Search Immortality Topics:

Page 36«..1020..35363738..5060..»


Category Archives: Nano Medicine

Graphene research that breaks the mould – Times Higher Education (THE)

Alfaisal Universitys development of polymer nanocomposites is creating new materials with exceptional properties

When we talk about technological advancements transforming the way we live, our focus is often on the digital revolution, such as the effects of artificial intelligence and smart technologies. But within physics and chemistry, research into nanomaterials is creating equally profound and important changes in the physical world.

Edreese Alsharaeh, professor of chemistry at Alfaisal University in Saudi Arabia, works with graphene-based composites that are synthesised with nanoparticulate matter to enhance their physiochemical properties. He believes that every aspect of our lives and almost every product that we use could be transformed by the application of nanomaterials and likens their discovery to the synthesis of the first polymers.

Almost 100 years ago, the use of polymers had a major, major impact on our daily life, he says. We replaced steel. We replaced aluminium. We preserved a lot of natural resources. Nanomaterials nowadays are like polymers 100 years ago. In my line of work, it is the synergetic effect when adding a small percentage of this graphene into the polymer that can do magic.

Of course, there is no magic, but nanomaterials are perhaps as close to sorcery as contemporary chemistry gets. As Professor Alsharaeh explains, nanomaterials have an inordinately high surface-to-volume ratio compared with materials composed of larger particles, and are thus more reactive, with nano-enhanced materials dramatically more efficient in their design. In some respects, nanotechnology builds on the fundamentals already established by the physical sciences, such as Professor Alsharaehs work with graphene and silver composites.

Silver has antimicrobial physiochemical properties capable of killing a wide range of bacteria and fungi, which is why wound dressings often incorporate it as a means of reducing the risk of infection. But by using graphene and silver nanocomposites, these antimicrobial properties can be achieved using far less silver. This, explains Professor Alsharaeh, is a synergetic effect that can make a graphene composite with 5 per cent of silver nanoparticles behave with the same antimicrobial properties as 100 per cent silver. Because graphene is flexible, these composites can be used in biomedical contexts such as engineering next-generation bone cement for hip surgery, where infection can be a major cause of morbidity, because the physical demands placed on hips require super-durable orthopaedic solutions.

We need a product that can stop clinical problems such as infection when you do implants, says Professor Alsharaeh. We chose the silver and the graphene because graphene is stronger than steel yet elastic. In our product, the toughness increases 70 per cent and the elasticity is increased by 150 per cent, all from adding 2 per cent graphene.

With multiple drug resistant bacteria increasingly a problem, finding novel strategies for combatting hospital infections is also a priority for medical science. This is an area where the antimicrobial properties of both graphene and silver might provide the answer; and so it is the focus of extensive research at Professor Alsharaehs lab, where graphene and silver have been found to be effective in disinfecting MDR bacteria and E. coli, with the electronic structure of graphene in particular inhibiting bacteria growth. Everyday medical apparatus could incorporate nanocomposites of graphene and silver to stop the spread of infection.

This composite is very good for coating biomedical devices, which is something that is a major deal when you use a catheter, for example, says Professor Alsharaeh. People are [developing an] infection and I think when we coat [devices] with some kind of material like this, that will change. This is in our product development phase now, in addition to the bone cement.

Graphene has the potential to revolutionise nanocomposite materials. That it can be anchored with any number of nanoparticles only enhances its versatility and increases the number of real-world applications it could be used for. It is strong, flexible and thermoconductive. You can make any device out of it, says Professor Alsharaeh. It can be used as a substrate for multifunctional properties.

As he explains, graphenes structure with carbon atoms bonded in a flat, hexagonal lattice is key. Because it is a two-dimensional structure, it restricts electrons to movements along an X or Y axis, and this confinement creates energy that endows graphene with useful optical and electronic properties. Its electronic properties are actually one of the most attractive things about the graphene, says Professor Alsharaeh, who adds that graphene can conduct electricity up to 150 times faster than silicon, and be used for superconductors and to manufacture dramatically more efficient integrated circuits for computer processing.

The goal for Professor Alsharaehs lab at Alfaisal is to take this research into product development as soon as possible. Besides its medical applications, Alfaisal has a patent with oil and gas giant Saudi Aramco on a graphene-based product that is in the process of commercialisation. The Kingdom puts a lot of resources in, says Professor Alsharaeh. From 2010, since I came to Saudi Arabiathere has been major funding for all scientists, which is a major plan for this energy sector. With agriculture, medicine, energy and textiles sectors all set to reap the benefits of nanotechnology, the commercial potential of graphene nanocomposites is invaluable.

Professor Alsharaeh adds that he is a chemist, and his passion is for discovery and teaching. It is very, very rewarding for me to see [that some students] have now finished their PhDs and are making their way in the world, he says. This is also about building the culture for future scientists. And I think nanotechnology is the future for all future-first technologies.

That future will still be shaped by the digital revolution, but when the smart devices in our pockets, homes, workplaces and hospitals are all enhanced by nanomaterials, perhaps that future should be considered a joint venture with nanotechnology.

Learn moreabout Alfaisal University.

Read more here:
Graphene research that breaks the mould - Times Higher Education (THE)

Posted in Nano Medicine | Comments Off on Graphene research that breaks the mould – Times Higher Education (THE)

Kanazawa University Research: Insights into the Diagnosis and Treatment of Brain Cancer in Children – PR Newswire UK

KANAZAWA, Japan, March 25, 2020 /PRNewswire/ -- In a recent study published in Autophagy, researchers at Kanazawa University show how abnormalities in a gene called TPR can lead to pediatric brain cancer.

Ependymoma is a rare form of brain cancer that implicates children and is often tricky to diagnose. Since effective treatment options can be initiated only after a well-formed diagnosis, there is a dire need among the medical community to identify markers for ependymoma, which in turn, will help oncologists tailor therapy better. Richard Wong's and Mitsutoshi Nakada's team at Kanazawa University has now shown how one gene closely linked to ependymoma can help with not just diagnosis, but also treatment options for the condition.

A gene known as TPR shows an elevated presence in 38% of ependymoma cases. Thus, the team first sought out to investigate how an increase in the TPR gene correlated to the development of cancer cells. Each gene present in a cell contains a code for the creation of a specific protein. The TPR gene contains the code for an eponymous protein. Therefore, cancer samples from patients were assessed for the levels of TPR protein. As expected, levels of TPR were abnormally high in these tumor tissues.

The researchers then moved on to investigate whether these abnormal TPR levels could lead to cancer progression. For this purpose, mice were implanted with human ependymoma cancer tissue into their brains. The TPR gene was then deleted in these tissues so that the mice were unable to create the TPR protein. When the tumor tissues were subsequently analyzed, a reduction of cancer growth was seen. The TPR gene was thus vital for the growth of ependymoma tumors.

Deletion of the TPR protein is known to induce a process called autophagy within cells. Autophagy is initiated when a cell is under undue stress and results in the death of damaged cells. The patient tumor samples, with their high levels of TPR protein, showed little or no presence of autophagy. However, autophagy was remarkably high in the mice with TPR depletion. Ependymoma cells were thus spared of autophagic death due to the increased presence of TPR. These damaged cells continued to grow by circumventing the biological systems set up to keep them in check. The high TPR levels were also accompanied by an increase in HSF-1 and MTOR, molecules which are responsible for cell growth and survival.

Finally, the possibility of lowering TPR levels therapeutically to control the cancer was assessed. The mice were given a drug called rapamycin, which inhibits MTOR. The treatment not only led to decreased TPR levels, but also shrank the tumor tissues within their brains.

"Thus, TPR can serve as a potential biomarker, and MTOR inhibition could be an effective therapeutic approach for ependymoma patients," conclude the researchers. While looking out for increased levels of TPR in patients can help oncologists achieve a more comprehensive diagnosis, reducing TPR levels with the help of drugs can help keep the tumors in check.

Background:

Autophagy: Autophagy, which literally translates to "self-eating" is the self-preservation mechanism of the body to get rid of damaged cells. Autophagy is initiated when an abnormal amount of proteins or toxins build up within a cell, which the cell cannot clear out. Conditions like Alzheimer's disease and Parkinson's disease arise when autophagic mechanisms within the cells start malfunctioning. Impaired autophagy is also known to be implicated in driving various forms of cancer.

Reference

Firli Rahmah Primula Dewi, Shabierjiang Jiapaer, Akiko Kobayashi, Masaharu Hazawa, Dini Kurnia Ikliptikawati, Hartono, Hemragul Sabit, Mitsutoshi Nakada, and Richard W. Wong. "Nucleoporin TPR (translocated promoter region, nuclear basket protein) upregulation alters MTOR-HSF1 trails and suppresses autophagy induction in ependymoma", Autophagy. Published online 24March2020.

DOI 10.1080/15548627.2020.1741318.

About Nano Life Science Institute (WPI-NanoLSI)

https://nanolsi.kanazawa-u.ac.jp/en/

Nano Life Science Institute (NanoLSI), Kanazawa University is a research center established in 2017 as part of the World Premier International Research Center Initiative of the Ministry of Education, Culture, Sports, Science and Technology. The objective of this initiative is to form world-tier research centers. NanoLSI combines the foremost knowledge of bio-scanning probe microscopy to establish 'nano-endoscopic techniques' to directly image, analyze, and manipulate biomolecules for insights into mechanisms governing life phenomena such as diseases.

About Kanazawa University

http://www.kanazawa-u.ac.jp/e/

As the leading comprehensive university on the Sea of Japan coast, Kanazawa University has contributed greatly to higher education and academic research in Japan since it was founded in 1949. The University has three colleges and 17 schools offering courses in subjects that include medicine, computer engineering, and humanities.

The University is located on the coast of the Sea of Japan in Kanazawa a city rich in history and culture. The city of Kanazawa has a highly respected intellectual profile since the time of the fiefdom (1598-1867). Kanazawa University is divided into two main campuses: Kakuma and Takaramachi for its approximately 10,200 students including 600 from overseas.

Further information

Hiroe Yoneda Vice Director of Public AffairsWPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa UniversityKakuma-machi, Kanazawa 920-1192, JapanEmail: nanolsi-office@adm.kanazawa-u.ac.jp Tel: +81-(76)-234-4550

SOURCE Kanazawa University

Read the original:
Kanazawa University Research: Insights into the Diagnosis and Treatment of Brain Cancer in Children - PR Newswire UK

Posted in Nano Medicine | Comments Off on Kanazawa University Research: Insights into the Diagnosis and Treatment of Brain Cancer in Children – PR Newswire UK

Hundreds of research scholars working at chem, bio labs across India want to help test COVID-19. But the govt isn’t letting them – EdexLive

Image for representational purpose only (Pic: PTI)

Research scholars working with pieces of equipment that are used for testing the novel Coronavirus at chemistry, biotechnology and even physics labs from across India say they would be able and are willing to help the clinics and personnel with the testing equipment train them properly and also work with them. But they need the government's permission to do so. They have written to various ministries but have not received any reply yet.

Hundreds of researchers from Pune, Mumbai, New Delhi, Hyderabad, Chennai, Varanasi, Kolkata, Mohali and even tier-II and tier-III cities are willing to contribute as volunteers in any way possible. "We have expertise in molecular diagnosis clinical sample handling, RNA isolation, cDNA preparation and RT-PCR data analysis. We handle such complicated equipment day in and day out in our labs. We learn and perform experiments with these types of equipment on a daily basis," said Vikas Shukla, who is working on Nanomedicine and chronic inflammatory diseases at the Department of Zoology of the Delhi University. "If we possess a skill set that can help the nation in a dire situation like this shouldn't we be allowed to help? We need approval so that we can go and help as volunteers. I understand that this involves a virus and we need to know the protocol. We can start our work with a dummy sample as well for the training," he added.

Harsha, a postgraduate in Optoelectronics and Communications from Thrissur in Kerala wants to be a part of this as well. "I want to help out in any way I can," she wrote to the researchers. But she cannot move out. She is a nursing mother of 10-month-old twins. "This is the only way we can give back to our society right now and I want to be a part of the process," she added.

The CSIR-CCMB has been training medical staff to handle the testing process of Coronavirus but Nikhil Gupta, a Research Fellow at the Centre of Biomedical Research, SGPGI, Lucknow says that the researchers can learn the procedures faster. "We already have the training to handle such equipment. We can learn faster and even spread the knowledge. We can train others when we have the know-how of the equipment. So why not trains? Won't it be more efficient?" he asked.

The researchers have written to Dr Harsh Vardhan, the Minister of Science & Technology, Health and Family Welfare and Earth Science and the Principal Scientific Adviser to the Government of India (PSA). He has also written to the Chief Minister of Uttar Pradesh Yogi Adityanath to allow them to participate in this war against the virus that has affected 562 individuals and claimed nine lives till now. They are now waiting for the government's green signal to start their work.

View post:
Hundreds of research scholars working at chem, bio labs across India want to help test COVID-19. But the govt isn't letting them - EdexLive

Posted in Nano Medicine | Comments Off on Hundreds of research scholars working at chem, bio labs across India want to help test COVID-19. But the govt isn’t letting them – EdexLive

Effects of Silver Nanoparticles on Microbes – AZoNano

Image Credit:Kateryna Kon/Shutterstock.com

Silver is a well-known antimicrobial and antibacterial agent, and is most commonly used in its bulk forms as silver ions or silver salts. However, because nanoforms are known to be more active than their bulk counterparts, silver nanoparticles have been trialed in several commercial products, and are showing a great deal of promise.

There is also a need to find new methods to combat microbes as bacteria are becoming increasingly resistant to conventional antimicrobial products. Using silver nanoparticles is one of these new methods.

It is thought that silver nanoparticles are effective because they can adhere to the outer membrane of the microbe, and then produce reactive oxygen species (ROS) and free radical species after penetrating the membrane. This subsequently interferes with the signaling pathways of the microbes, causing their basic function to be disrupted.

While the effects of silver nanoparticles on microbes are well-known, the exact mechanisms are not.

The exact mechanism by which the nanoparticle adheres to the outer membrane of the microbe is not yet known, although it is thought that lipopolysaccharide molecules and membrane proteins cause irregularities in the outer membrane, changing its permeability.

The exact mechanism for free radical formation and cellular degradation is also not entirely known, though one of the most common theories is that free radicals form on the surface of the nanoparticles in an uncontrolled manner. The free radicals then permeate through the pores of the microbes membrane and attack the lipids within the membrane. This, in turn, causes the membrane to break down, causing the microbe to die.

There are many different factors that affect the physiochemical principles of the silver nanoparticlessuch as size, shape, surface charge, concentration and colloidal statewhich in turn affect how effective it is at killing microbes. Silver nanoparticles are less reactive than silver ions, making them potentially suitable for therapeutic applications against multi-drug resistant bacteria, as well as in different antimicrobial surfaces.

As it stands, many different microbes can be disrupted by silver nanoparticles by either reducing their ability to multiply or by destroying them, including harmful bacteria such as E. Coli. More evidence will likely be found on how silver nanoparticles affect different microbes in future research.

Ensuring the use of silver nanoparticles in the long-term is reliant on them being safe as consumer products. Therefore they need to not only be effective against microbes, but they need to be ineffective in human cells.

Silver nanoparticles are widely used in packaging applications, including food and paints, across the US and many countries within Asia. Even though they are used in everything from food wrap to baby bottles, there is still some ambiguity regarding their toxicity to humans.

Studies show that the effects on the body range from nil to moderate toxicity, and the migration studies from where they are embedded also show differing results. It is thought that silver nanoparticles may have a low accumulation rate, and may only be toxic at high concentrations. More evidence is needed to be conclusive, while they will likely continue to be used as antimicrobial and antibacterial agents in the foreseeable future.

Martirosyan A. and Schneider Y-J. (2014) Engineered Nanomaterials in Food: Implications for Food Safety and Consumer Health, Int. J. Environ. Res. Public Health DOI: 10.3390/ijerph110605720.

McClements D. J. and Xiao H. (2017) Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles npj Science of Food DOI: 10.1038/s41538-017-0005-1

Dakal T. C. et al (2016) Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles Frontiers in Microbiology DOI: 10.3389/fmicb.2016.01831

Kim J-S. et al (2017) Antimicrobial effects of silver nanoparticles Nanomedicine: Nanotechnology, Biology and Medicine DOI: 10.1016/j.nano.2006.12.001

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

More:
Effects of Silver Nanoparticles on Microbes - AZoNano

Posted in Nano Medicine | Comments Off on Effects of Silver Nanoparticles on Microbes – AZoNano

Acute Damage to the Sperm Quality and Spermatogenesis in Male Mice Exp | IJN – Dove Medical Press

Xiaoyu Xia,1,* Li Wang,1,* Xiao Yang,2 Yanqin Hu,1 Qiang Liu1

1Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Peoples Republic of China; 2Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth Peoples Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, Peoples Republic of China

*These authors contributed equally to this work

Correspondence: Qiang LiuDepartment of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, Peoples Republic of ChinaTel +86 21 63846590 Ext. 776761Email qliu0122@shsmu.edu.cn

Background: Curcumin has shown many pharmacological activities in both preclinical and clinical studies. Many technologies have been developed and applied to improve the solubility and bioavailability of curcumin, especially the nanotechnology-based delivery systems. However, there has been evidence that certain nanoparticles have potential reproductive toxicity in practice.Methods: Curcumin-poly (lactic-co-glycolic acid) (PLGA)-PEG nanoparticles (Cur-PLGA-NPs for short) were prepared. The Cur-PLGA-NPs were evaluated with its effect on the proliferation of mouse testicular cell lines in vitro and spermatogenesis in vivo, while PLGA-NPs were used as control. For animal experiments, male BALB/c mice were treated with 20 mg/kg of Cur-PLGA-NPs for continuous 10 days via tail vein injection.Results: We found the curcumin nanoparticles suppressed the proliferation of testicular cell lines in vitro. Furthermore, a short-term intravenous delivery of curcumin-loaded nanoparticles could be harmful to the differentiation of spermatogonia, the elongation of spermatids, as well as the motility of mature sperms.Conclusion: In the present study, we disclosed the acute damage on mouse spermatogenesis and sperm parameters by curcumin-loaded nanoparticles. Our results suggested that the reproductive toxicity of nanoformulated curcumin needs to be prudently evaluated before its application.

Keywords: nano-curcumin, reproductive toxicity, Sertoli cell, sperm motility, spermatogenesis

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Excerpt from:
Acute Damage to the Sperm Quality and Spermatogenesis in Male Mice Exp | IJN - Dove Medical Press

Posted in Nano Medicine | Comments Off on Acute Damage to the Sperm Quality and Spermatogenesis in Male Mice Exp | IJN – Dove Medical Press

Nanorobots Market Segment Analysis by Types, Application and Outlook Forecast 2020-With Top Key Venders:Thermo Fisher,Ginkgo Bioworks,Oxford…

Report Hive Research releases a new study on Nanorobots Market which includes chapter wise data presentation, consisting multiple pages and hundreds of data Tables, Pie Chat, Graphs & Figures enclosed in the report.

The easy to understand detailed analysis demonstrates the present situation of market and also predicts its growth graph in upcoming future. For this, the researchers have made a complete assessment of the Market, before providing any estimations of the future trend.

The data is sourced from several attentive opinions, real facts and validated market data. The research study included in this report is influenced by our passion to help others excel in their businesses, so we do follow a strict consumer centric approach which allows us to produce high quality research reports

Key players discussed in the Nanorobots market report include the following big names:

BrukerJeolThermo FisherGinkgo BioworksOxford InstrumentsEv GroupImina TechnologiesToronto Nano InstrumentationKlocke NanotechnikKleindiek NanotechnikXidexSynthacePark SystemsSmaractNanonics ImagingNovascan TechnologiesAngstrom AdvancedHummingbird ScientificNt-Mdt Spectrum InstrumentsWitec

Nanorobots Segmentation by Product

NanomanipulatorBio-NanoroboticsMagnetically GuidedBacteria-Based

About Nanorobots

The global Nanorobots market size is estimated at xxx million USD with a CAGR xx% from 2015-2020 and is expected to reach xxx Million USD in 2020 with a CAGR xx% from 2020 to 2025. The report begins from overview of Industry Chain structure, and describes industry environment, then analyses market size and forecast of Nanorobots by product, region and application, in addition, this report introduces market competition situation among the vendors and company profile, besides, market price analysis and value chain features are covered in this report.

Nanorobots Segmentation by Application

NanomedicineBiomedicalOthers

Market Trends: This includes the latest on-going trends driving Nanorobots market growth during the forecast timeframe. It can include elements such as technological advancements, and many other reasons triggering product demand.

Market Challenges/ RestraintsSimilar to a coin having two sides, the market includes unknown challenges as so it provides innumerable opportunities for growth. This section of the report allows our client to remain prepared, as market situations are seldom seen changing in quick succession. Apart from helping to realize the obstacles, the report also provides strategies to tackle these situations.

Market Drivers: Before entering a business, its always better to understand the audiences properly customers who will buy the products or services, ultimately driving in the revenue for which the businesses are built. So this section of market drivers sheds light on the major factors such as favourable government policies and any other reasons that should increase the product consumption during the forecast

Request a Sample Report @ https://reporthive.com/request_sample/2209146

Regions Covered: To better understand Nanorobots market dynamics, researchers have considered major global regions dominating the Nanorobots market share. All the regions are separately analysed before processing the big data acquired from across the globe. So, regional segmentation eases focusing on a particular region as per client interest. North America: United States, Canada, and Mexico. South & Central America: Argentina, Chile, and Brazil. Middle East & Africa: Saudi Arabia, UAE, Turkey, Egypt and South Africa. Europe: UK, France, Italy, Germany, Spain, and Russia. Asia-Pacific: India, China, Japan, South Korea, Indonesia, Singapore, and Australia.

Report Customization: If the downloaded template is not as per your need, please connect with our sales team to initiate the process of report customization. We are always open to report customization, in case of special requirements or any specific segment or regions you want this report to be exclusively focussed on.

You may also request a customized PDF template through the link below: @ https://reporthive.com/checkout?currency=single-user-licence&reportid=2209146

Research Methodology:Our team of analysts incorporates both primary and secondary research methodologies to produce highly reliable data and growth assumptions for the future. Our data triangulation method includes analysis of several market scenarios and product mappings, which is then broken down into highly organized and statistical pre-sets.

Major Points Covered in Table Of ContentPart 1 Nanorobots Market Overview1.1 Nanorobots Market Definition1.2 Nanorobots Market Development1.3 Nanorobots By Type1.4 Nanorobots By Application1.5 Nanorobots By RegionPart 2 Global Nanorobots Market Status and Future Forecast2.1 Global Nanorobots Market by Region2.2 Global Nanorobots Market by CompanyPart 3 Asia-Pacific Nanorobots Market Status and Future Forecast3.1 Asia-Pacific Nanorobots Market by Region3.2 Asia-Pacific Nanorobots Market by TypePart 4 Asia-Pacific Nanorobots Market by Geography4.1 China Market Status and Future Forecast4.1.1 China Nanorobots Market by Type4.1.2 China Nanorobots Market by ApplicationPart 5 Europe Nanorobots Market Status and Future Forecast5.1 Europe Nanorobots Market by Region5.2 Europe Nanorobots Market by Type5.3 Europe Nanorobots Market by Application5.4 Europe Nanorobots Market by ForecastPart 6 Europe Nanorobots Market by Geography6.1 Germany Nanorobots Market Status and Future Forecast6.1.1 Germany Nanorobots Market by TypePart 7 Conclusion

About Us:Our research base consists of a wide spectrum of premium market research reports. Apart from comprehensive syndicated research reports, our in-house team of research analysts leverages excellent research capabilities to deliver highly customized tailor-made reports. The market entry strategies presented in our reports has helped organizations of all sizes to generate profits by making timely business decisions. The research information including market size, sales, revenue, and competitive analysis offered, is the product of our excellence in the market research domain.

Contact Us: Report Hive Research500, North Michigan Avenue,Suite 6014,Chicago, IL 60611,United StatesWebsite: https://www.reporthive.comEmail: [emailprotected]Phone: +1 312-604-7084

View post:
Nanorobots Market Segment Analysis by Types, Application and Outlook Forecast 2020-With Top Key Venders:Thermo Fisher,Ginkgo Bioworks,Oxford...

Posted in Nano Medicine | Comments Off on Nanorobots Market Segment Analysis by Types, Application and Outlook Forecast 2020-With Top Key Venders:Thermo Fisher,Ginkgo Bioworks,Oxford…