a popularization of an early proposal by K. Eric Drexler in his 1986 discussions of MNT, but superseded in 1992. In this early proposal, sufficiently capable nanorobots would construct more nanorobots in an artificial environment containing special molecular building blocks.

Critics have doubted both the feasibility of self-replicating nanorobots and the feasibility of control if self-replicating nanorobots could be achieved: they cite the possibility of mutations removing any control and favoring reproduction of mutant pathogenic variations. Advocates address the first doubt by pointing out that the first macroscale autonomous machine replicator, made of Lego blocks, was built and operated experimentally in 2002.[8] While there are sensory advantages present at the macroscale compared to the limited sensorium available at the nanoscale, proposals for positionally controlled nanoscale mechanosynthetic fabrication systems employ dead reckoning of tooltips combined with reliable reaction sequence design to ensure reliable results, hence a limited sensorium is no handicap; similar considerations apply to the positional assembly of small nanoparts. Advocates address the second doubt by arguing that bacteria are (of necessity) evolved to evolve, while nanorobot mutation could be actively prevented by common error-correcting techniques. Similar ideas are advocated in the Foresight Guidelines on Molecular Nanotechnology,[9] and a map of the 137-dimensional replicator design space[10] recently published by Freitas and Merkle provides numerous proposed methods by which replicators could, in principle, be safely controlled by good design.

However, the concept of suppressing mutation raises the question: How can design evolution occur at the nanoscale without a process of random mutation and deterministic selection? Critics argue that MNT advocates have not provided a substitute for such a process of evolution in this nanoscale arena where conventional sensory-based selection processes are lacking. The limits of the sensorium available at the nanoscale could make it difficult or impossible to winnow successes from failures. Advocates argue that design evolution should occur deterministically and strictly under human control, using the conventional engineering paradigm of modeling, design, prototyping, testing, analysis, and redesign.

In any event, since 1992 technical proposals for MNT do not include self-replicating nanorobots, and recent ethical guidelines put forth by MNT advocates prohibit unconstrained self-replication.[9][11]

See the article here:
Molecular nanotechnology – Wikipedia, the free encyclopedia

Related Post

Recommendation and review posted by Guinevere Smith