Search Immortality Topics:

Page 84«..1020..83848586..90100..»


Category Archives: Human Genetic Engineering

Genetic Engineering Advantages & Disadvantages – Biology …

During the latter stage stages of the 20th century, man harnessed the power of the atom, and not long after, soon realised the power of genes. Genetic engineering is going to become a very mainstream part of our lives sooner or later, because there are so many possibilities advantages (and disadvantages) involved. Here are just some of the advantages :

Of course there are two sides to the coin, here are some possible eventualities and disadvantages.

Genetic engineering may be one of the greatest breakthroughs in recent history alongside the discovery of the atom and space flight, however, with the above eventualities and facts above in hand, governments have produced legislation to control what sort of experiments are done involving genetic engineering. In the UK there are strict laws prohibiting any experiments involving the cloning of humans. However, over the years here are some of the experimental 'breakthroughs' made possible by genetic engineering.

Genetic engineering has been impossible until recent times due to the complex and microscopic nature of DNA and its component nucleotides. Through progressive studies, more and more in this area is being made possible, with the above examples only showing some of the potential that genetic engineering shows.

For us to understand chromosomes and DNA more clearly, they can be mapped for future reference. More simplistic organisms such as fruit fly (Drosophila) have been chromosome mapped due to their simplistic nature meaning they will require less genes to operate. At present, a task named the Human Genome Project is mapping the human genome, and should be completed in the next ten years.

The process of genetic engineering involves splicing an area of a chromosome, a gene, that controls a certain characteristic of the body. The enzyme endonuclease is used to split a DNA sequence and split the gene from the rest of the chromosome. For example, this gene may be programmed to produce an antiviral protein. This gene is removed and can be placed into another organism. For example, it can be placed into a bacteria, where it is sealed into the DNA chain using ligase. When the chromosome is once again sealed, the bacteria is now effectively re-programmed to replicate this new antiviral protein. The bacteria can continue to live a healthy life, though genetic engineering and human intervention has actively manipulated what the bacteria actually is. No doubt there are advantages and disadvantages, and this whole subject area will become more prominent over time.

The next page returns the more natural circumstances of genetic diversity.

Continue reading here:
Genetic Engineering Advantages & Disadvantages - Biology ...

Posted in Human Genetic Engineering | Comments Off on Genetic Engineering Advantages & Disadvantages – Biology …

Free genetic engineering Essays and Papers – 123helpme

Title Length Color Rating The Effects of Genetic Engineering on Agriculture - Genetic engineering is a way in which specific genes for an animal or plant can be extracted, and reproduced to form a new animal or plant. These new organisms will express the required trait for that gene. This practice is a very controversial topic within the scientific world. It is being implemented in various areas such as agriculture even though there are many alternatives that can be found for genetic engineered crops, such as organic materials and reducing leeching of the soil. The controversy regarding this practice occurs as it is believed to contribute both negative and positive implications and dangers, not only to oneself but the environment as a whole.... [tags: Genetic Engineering ] :: 5 Works Cited 1303 words (3.7 pages) Strong Essays [preview] Pros and Cons of Genetic Engineering - Genetic Engineering is highly controversial since some people believe that genetic engineering is playing God. As this fact there is opposition to the progression of the field by people who do not see the value in genetic engineering, or they fear what genetic engineering may lead to for us as people. There is a history of discover that belongs to genetic engineering, which has led to numerous products that have emerged which have brought numerous applications to the society of the world. Though there are benefits to genetic engineering, there are also drawbacks to genetic engineering including ethical and legal issues that are dealt with in todays society in order to try and regulate the... [tags: Genetic Engineering] :: 8 Works Cited 2049 words (5.9 pages) Term Papers [preview] The Benefits of Genetic Engineering - Almost three decades ago, on July 25, 1978, Louise Brown, the first test tube baby was born (Baird 1). With this birth another controversy broke out, do humans have the right to make life. Most of the concern comes from the fear of control over the production and development of human beings. But, those who are against cloning would most likely look the other way if they needed gene therapy after receiving a grim diagnosis. There are many aspects of genetic engineering and to thoroughly understand it looking into each is absolutely necessary.... [tags: Genetic Engineering ] :: 6 Works Cited 1443 words (4.1 pages) Powerful Essays [preview] The Ethics of Genetic Engineering - The Problem Genetic engineering has been around since the 1960s although major experiments have not been really noticed until the 1990s. The science comes in different forms the two major being cloning and genetic reconstruction. Cloning is the duplicating of one organism and making an exact copy. For example in 1996 the creation of the clone sheep named Dolly the first mammal to be cloned which was a great achievement. The other form, genetic reconstruction, is used to replace genes within humans to help or enhance the life of an unborn child for a medical reason or just for the preference of a parent.... [tags: Genetic Engineering ] :: 5 Works Cited 1437 words (4.1 pages) Powerful Essays [preview] Apocalyptic Visions of Genetic Engineering - Global warming, nuclear winter, microscopic black holessociety views all these as apocalyptic phenomena resulting from the accelerating rate of discovery in the fields of science and technology. Opinions on fields like climate change and atomic weaponry certainly have a basis in scientific evidence, but many other apocalyptic reactions derive from hypothetical situations and thought experiments. To further examine public opinions on scientific fields, we can examine genetic engineering (GE). The possibilities of GE have prompted many ethicists to provide commentary on the topic, opening a dialogue between policy and experimentation in order to address topics such as genetically modified cro... [tags: Genetic Engineering] :: 7 Works Cited 2203 words (6.3 pages) Term Papers [preview] The Genetic Engineering Industry - Ever wish chocolate was healthy and could have the same nutrients and vitamins as fruit and vegetables. Food, one of three necessities of life, affects every living organism on Earth. Although some foods are disliked because of taste or health issues, recent discovery will open up new prosperities and growth in agriculture. Genetic engineering has the capability to make foods taste better, increase nutrient value, and even engineer plants to produce aids for deadly health issues. Every day the progress, understanding, and development of genetic engineering is digging deeper and with this knowledge virtually anything is possible.... [tags: Genetic Engineering ] :: 7 Works Cited 1806 words (5.2 pages) Term Papers [preview] Genetic Engineering in Humans - Author Chuck Klosterman said, The simple truth is that were all already cyborgs more or less. Our mouths are filled with silver. Our nearsighted pupils are repaired with surgical lasers. We jam diabetics full of delicious insulin. Almost 40 percent of Americans now have prosthetic limbs. We see to have no qualms about making post-birth improvements to our feeble selves. Why are we so uncomfortable with pre-birth improvement? Despite Klostermans accurate observation, there are reasons people are wearisome toward pre-birth enhancement.... [tags: Genetic Engineering ] 859 words (2.5 pages) Better Essays [preview] Genetic Engineering: The Impact of Human Manipulation - The scenes of a science fiction movie show presumably unrealistic scientific inventions. In today's world, time travel, cloning, and even light sabers are some of the countless topics that are seemingly unattainable and just ideas of the imagination. Saying that these events are feasible would be completely absurd. However, with recent scientific advancements, science fiction is now becoming more of a reality rather than a fantasy. Nevertheless, only about twenty-five years ago, genetic engineering fell into this same, idealistic category.... [tags: Genetic Engineering ] :: 6 Works Cited 1725 words (4.9 pages) Better Essays [preview] Genetic Engineering: A Major Advancement for Mankind - As the Biochemist Isaac Asimov once said, "The advancement of Genetic Engineering makes it quite conceivable that we will design our own evolutionary progress. Scientists have always thought about new ways to progress through technology in our era, and in 1946, scientists discover that Genetic material from different viruses can be combined to form a new type of virus. This was a major discovery that trickles down to the modern era of Genetics. Current scientists have pioneered new ways to decode human DNA, beating the $3 billion government-run Genome project to its goal.... [tags: Genetic Engineering] :: 10 Works Cited 973 words (2.8 pages) Strong Essays [preview] Genetic Engineering: Is the Human Race Ready? - It is incredible to see how far genetic engineering has come. Humans, plants, and any living organism can now be manipulated. Scientists have found ways to change humans before they are even born. They can remove, add, or alter genes in the human genome. Making things possible that humans (even thirty years ago) would have never imagined. Richard Hayes claims in SuperSize Your Child. that genetic engineering needs to have limitations. That genetic engineering should be used for medical purposes, but not for genetic modification that could open the door to high-tech eugenic engineering (188).... [tags: Genetic Engineering] 1455 words (4.2 pages) Powerful Essays [preview] The Dark Side of Genetic Engineering - I never knew what genetic engineering was until I watched a special on the Discovery channel. The special showed scientists forming the first perfect embryo. What was very shocking was that the scientists kept asking each other what traits this embryo should compose of. To me that was disturbing and unethical to make a living human being based on what traits the parents would want them to have. This process goes against nature just as Francis Bacon said if we would control nature, we must first obey her (Fox 193).... [tags: Genetic Engineering Essays] 1104 words (3.2 pages) Strong Essays [preview] Historical Background Of Genetic Engineering - DNA is the material that gives us our personality, our looks, and our thought processes, good or bad, DNA controls all of this. DNA full name is Deoxyribonucleic Acid. It is called that because it is missing one oxygen atom, and it is located in the nucleus. It is also in the form of an acid. DNA is made up of four subunits: Adenine, Thymine, Guanine and Cytosine. During the production of RNA, the messenger of DNA, Uracil is used instead of thymine. A small segment of this DNA is called a gene.... [tags: dna, Genetic Engineering, genes] :: 8 Works Cited 1513 words (4.3 pages) Powerful Essays [preview] Genetic Engineering Is Not Safe - Genetic engineering is the intended modification to an organisms genetic makeup. There have been no continuing studies on this topic or action so there is no telling whether or not it is harmless. Genetic engineering is not safe because scientists have no absolute knowledge about living systems. Given that, they are unable to do DNA surgery without creating mutations. Any interference on an organisms genetic makeup can cause permanent damage, hereditary defects, lack of nutritious food, or a spread of dangerous diseases.... [tags: Genetic Engineering Essays] :: 5 Works Cited 994 words (2.8 pages) Good Essays [preview] Genetic Engineering: A Step Forward - Genetic engineering (GE) refers to the technique of modification or manipulation of genes (the biological material or chemical blue print that determines a living organisms traits) from one organism to another thus giving bacteria, plants, and animals, new features. The technique of selecting the best seed or the best traits of plants has been around for centuries. Humans have learned to graft (fuse) and hybridize (cross breed) plants, creating dwarfs and other useful forms since at least 1000 B.C.... [tags: Genetic Engineering Essays] 498 words (1.4 pages) Strong Essays [preview] Benefits of Genetic Engineering - Genetic Engineering is an idea that we can ponder on quiet days. The creation of altered DNA is an enticing aspect that can greatly influence the average human life. The research of genetic engineering is an ongoing exploration that may never end. I am a supporter of a genetic engineering. There are three basic beneficial basis of genetic engineering. Those are genetically altered crops, the creation of medicines, and the creation of organs so that many lives could be saved. Genetically altered crops are very beneficial to third world countries.... [tags: Genetic Engineering, DNA, ] :: 3 Works Cited 455 words (1.3 pages) Strong Essays [preview] Understanding Genetic Engineering - What if cancer could be cured by eating a pear. Or if a crop of wheat could be developed so that it never rotted. These may sound like science fiction but they're not as strange as they first seem to be, and may even be reality in the future. Fifteen years ago who would have thought that plants could be created to be immune to pesticides or that it would be possible to create a sheep that is exactly like its parent in every physical way. And yet both of these currently exist due to genetic engineering.... [tags: Genetic Engineering ] :: 13 Works Cited 1820 words (5.2 pages) Term Papers [preview] Genetic Engineering: Annotated Bibliography - Genetic Engineering. The World Book Encyclopedia. 2008 ed. This encyclopedia was extremely helpful. In not knowing all of the exact terms and basic knowledge of genetic engineering, it helped inform any reader of all this and more. The pages that had information on genetics and genetic engineering, had detailed definitions and descriptions for all the terms and ideas. Instead of focusing more towards the future of genetic engineering, it gave numerous facts about the technology and accomplishments of today.... [tags: Annotated Bibliographies, Genetic Engineering] 879 words (2.5 pages) Strong Essays [preview] Is Genetic Engineering Superior or Appalling? - Genetic engineering has changed a lot through the years. It is now possible not to only be able to genetically engineer just plants but also animals and people, plants especially. There are many different kind of plants that have been genetically modified. Genetic engineering is not all good but it is also not all bad. Genetic Engineering will come together the more you read. Plants are not the only thing getting bigger because of genetic engineering modifying the sizes. Animals are starting to become a bigger part of genetic engineering.... [tags: genetic plants,polar tree, genetic engineering] :: 7 Works Cited 1183 words (3.4 pages) Strong Essays [preview] Genetic Engineering: The Negative Impacts of Human Manipulation - The scenes of a science fiction movie show presumably unrealistic scientific inventions. In today's world, time travel and cloning are only two of the countless topics that are seemingly unattainable ideas of the imagination. Saying that these events are within reach would be completely absurd. However, with recent scientific advancements, science fiction is now becoming more of a reality rather than a fantasy. Nevertheless, only about twenty-five years ago, genetic engineering fell into this same, idealistic category.... [tags: Genetic Engineering ] :: 6 Works Cited 1675 words (4.8 pages) Powerful Essays [preview] Genetic Engineering: Major Advancement or Major Setback? - As the Biochemist Isaac Asimov once said, "The advancement of Genetic Engineering makes it quite conceivable that we will design our own evolutionary progress. Scientists have always thought about new ways to progress through technology in this era, and in 1946, scientists discovered that Genetic material from different viruses can be combined to form a new type of virus. This was a major discovery that trickles down to the modern era of Genetics. Current scientists have pioneered new ways to decode human DNA, beating the $3 billion government-run Genome project to its goal.... [tags: Genetic Engineering ] :: 10 Works Cited 1335 words (3.8 pages) Strong Essays [preview] Human Genetic Engineering in Beneficial to Society - Even after thousands of years of evolution, the human race is not perfect: it is ravaged by disease and limited by nature. Yet, in recent times, researchers have begun to ascertain an advanced understanding of the underlying genetic code of humanity. The Human Genome Project, now complete, has provided a map of the intricacies in human DNA, allowing researchers to begin looking at the purpose of each gene. When combined with selective embryo implantation, which is used occasionally today to avoid hereditary diseases or to choose gender, genetic discoveries can become a sort of artificial evolution.... [tags: Pro Human Genetic Engineering] :: 8 Works Cited 1484 words (4.2 pages) Powerful Essays [preview] Genetic Engineering - Just imagine the scene: and newlywed wife and husband are sitting down with a catalog, browsing joyously, pointing and awing at all the different options, fantasizing about all the possibilities that could become of their future. Is this a catalog for new furniture. No. This catalog for all features, phenotype and genotype, for the child they are planning to have. It is basically a database for parents to pick and choose all aspects of their children, from the sex of the child, to looks, and even to personality traits.... [tags: Genetic Engineering] 1131 words (3.2 pages) Good Essays [preview] Genetic Engineering - Genes are, basically, the blueprints of our body which are passed down from generation to generation. Through the exploration of these inherited materials, scientists have ventured into the recent, and rather controversial, field of genetic engineering. It is described as the "artificial modification of the genetic code of a living organism", and involves the "manipulation and alteration of inborn characteristics" by humans (Lanza). Like many other issues, genetic engineering has sparked a heated debate.... [tags: Genetic Engineering ] :: 7 Works Cited 1882 words (5.4 pages) Term Papers [preview] Genetic Engineering: The End of Life as We Know It - Prior to 1982, genetic engineering was a relatively new branch of science. Today, scientists have a firm understanding of genetics and its importance to the living world. Genetic engineering allows us to influence the laws of nature in ways favorable to ourselves. Although promising in its achievements, it also has the potential for abuse. If engineering of this caliber were to be used for anything other than the advancement of the human race, the effects could be devastating. If precautions are not implemented on this science, parents might use it solely for eugenic purposes.... [tags: Genetic Engineering Essays] 773 words (2.2 pages) Better Essays [preview] Genetic Engineering: The Next Technological Leap or a Disruption to the Natural Order of Our Planet? - While walking down the produce aisle at your local grocery store, have you ever questioned where the assortment of goods came from. When asked, perhaps your first thought would likely be from a local farm or orchard. But what if I were to tell you that those very goods could in fact be from a far less obvious third choice. What if someone told you that those pretty peaches on display were meticulously grown in a laboratory to bring forth predetermined traits. As futuristic as it may sound, this type of technology is no longer science fiction but has become a new reality.... [tags: Genetic Engineering ] :: 3 Works Cited 936 words (2.7 pages) Better Essays [preview] The Need for Policy Makers to Regulate Human Genetic Engineering - Human genetic engineering (HGE), a prevalent topic for scientists in research, is the process of manipulating genes in the human genome. Potentially, scientists can use the process of HGE to alter many biological and psychological human traits by gene modification. Currently, however, there is a large deficiency in information regarding HGE and its effects to the human body; creating a need for scientists to conduct more research and tests. Because of the many unknowns involving HGE it is necessary for policy makers to regulate HGE for the use by scientists.... [tags: Human Genetic Engineering] :: 2 Works Cited 1249 words (3.6 pages) Strong Essays [preview] The Pros and Cons of Genetic Engineering - Genetic engineering is a process in which scientists transfer genes from one species to another totally unrelated species. Usually this is done in order to get one organism to produce proteins, which it would not naturally produce. The genes taken from one species, which code for a particular protein, are put into cells of another species, using a vector. This can result in the cells producing the desired protein. It is used for producing proteins which can be used by humans, such as insulin for diabetics and is also used to make organisms better at surviving, for example genetically modifying a plant so that it can survive in acidic soil.... [tags: Genetic Engineering Essays] 1054 words (3 pages) Better Essays [preview] Genetic Engineering: The Controversy of Genetic Screening - The Controversy of Genetic Screening Craig Ventor of Celera Genomics, Rockville, MD, and Francis Collins of the National Institutes of Health and Wellcome Trust, London, England, simultaneously presented the sequence of human DNA in June of 2000, accomplishing the first major endeavor of the Human Genome Project (HGP) (Ridley 2). As scientists link human characteristics to genes-segments of DNA found on one or more of the 23 human chromosomes-prospects for genetic engineering will increase dramatically.... [tags: Genetic Engineering Essays] :: 4 Works Cited 1609 words (4.6 pages) Powerful Essays [preview] An Enhanced Genotype: Ethical Issues Involved with Genetic Engineering and their Impact as Revealed by Brave New World - An Enhanced Genotype: Ethical Issues Involved with Genetic Engineering and their Impact as Revealed by Brave New World Human society always attempts to better itself through the use of technology. Thus far, as a species, we have already achieved much: mastery of electronics, flight, and space travel. However, the field in which the most progress is currently being made is Biology, specifically Genetic Engineering. In Aldous Huxleys Brave New World, humanity has taken control of reproduction and biology in the same way that we have mastered chemistry and physics.... [tags: Genetic Engineering ] :: 6 Works Cited 2288 words (6.5 pages) Term Papers [preview] The Benefits of Genetic Engineering - Outline I. Thesis statement: The benefits of genetic engineering far outweigh its potential for misuse. II. Genetic Engineering A. Definition of Genetic Engineering. (#6) B. Who invented Genetic Engineering Gregor Mendel (Christopher Lampton #7) Thomas Hunt Morgan (Christopher Lampton #7) III. Benefits of Genetic Engineering A. Genetic Screening (Laurence E. Karp #4) B. Gene Therapy (Renato Dulbecco #6) C. Cloning D. Genetic Surgery (Christopher Lampton #7) E. Benefits in Agriculture (David Pimentel and Maurizio G.... [tags: Genetic Engineering Research Papers] :: 15 Works Cited 2500 words (7.1 pages) Strong Essays [preview] The Benefits of Genetic Engineering - The selective Engineering of Genetics is invaluable to the health and happiness of humans. The importance of this issue has played second fiddle to the arguments, for and against genetic engineering. This essay will discuss the impact of genetic engineering on everyday life, for example genetic disorders, disease and how its impact on life in the world today. Although the opinions differ greatly, the benefits are substantial. Firstly, an increasing importance is being placed on the role of genetic engineering in the use of riding the incidence of genetic disorders.... [tags: Genetic Engineering Essays] :: 8 Works Cited 1176 words (3.4 pages) Strong Essays [preview] The Benefits of Genetic Engineering - What exactly is genetic engineering. A simple definition of genetic engineering is the ability to isolate DNA pieces that contain selected genes of other species(Muench 238). Genetic engineering has been the upcoming field of biology since the early nineteen seventies. The prosperous field has benefits for both the medical and also the agricultural field. The diminishing of diseases, especially congenital disorders, reduction of pollution, eradication of world hunger, and increased longevity are just some of the possibilities which scientists foresee.... [tags: Genetic Engineering Essays] 1146 words (3.3 pages) Strong Essays [preview] Genetic Engineering Is Not Ethical - For many years, genetic engineering has been a topic in heated debates. Scientists propose that genetic engineering far outweighs its risks in benefits and should be further studied. Politicians argue that genetic engineering is largely unethical, harmful, and needs to have strong limitations. Although genetic engineering may reap benefits to modern civilization, it raises questions of human ethics, morality, and the limitations we need to set to protect humanity. Though there is harsh criticism from politicians, scientists continue to press forward saying that genetic engineering is of utmost importance to help and improve society.... [tags: Genetic Engineering is Immoral ] :: 5 Works Cited 1490 words (4.3 pages) Strong Essays [preview] Is Genetic Engineering Ethically Correct? - Over the past few years, genetic engineering has come a long way from its roots. What spawned as just a project for understanding has now become quite powerful. An article written by Michael Riess aided me in gaining some knowledge of the ethical dilemmas faced in the field of genetic engineering. Suppose you and your partner both discover that you are carriers of a genetic defect known as cystic fibrosis, and the two of you are expecting a baby. Genetic screening gives you the opportunity to use antenatal diagnosis to see if the baby will have cystic fibrosis or not (Reiss).... [tags: Genetic Engineering Essays] :: 2 Works Cited 715 words (2 pages) Strong Essays [preview] The Benefits of Genetic Engineering - The engineering of deoxyribonucleic acid (DNA) is entirely new, yet genetics, as a field of science, has fascinated mankind for over 2,000 years. Man has always tried to bend nature around his will through selective breeding and other forms of practical genetics. Today, scientists have a greater understanding of genetics and its role in living organisms. Unfortunately, some people are trying to stop further studies in genetics, but the research being conducted today will serve to better mankind tomorrow.... [tags: Genetic Engineering Essays] 1109 words (3.2 pages) Strong Essays [preview] The Benefits of Genetic Engineering - Many people are envied or deprecated because of certain traits they are born with. Those that are envied are a select few, which in turn is why they are envied. When one child in a nursery has a toy, he is coveted by all the other children in the nursery. He will be idolized, and nearly every child will want to be his friend. However, there will also those that want the toy for themselves. The children that are jealous will do whatever they can to get the toy. The jealous children often resort to violence, and this is true in all aspects of life.... [tags: Genetic Engineering Essays] 975 words (2.8 pages) Strong Essays [preview] Genetic Engineering and the Media - Genetic engineering and its related fields have stimulated an extremely controversial scientific debate about cloning for the last decade. With such a wide range of public opinions, it is hard to find any middle ground. Some feel that improving the genes of future children will help mankind make a major evolutionary step forward. Others agree that there could be dangerous unforeseen consequences in our genetic futures if we proceed with such endeavors. A third group warns that the expense of genetic enhancement will further separate the wealthy from the poor and create a super race. Popular magazines and the Internet are two of the major arenas in which this debate has been hotly cont... [tags: Genetic Engineering Essays] :: 21 Works Cited 1731 words (4.9 pages) Powerful Essays [preview] The FDA Should Prohibit Genetic Engineering - Abstract: Recent developments in genomic research have enabled humans to manipulate the genes of living organisms with genetic engineering. Scientists have used this momentous technology in environmental and most recently, agricultural spheres. However, the United States Food and Drug Administration (FDA) does not require that genetically altered foods be labeled as such. As a result, there is no protection against humans' ability to construct organisms that nature never intended to exist and to threaten nature's carefully balanced environment. Is it ethically responsible for the government to allow scientists to continue with these advances if they do not understand their consequences.... [tags: Genetic Engineering, Genetic Ethics] :: 10 Works Cited 2439 words (7 pages) Powerful Essays [preview] Genetic Engineering is Immoral - Genetic engineering gives the power to change many aspects of nature and could result in a lot of life-saving and preventative treatments. Today, scientists have a greater understanding of genetics and its role in living organisms. However, if this power is misused, the damage could be very great. Therefore, although genetic engineering is a field that should be explored, it needs to be strictly regulated and tested before being put into widespread use. Genetic engineering has also, opened the door way to biological solutions for world problems, as well as aid for body malfunctions.... [tags: Genetic Engineering Essays] 423 words (1.2 pages) Strong Essays [preview] Genetic Engineering is Unethical - Just as the success of a corporate body in making money need not set the human condition ahead, neither does every scientific advance automatically make our lives more meaningful'; (Wald 45). These words were spoken by a Nobel Prize winning biologist and Harvard professor, George Wald, in a lecture given in 1976 on the Dangers of Genetic Engineering. This quotation states that incredible inventions, such as genetic engineering, are not always beneficial to society. Genetic engineering is altering the genetic material of cells and/or organisms in order to make them capable of making new substances or performing new functions'; (Wald 45).... [tags: Genetic Engineering is Immoral] :: 3 Works Cited 1141 words (3.3 pages) Better Essays [preview] Genetic Engineering is Unethical - Genetic engineering is a technology that has been created to alter DNA of different species to try and make them more improved. This essay will discuss the eugenics, the religious point of view about genetic engineering, genetically modified food and the genetic screening of embryos. In this essay it will be said wether genetic engineering is ethical or unethical. During 1924 Hitler said that everyone needs to be blond hair, blue eyes and white. This is known as Eugenics, thanks to a new science known as biotechnology in a few decades.... [tags: Genetic Engineering Essays] 492 words (1.4 pages) Strong Essays [preview] Genetic Engineering: Playing God - Current technology has made what once seemed impossible, mapping the human genome, a reality within the next decade. What began over forty years ago with the discovery of the basic structure of DNA has evolved into the Human Genome Project. This is a fifteen-year, three billion dollar effort to sequence the entire human genetic code. The Project, under the direction of the U.S. National Institute of Health and the department of Energy is ahead of schedule in mapping what makes up an individual's genetic imprint.... [tags: Genetic Engineering Essays] 634 words (1.8 pages) Strong Essays [preview] Genetic Engineering: Playing God - Regenerating extinct species, engineering babies that are born without vital body organs, this is what the use of genetic engineering brings to the world. In Greek myth, an chimera was a part lion, part goat, part dragon that lived in Lycia; in real life, its an animal customized with genes of different species. In reality, it could be a human-animal mixture that could result in horror for the scientific community. In myth the chimera was taken down by the warrior Bellerophon, the biotech version faces platoons of lawyers, bioethicists, and biologists (Hager).... [tags: Genetic Engineering Essays] :: 8 Works Cited 1804 words (5.2 pages) Strong Essays [preview] Genetic Engineering Research Paper - I. Introduction In the past three decades, scientists have learned how to mix and match characteristics among unrelated creatures by moving genes from one creature to another. This is called genetic engineering. Genetic Engineering is prematurely applied to food production. There are estimates that food output must increase by 60 percent over the next 25 years to keep up with demand. Thus, the result of scientist genetically altering plants for more consumption. The two most common methods for gene transfer are biological and electromechanical.... [tags: Science Biology Genetic Engineering Essays] :: 3 Works Cited 1347 words (3.8 pages) Strong Essays [preview] Human Genetic Engineering: Unnatural Selection - Introduction Technology has a significant influence across the world, as it has become a fast growing field. Modern biotechnology has been in the major forefront of this influence. From the discovery of DNA to the cloning of various animals, the study of genetic engineering has changed the way society views life. However, does genetic engineering have the capacity to influence the world to its best abilities. Products, which are genetically engineered, may cause severe negative effects on our society.... [tags: Genetic Engineering Essays] :: 3 Works Cited 1509 words (4.3 pages) Strong Essays [preview] Genetic Engineering - At the Roslin Institute in Edinburgh, Scotland, Dr. Keith Campbell, director of embryology at PPL therapeutics in Roslin, and his colleague Dr. Ian Wilmut worked together on a project to clone a sheep, Dolly, from adult cells. On February 22, 1997, they finally succeeded. Dolly was the only lamb born from 277 fusions of oocytes with udder cells. Wilmut says there were so many failures because it is difficult to ensure that the empty oocytes and the donor cell are at the same stage of the cell division cycle.To clone Dolly, basically scientists took an unfertilized egg cell, removed the nucleus, replaced it with cells taken from the organism to be cloned, put it into an empty egg cell which... [tags: Genetic Engineering Essays] 1446 words (4.1 pages) Strong Essays [preview] Genetic Engineering: Our Key to a Better World - What is genetic engineering one might ask and why is there so much moral controversy surrounding the topic. Genetic engineering as defined by Pete Moore, "is the name given to a wide variety of techniques that have one thing in common: they all allow the biologist to take a gene from one cell and insert it into another" (SS1). Such techniques included in genetic engineering (both "good" and "bad") are, genetic screening both during the fetal stage and later in life, gene therapy, sex selection in fetuses, and cloning.... [tags: Genetic Engineering Essays] :: 3 Works Cited 1117 words (3.2 pages) Better Essays [preview] Genetic Engineering and Cryonic Freezing: A Modern Frankenstein? - Genetic Engineering and Cryonic Freezing: A Modern Frankenstein. In Mary Shelley's Frankenstein, a new being was artificially created using the parts of others. That topic thus examines the ethics of "playing God" and, though written in 1818, it is still a relevant issue today. Genetic engineering and cryogenic freezing are two current technologies related to the theme in the novel of science transcending the limits of what humans can and should do. Genetic engineering is widely used today.... [tags: Genetic Engineering Essay Examples] :: 5 Works Cited 1507 words (4.3 pages) Powerful Essays [preview] Genetic Engineering: The Tremendous Benefits Outweigh the Risks - Wouldn't it be great to improve health care, improve agriculture, and improve our quality of life. Genetic engineering is already accomplishing those things, and has the potential to accomplish much more. Genetic engineering, also referred to as biotechnology, is a fairly new science where the genes of an organism are modified to change the features of an organism or group of organisms. Genes are found in the DNA (deoxyribonucleic acid) of an organism, and each gene controls a specific trait of an organism.... [tags: Genetic Engineering Essay Examples] :: 7 Works Cited 2253 words (6.4 pages) Powerful Essays [preview] Genetic Engineering Brings More Harm Than Good - Until the recent demise of the Soviet Union, we lived under the daily threat of nuclear holocaust extinguishing human life and the entire biosphere. Now it looks more likely that total destruction will be averted, and that widespread, but not universally fatal, damage will continue to occur from radiation accidents from power plants, aging nuclear submarines, and perhaps the limited use of tactical nuclear weapons by governments or terrorists. What has gone largely unnoticed is the unprecedented lethal threat of genetic engineering to life on the planet.... [tags: Genetic Engineering Essays] 1953 words (5.6 pages) Strong Essays [preview] Genetic Engineering New Teeth - The article I read was about some scientists that were able to grow teeth inside rats bodies. This project was led by Pamela C. Yelick, a scientist for Forsyth Institute, and the project was conducted in Massachusetts. Joseph P. Vacanti, a tissue engineer at Massachusetts General Hospital, and Yelick had the idea for the experiment. Vacanti had previously worked with rats and he found that cells will naturally organize themselves into tissues and other complex structures if they are placed in the right environment.... [tags: Genetic Engineering Essays] 736 words (2.1 pages) Strong Essays [preview] Ethics of Human Cloning and Genetic Engineering - INTRODUCTION When the Roslin Institute's first sheep cloning work was announced in March 1996 the papers were full of speculation about its long-term implications. Because of this discovery, the medias attention has focused mainly on discussion of the possibility, of cloning humans. In doing so, it has missed the much more immediate impact of this work on how we use animals. It's not certain this would really lead to flocks of cloned lambs in the fields of rural America, or clinically reproducible cuts of meat on the supermarket shelves.... [tags: Genetic Engineering Essays] :: 9 Works Cited 1845 words (5.3 pages) Strong Essays [preview] We Must Educate Ourselves Before Passing Laws Restricting Cloning and Genetic Engineering - Biotechnology and genetic engineering involve the cloning of animal cells and organisms, but they also involve the alteration of an organism in an effort to make it more perfect, whether it is a crop, an animal, or even a human being. Obviously the cloning of humans or the cloning of human cells is much different than the cloning of genetically superior livestock or a better quality, higher yielding food crop, and people throughout the world realize this. The cloning of human beings has become one of the worst fears in our society today and for that reason many laws have been passed throughout European countries and North America in an effort to ban human cloning.... [tags: Genetic Engineering Essays] :: 4 Works Cited 1937 words (5.5 pages) Powerful Essays [preview] The Benefits of Human Genetic Engineering - Pre-implantation genetic diagnosis is a revolutionary procedure that utilizes in vitro fertilization to implant a healthy egg cell into the mothers uterus after it is screened for mutations or other abnormalities. That way, only healthy eggs can develop to term and become beautiful, bouncing boys or girls. Designer babies have a bright future in the face of science because they are genetically engineered to be: disease free; viable donors for a sibling or parent; and with optional elimination of any severe cosmetic disorders that might develop,without risk to human diversity in the future.... [tags: Pre-implantation genetic diagnosis, PGD] :: 6 Works Cited 1650 words (4.7 pages) Powerful Essays [preview] Genetic Engineering The Perfect Child - Modern society has an unquestionable preoccupation with perfection. Indulging in our vanities with things such as plastic surgery, veneers, botox, collagen, hair dye, and so on, have become a part of the socially acceptable norm. People do these things, and more, in an attempt to become their ideal selves. However, many are taking these practices to a completely new extreme, and are not stopping at just altering their own physical characteristics. With recent advances in medical science and technology, couples are now able to genetically modify embryos to create their ideal children.... [tags: Pre-Implantation Genetic Diagnosis] :: 2 Works Cited 1022 words (2.9 pages) Strong Essays [preview] The Morals and Ethics of Genetic Engineering - Introduction Widely considered a revolutionary scientific breakthrough, genetic engineering has been on a path toward changing the world since its introduction in 1973 by Stanley Cohen and Herbert Boyer (What). However, as genetic engineering slowly permeates the lives of humanity, the morals and ethics behind what are now common practices are entering public attention, and as a culture we are left to question whether the change brought on by such a discovery bring benefits and positive change, or damage and destruction.... [tags: genetics, theology, bioethics, DNA, GMOs] :: 13 Works Cited 3322 words (9.5 pages) Research Papers [preview] The Human Genetic Engineering Debate - Science is moving forward at an increasing rate every day. Just in the past decade, there have been numerous new discoveries in astronomy, chemistry, geology, paleontology, and many more scientific fields. However, some of the fastest growing subjects are in the field of biological sciences, more specifically genetics. Over the past twenty years a new genetic science known as genetic engineering has come to prominence. Genetic engineering is the direct manipulation of an organisms genome using biotechnology, including a humans genome.... [tags: Genetics, Science Ethics] :: 9 Works Cited 1838 words (5.3 pages) Better Essays [preview] Genetic Engineering in the Modern World - Advances in biotechnology can be looked at two ways; both, positive and negative. People can also differ in what would qualify as a positive and negative way. Some may think that tinkering with Deoxyribonucleic acid also know as DNA, should not be allowed at all for any reason. Others may believe that manipulating human DNA can have many different beneficial outcomes. Biotechnology and genetic engineering can be looked at in two very different ways; can either be misused or unethical or it can be beneficial, ethical, and used for the better kind.... [tags: biotechnology, DNA, abortion] :: 1 Works Cited 966 words (2.8 pages) Better Essays [preview] Genetic Engineering and the Pursuit of Perfection - Research Paper Rough Draft In the year 2050, a young boy nervously rehearses what hes going to say as he approaches the cheerleader hes been too nervous to approach for the past month. But as he draws near, a jock pushes his books out of his hands. Hes teased, being the school wimp. They call him names like undesirable, god-child, and in-valid. Of course nobody cares for a less-than-perfect child whose genetic makeup was left to fate. With the introduction of genetic engineering into society, people like this young boy simply have no hope for competing against the likes of the genetically reimagined, perfect jock, people engineered to be unflawed.... [tags: Perfection, Body Image, Technology] :: 10 Works Cited 1898 words (5.4 pages) Powerful Essays [preview] Genetic Engineering: Pros and Cons - Our world has finally begun its long-predicted descent into the depths of chaos. We may not yet realize it, but more and more problems plague the very state of our humanity with each passing day, such as cancer, famine, genetic disorders, and social elitism. It seems as though there is little hope, although a new solution has finally emerged, in the form of genetic engineering. It is apparent, however, that currently we cannot proceed, because while there are an abundant amount of advantages to genetic engineering, it is not a utopian process; criticism includes its practicality, theological implications, and changes in modern social structure.... [tags: Eugenics, Ethics] :: 5 Works Cited 1212 words (3.5 pages) Strong Essays [preview] Is Genetic Engineering Ethically Right? - Described at its most simple, ethics can be described as a socially constructed set of behaviours and beliefs deemed either acceptable or unacceptable by the vast majority of people. Ethical beliefs can vary somewhat from person to person and are ever changing and malleable (www.ncbi.nlm.gov/pubmed/15289521). There are three main ethical theories used by present day philosophers; these are Meta-ethics, Normative ethics and Applied ethics. Meta-ethics focuses on the nature of moral judgement and the foundation of ethical principles.... [tags: DNA, gene, diabetis] :: 10 Works Cited 1191 words (3.4 pages) Strong Essays [preview] Genetic Engineering and the Public - Genetic Engineering and the Publics Uses of Genetic Engineering Opinions about genetic engineering range from disgust to awe. These opinions may also depend on what type of animal is being genetically manipulated, how such manipulation is being done, and for what reasons. In California, pet fish that have been genetically altered to fluoresce (glofish) have been restricted for sale.[1] Yet, for the rest of the United States these fish are found in several species, varieties and morphs. In California, Commissioner of Californias Fish and Game, Sam Schuchat, felt that there was a difference in genetic modification depending on the use of the product made.[2] The use of genetic engineering f... [tags: Stake Holders, Science, Dialogue] :: 6 Works Cited 877 words (2.5 pages) Better Essays [preview] Genetic Engineering: A Good Thing? - Today there are many definitions of Genetic Engineering, such as Genetic Engineering is a laboratory technique used by scientists to change the DNA of living organisms (Kowalski) and Genetic Engineering refers to the modification or manipulation of a living organisms genes (Genetic). No matter the wording all definitions of genetic engineering refers to somehow changing an organisms genetic identity. Many people today support genetic engineering because it has many potential benefits for today's society; however, it also has many potential threats associated with it.... [tags: argumentative, persuasive, informative] :: 19 Works Cited 1928 words (5.5 pages) Powerful Essays [preview] Genetic Engineering and its Drawbacks - In the past few years, there have been numerous technological advances, one of them being genetic engineering. Scientists are experimenting with genes and animals to create everything from a Day-Glo pet fish to a pig whose liver could be used in a liver transplant for humans. Scientists argue that genetic engineering can be used to test medicinal products without putting humans at risk, to battle diseases and to make a body with a stronger immune system, amongst many other reasons, which they claim are to improve the outcome of the human race.... [tags: gene, transplant, animal testing] :: 9 Works Cited 911 words (2.6 pages) Better Essays [preview] The Perfect Child: Genetic Engineering - Have you ever wondered what it would be like if you could produce the perfect child. You picked their eye color, hair color, body type, even intelligence level. Instead of waiting nine months to see what your child looks like; you will already know because you chose their outer appearance. Improvements in science, has given way to the idea of allowing people to choose their offsprings physical attributes. This new concept is known as designer babies. A designer baby according to the oxford dictionary is a baby whose genetic makeup has been artificially selected by genetic engineering, combined with in vitro fertilization to ensure the presence or absence of particular genes or characteris... [tags: Designer Babies, Stem Cells] :: 5 Works Cited 899 words (2.6 pages) Better Essays [preview] Cons of Genetic Modification of Plants - In our everyday lives we have a substantial need for food. Everyone on planet earth needs food to survive from day to day, so engineers have begun mutating plants and crops to create a better source of nutrition to the population. Scientists are pushing the boundaries in order to create the most bountiful crops and, in turn, healthier people. Imagine what could happen if there were larger harvests, more succulent fruits and nutritious vegetables. Our imagination can run wild with the endless possibilities of genetic alteration of food.... [tags: Genetic Engineering ] :: 5 Works Cited 1011 words (2.9 pages) Strong Essays [preview] Germline Engineering and Reprogenetic Technologies - Modern technologies are constantly advancing in a multitude of ways to the degree that scientists have gained enough knowledgeable about the human genome to be able to find specific genes during the embryonic stage of reproduction. Scientists have already begun to use this knowledge to allow parents the ability to select the sex of their child and screen for genetic diseases via preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF). Sex-selection has already created world-wide discussion regarding the ethics of such a situation.... [tags: Genetic Engineering ] :: 4 Works Cited 2055 words (5.9 pages) Term Papers [preview] Genetic Engineering and Experimentation - ... However, Ill be using it in the context that it is the experimentation of genetic engineering to see if its safe for the public. While you might think genetic engineering/experimentation is all fun and games while youre having your genes modified to make you smarter, or prettier, or something like that, there are consequences and dangers that can come with that modification. Then again, once perfected, genetic engineering could do a lot of good for humanity and society in general. Eliminate diseases, fix mental and psychological disabilities, maybe even (and semi-hopefully) keep people from being outright stupid.... [tags: Science, Controversy] :: 4 Works Cited 880 words (2.5 pages) Better Essays [preview] The Genetic Engineering Debate - In recent discussions of genetic engineering, a controversial issue has been whether genetic engineering is ethical or not. In The Person, the Soul, and Genetic Engineering, JC Polkinghorne discusses about the moral status of the very early embryo and therapeutic cloning. J. H. Brookes article Commentary on: The Person, the Soul, and Genetic Engineering comments and state opinions that counter Polkinghornes article. On the other hand John Harriss Goodbye Dolly? The Ethics of Human Cloning examines the possible uses and abuses of human cloning and draw out the principal ethical dimensions, both of what might be done and its meaning, and of public and official response (353).... [tags: Ethical Dilemma, Embryos With Dignity] :: 4 Works Cited 1403 words (4 pages) Powerful Essays [preview] Ethics of Genetic Modification Technology - Modern society is on the verge of a biotechnological revolution: the foods we eat no longer serve simply to feed us, but to feed entire nations, to withstand natural disasters, and to deliver preventative vaccination. Much of this technology exists due to the rapid development of genetic modification, and todays genetically modified crops are only the tip of the proverbial iceberg. Says Robert T. Fraley, chief technology officer for biotech giant Monsanto, Its like computers in the 1960s. We are just at the beginning of the explosion of technology we are going to see." Biotechnologys discontents are numerous and furious, declaring the efforts of corporations of Monsanto to be dangerous... [tags: Genetic Engineering] 776 words (2.2 pages) Better Essays [preview] Xerosotmia and genetic engineering - All around the globe, predominantly in the United States and in Europe, there are technological advances in science that affects the way people live. In recent years, genetically modified organisms (GMOs) have replaced peoples diet with genetically altered foods, which has affected human health. In a broad view, GMOs are created by splicing genes of different species that are combined through genetic engineering, consequently improving the resulting organism. Large corporations who choose to use Xerosotmia i i make larger profits with less time and effort involved (ABNE).... [tags: biology, genetically modified organisms] :: 4 Works Cited 1309 words (3.7 pages) Powerful Essays [preview] The Dangers of Genetic Engineering - Genetically manipulating genes to create certain traits in a human embryo is impossible at this point. Perhaps it will never happen. It is not inevitable in the long run, as some scientists pragmatically point out. (Embgen). It is, however, something that dominates modern day discussion concerning genetics and therefore must be addressed with care and consideration. There are many ways that gene manipulation could come about. Advances in spermatogenesis as well as the field of assisted reproductive technology, as seen in In Vitro Fertilization clinics, point toward methods that could house the systematic alteration of genetic information in reproductive cells. Transpl... [tags: Genetic Manipulation Essays] :: 5 Works Cited 1033 words (3 pages) Strong Essays [preview] Engineering the Perfect Human - For centuries, mankind has been fascinated by the idea of perfection. In recent decades, the issue has been raised regarding the perfect human and whether scientists are able to engineer and create this. Attempts have been made in the past to engineer this said perfect human, through eugenics and scientific racism, but until now, these attempts have been ineffective. Only now, with modern technology, are scientists able to make more significant progress in altering the human genome to the produce desired characteristics of perfection.... [tags: Genetic Engineering ] :: 21 Works Cited 1831 words (5.2 pages) Term Papers [preview] Can Genetic Modification Benefit Humanity? - Throughout the course of human history, new technological advancements have always created opposing views, and conflict between the different groups that hold them. Today, one of the greatest technological controversies is over the morals and practicality of genetically modifying crops and animals. Reasons for doing so vary from making them more nutritious to making plants more bountiful to allowing organisms to benefit humans in ways never before possible. Genetic engineering is a process in which genes within the DNA of one organism are removed and placed into the DNA of another, a reshuffling of genesfrom one species to another (Steinbrecher qtd.... [tags: Genetic Engineering] 1676 words (4.8 pages) Powerful Essays [preview] Genetic Engineering - In the field of animal and human genetic engineering there is much more speculation, than fact, because very little has actually been tested in the real world. Firstly, theres a big question mark over safety of genetic engineering. In addition, genetic engineering can cause greater problems than that what we have today. Moreover, we can create a injustice world between Designer vs Non-designer children. Furthermore, genetic engineering is a type of murder because of the process of genetically modifying a baby.... [tags: designer babies, perfect baby] :: 5 Works Cited 911 words (2.6 pages) Better Essays [preview] Genetic Engineering - Imagine a world where diseases can be found and prevented before they happen. This would be a future possibility if genetic engineering became more advanced. Genetic engineering is when parts of DNA are spliced into another piece of DNA which give new traits to the organism containing the DNA. Through continued research in the field of genetics, techniques such as mapping genomes and splicing DNA can be used beneficially to improve on existing organisms and their traits. To help understand genetic engineering, it is important to understand its history.... [tags: Cloning] :: 4 Works Cited 894 words (2.6 pages) Better Essays [preview] Genetic Engineering - In the 21st century, times are changing. Everyday objects are becoming perfect with alterations to their system. These alterations are not only occurring on man-made objects, but also on natural organisms, such as newborn babies. Science has come a long way to being able to have the capability to alter pre-born babies to a parents desire. There are four arguments that can be considered when discussing this topic, including nature and three others. While many scientific minds are all for creating perfection in a child, many different groups of minds are arguing this act against nature should be abolished from scientists minds.... [tags: Ethics] 888 words (2.5 pages) Better Essays [preview] Genetic Engineering - I, as a Christian, believe that the traits of a child are a blessing to a parent in one-way or another. Although I hold this true, I actually wouldnt mind being able to design my own baby. I mean, I could root out all of the bad traits, and add the ones I want. I would make my child a girl with olive skin, brown hair, bright green eyes, and to have the dancing feet of Fosse, the facial expressions of Liz Taylor, and the vocal chords of Lea Michelle. I want her to be a star of the screen or stage.... [tags: controversy, genes, physical traits, flaws] :: 3 Works Cited 890 words (2.5 pages) Better Essays [preview] Genetic Engineering - Moore's law, the statement that technologies will double every two years is a very thought-provoking inception for technologist and scientist (Moore's Law par.1). Numerous people are thrilled about this commandment while others are petrified. Why an individual might be troubled by technology one might inquire. Well there are many arguments that claim that technology is contrary to itself, nature, and humans. The unpretentious fact is technology is cohesive within the humanoid existence and will linger as time travels on.... [tags: genetically modified foods] :: 13 Works Cited 1461 words (4.2 pages) Powerful Essays [preview] Human Genetic Engineering: Dreams and Nightmares - Technological breakthroughs and advancements have occurred so rapidly since the dawn of the information age, that one often overlooks the great power humanity holds over the building blocks of life itself. While our understanding and mapping of Deoxyribonucleic acid (DNA) sequences has been slow coming since Friedrich Mieschers isolation of the double-helix shaped molecule, efforts in recent decades to map the human genome have opened many doors to the potential manipulation of lifes basic elements.... [tags: human genome, human genetics, cloning] :: 7 Works Cited 1162 words (3.3 pages) Strong Essays [preview]

See the original post:
Free genetic engineering Essays and Papers - 123helpme

Posted in Human Genetic Engineering | Comments Off on Free genetic engineering Essays and Papers – 123helpme

Human Genome Project – Wikipedia

The Human Genome Project (HGP) was an international scientific research project with the goal of determining the sequence of nucleotide base pairs that make up human DNA, and of identifying and mapping all of the genes of the human genome from both a physical and a functional standpoint.[1] It remains the world's largest collaborative biological project.[2] After the idea was picked up in 1984 by the US government when the planning started, the project formally launched in 1990 and was declared complete in 2003. Funding came from the US government through the National Institutes of Health (NIH) as well as numerous other groups from around the world. A parallel project was conducted outside of government by the Celera Corporation, or Celera Genomics, which was formally launched in 1998. Most of the government-sponsored sequencing was performed in twenty universities and research centers in the United States, the United Kingdom, Japan, France, Germany, Canada, and China.[3]

The Human Genome Project originally aimed to map the nucleotides contained in a human haploid reference genome (more than three billion). The "genome" of any given individual is unique; mapping the "human genome" involved sequencing a small number of individuals and then assembling these together to get a complete sequence for each chromosome. The finished human genome is thus a mosaic, not representing any one individual.

The Human Genome Project was a 13-year-long, publicly funded project initiated in 1990 with the objective of determining the DNA sequence of the entire euchromatic human genome within 15 years.[4] In May 1985, Robert Sinsheimer organized a workshop to discuss sequencing the human genome,[5] but for a number of reasons the NIH was uninterested in pursuing the proposal. The following March, the Santa Fe Workshop was organized by Charles DeLisi and David Smith of the Department of Energy's Office of Health and Environmental Research (OHER).[6] At the same time Renato Dulbecco proposed whole genome sequencing in an essay in Science.[7] James Watson followed two months later with a workshop held at the Cold Spring Harbor Laboratory.

The fact that the Santa Fe workshop was motivated and supported by a Federal Agency opened a path, albeit a difficult and tortuous one,[8] for converting the idea into public policy. In a memo to the Assistant Secretary for Energy Research (Alvin Trivelpiece), Charles DeLisi, who was then Director of OHER, outlined a broad plan for the project.[9] This started a long and complex chain of events which led to approved reprogramming of funds that enabled OHER to launch the Project in 1986, and to recommend the first line item for the HGP, which was in President Regan's 1988 budget submission,[8] and ultimately approved by the Congress. Of particular importance in Congressional approval was the advocacy of Senator Peter Domenici, whom DeLisi had befriended.[10] Domenici chaired the Senate Committee on Energy and Natural Resources, as well as the Budget Committee, both of which were key in the DOE budget process. Congress added a comparable amount to the NIH budget, thereby beginning official funding by both agencies.

Alvin Trivelpiece sought and obtained the approval of DeLisi's proposal by Deputy Secretary William Flynn Martin. This chart[11] was used in the spring of 1986 by Trivelpiece, then Director of the Office of Energy Research in the Department of Energy, to brief Martin and Under Secretary Joseph Salgado regarding his intention to reprogram $4 million to initiate the project with the approval of Secretary Herrington. This reprogramming was followed by a line item budget of $16 million in the Reagan Administrations 1987 budget submission to Congress.[12] It subsequently passed both Houses. The Project was planned for 15 years.[13]

Candidate technologies were already being considered for the proposed undertaking at least as early as 1985.[14]

In 1990, the two major funding agencies, DOE and NIH, developed a memorandum of understanding in order to coordinate plans and set the clock for the initiation of the Project to 1990.[15] At that time, David Galas was Director of the renamed Office of Biological and Environmental Research in the U.S. Department of Energys Office of Science and James Watson headed the NIH Genome Program. In 1993, Aristides Patrinos succeeded Galas and Francis Collins succeeded James Watson, assuming the role of overall Project Head as Director of the U.S. National Institutes of Health (NIH) National Center for Human Genome Research (which would later become the National Human Genome Research Institute). A working draft of the genome was announced in 2000 and the papers describing it were published in February 2001. A more complete draft was published in 2003, and genome "finishing" work continued for more than a decade.

The $3-billion project was formally founded in 1990 by the US Department of Energy and the National Institutes of Health, and was expected to take 15 years.[16] In addition to the United States, the international consortium comprised geneticists in the United Kingdom, France, Australia, China and myriad other spontaneous relationships.[17]

Due to widespread international cooperation and advances in the field of genomics (especially in sequence analysis), as well as major advances in computing technology, a 'rough draft' of the genome was finished in 2000 (announced jointly by U.S. President Bill Clinton and the British Prime Minister Tony Blair on June 26, 2000).[18] This first available rough draft assembly of the genome was completed by the Genome Bioinformatics Group at the University of California, Santa Cruz, primarily led by then graduate student Jim Kent. Ongoing sequencing led to the announcement of the essentially complete genome on April 14, 2003, two years earlier than planned.[19][20] In May 2006, another milestone was passed on the way to completion of the project, when the sequence of the last chromosome was published in Nature.[21]

The project was not able to sequence all the DNA found in human cells. It sequenced only "euchromatic" regions of the genome, which make up more than 95% of the genome. The other regions, called "heterochromatic" are found in centromeres and telomeres, and were not sequenced under the project.[22]

The Human Genome Project was declared complete in April 2003. An initial rough draft of the human genome was available in June 2000 and by February 2001 a working draft had been completed and published followed by the final sequencing mapping of the human genome on April 14, 2003. Although this was reported to cover 99% of the euchromatic human genome with 99.99% accuracy, a major quality assessment of the human genome sequence was published on May 27, 2004 indicating over 92% of sampling exceeded 99.99% accuracy which was within the intended goal.[23] Further analyses and papers on the HGP continue to occur.[24]

The sequencing of the human genome holds benefits for many fields, from molecular medicine to human evolution. The Human Genome Project, through its sequencing of the DNA, can help us understand diseases including: genotyping of specific viruses to direct appropriate treatment; identification of mutations linked to different forms of cancer; the design of medication and more accurate prediction of their effects; advancement in forensic applied sciences; biofuels and other energy applications; agriculture, animal husbandry, bioprocessing; risk assessment; bioarcheology, anthropology and evolution. Another proposed benefit is the commercial development of genomics research related to DNA based products, a multibillion-dollar industry.

The sequence of the DNA is stored in databases available to anyone on the Internet. The U.S. National Center for Biotechnology Information (and sister organizations in Europe and Japan) house the gene sequence in a database known as GenBank, along with sequences of known and hypothetical genes and proteins. Other organizations, such as the UCSC Genome Browser at the University of California, Santa Cruz,[25] and Ensembl[26] present additional data and annotation and powerful tools for visualizing and searching it. Computer programs have been developed to analyze the data, because the data itself is difficult to interpret without such programs. Generally speaking, advances in genome sequencing technology have followed Moores Law, a concept from computer science which states that integrated circuits can increase in complexity at an exponential rate.[27] This means that the speeds at which whole genomes can be sequenced can increase at a similar rate, as was seen during the development of the above-mentioned Human Genome Project.

The process of identifying the boundaries between genes and other features in a raw DNA sequence is called genome annotation and is in the domain of bioinformatics. While expert biologists make the best annotators, their work proceeds slowly, and computer programs are increasingly used to meet the high-throughput demands of genome sequencing projects. Beginning in 2008, a new technology known as RNA-seq was introduced that allowed scientists to directly sequence the messenger RNA in cells. This replaced previous methods of annotation, which relied on inherent properties of the DNA sequence, with direct measurement, which was much more accurate. Today, annotation of the human genome and other genomes relies primarily on deep sequencing of the transcripts in every human tissue using RNA-seq. These experiments have revealed that over 90% of genes contain at least one and usually several alternative splice variants, in which the exons are combined in different ways to produce 2 or more gene products from the same locus.[citation needed]

The genome published by the HGP does not represent the sequence of every individual's genome. It is the combined mosaic of a small number of anonymous donors, all of European origin. The HGP genome is a scaffold for future work in identifying differences among individuals. Subsequent projects sequenced the genomes of multiple distinct ethnic groups, though as of today there is still only one "reference genome."[citation needed]

Key findings of the draft (2001) and complete (2004) genome sequences include:

The Human Genome Project was started in 1990 with the goal of sequencing and identifying all three billion chemical units in the human genetic instruction set, finding the genetic roots of disease and then developing treatments. It is considered a Mega Project because the human genome has approximately 3.3 billion base-pairs. With the sequence in hand, the next step was to identify the genetic variants that increase the risk for common diseases like cancer and diabetes.[15][33]

It was far too expensive at that time to think of sequencing patients whole genomes. So the National Institutes of Health embraced the idea for a "shortcut", which was to look just at sites on the genome where many people have a variant DNA unit. The theory behind the shortcut was that, since the major diseases are common, so too would be the genetic variants that caused them. Natural selection keeps the human genome free of variants that damage health before children are grown, the theory held, but fails against variants that strike later in life, allowing them to become quite common. (In 2002 the National Institutes of Health started a $138 million dollar project called the HapMap to catalog the common variants in European, East Asian and African genomes.)[34]

The genome was broken into smaller pieces; approximately 150,000 base pairs in length.[33] These pieces were then ligated into a type of vector known as "bacterial artificial chromosomes", or BACs, which are derived from bacterial chromosomes which have been genetically engineered. The vectors containing the genes can be inserted into bacteria where they are copied by the bacterial DNA replication machinery. Each of these pieces was then sequenced separately as a small "shotgun" project and then assembled. The larger, 150,000 base pairs go together to create chromosomes. This is known as the "hierarchical shotgun" approach, because the genome is first broken into relatively large chunks, which are then mapped to chromosomes before being selected for sequencing.[35][36]

Funding came from the US government through the National Institutes of Health in the United States, and a UK charity organization, the Wellcome Trust, as well as numerous other groups from around the world. The funding supported a number of large sequencing centers including those at Whitehead Institute, the Sanger Centre, Washington University in St. Louis, and Baylor College of Medicine.[16][37]

The United Nations Educational, Scientific and Cultural Organization (UNESCO) served as an important channel for the involvement of developing countries in the Human Genome Project.[38]

In 1998, a similar, privately funded quest was launched by the American researcher Craig Venter, and his firm Celera Genomics. Venter was a scientist at the NIH during the early 1990s when the project was initiated. The $300,000,000 Celera effort was intended to proceed at a faster pace and at a fraction of the cost of the roughly $3 billion publicly funded project. The Celera approach was able to proceed at a much more rapid rate, and at a lower cost than the public project because it relied upon data made available by the publicly funded project.[39]

Celera used a technique called whole genome shotgun sequencing, employing pairwise end sequencing,[40] which had been used to sequence bacterial genomes of up to six million base pairs in length, but not for anything nearly as large as the three billion base pair human genome.

Celera initially announced that it would seek patent protection on "only 200300" genes, but later amended this to seeking "intellectual property protection" on "fully-characterized important structures" amounting to 100300 targets. The firm eventually filed preliminary ("place-holder") patent applications on 6,500 whole or partial genes. Celera also promised to publish their findings in accordance with the terms of the 1996 "Bermuda Statement", by releasing new data annually (the HGP released its new data daily), although, unlike the publicly funded project, they would not permit free redistribution or scientific use of the data. The publicly funded competitors were compelled to release the first draft of the human genome before Celera for this reason. On July 7, 2000, the UCSC Genome Bioinformatics Group released a first working draft on the web. The scientific community downloaded about 500 GB of information from the UCSC genome server in the first 24 hours of free and unrestricted access.[41]

In March 2000, President Clinton announced that the genome sequence could not be patented, and should be made freely available to all researchers. The statement sent Celera's stock plummeting and dragged down the biotechnology-heavy Nasdaq. The biotechnology sector lost about $50 billion in market capitalization in two days.

Although the working draft was announced in June 2000, it was not until February 2001 that Celera and the HGP scientists published details of their drafts. Special issues of Nature (which published the publicly funded project's scientific paper)[42] and Science (which published Celera's paper[43]) described the methods used to produce the draft sequence and offered analysis of the sequence. These drafts covered about 83% of the genome (90% of the euchromatic regions with 150,000 gaps and the order and orientation of many segments not yet established). In February 2001, at the time of the joint publications, press releases announced that the project had been completed by both groups. Improved drafts were announced in 2003 and 2005, filling in to approximately 92% of the sequence currently.

In the IHGSC international public-sector Human Genome Project (HGP), researchers collected blood (female) or sperm (male) samples from a large number of donors. Only a few of many collected samples were processed as DNA resources. Thus the donor identities were protected so neither donors nor scientists could know whose DNA was sequenced. DNA clones from many different libraries were used in the overall project, with most of those libraries being created by Pieter J. de Jong's lab. Much of the sequence (>70%) of the reference genome produced by the public HGP came from a single anonymous male donor from Buffalo, New York (code name RP11).[44][45]

HGP scientists used white blood cells from the blood of two male and two female donors (randomly selected from 20 of each) each donor yielding a separate DNA library. One of these libraries (RP11) was used considerably more than others, due to quality considerations. One minor technical issue is that male samples contain just over half as much DNA from the sex chromosomes (one X chromosome and one Y chromosome) compared to female samples (which contain two X chromosomes). The other 22 chromosomes (the autosomes) are the same for both sexes.

Although the main sequencing phase of the HGP has been completed, studies of DNA variation continue in the International HapMap Project, whose goal is to identify patterns of single-nucleotide polymorphism (SNP) groups (called haplotypes, or haps). The DNA samples for the HapMap came from a total of 270 individuals: Yoruba people in Ibadan, Nigeria; Japanese people in Tokyo; Han Chinese in Beijing; and the French Centre dEtude du Polymorphisme Humain (CEPH) resource, which consisted of residents of the United States having ancestry from Western and Northern Europe.

In the Celera Genomics private-sector project, DNA from five different individuals were used for sequencing. The lead scientist of Celera Genomics at that time, Craig Venter, later acknowledged (in a public letter to the journal Science) that his DNA was one of 21 samples in the pool, five of which were selected for use.[46][47]

In 2007, a team led by Jonathan Rothberg published James Watson's entire genome, unveiling the six-billion-nucleotide genome of a single individual for the first time.[48]

The work on interpretation and analysis of genome data is still in its initial stages. It is anticipated that detailed knowledge of the human genome will provide new avenues for advances in medicine and biotechnology. Clear practical results of the project emerged even before the work was finished. For example, a number of companies, such as Myriad Genetics, started offering easy ways to administer genetic tests that can show predisposition to a variety of illnesses, including breast cancer, hemostasis disorders, cystic fibrosis, liver diseases and many others. Also, the etiologies for cancers, Alzheimer's disease and other areas of clinical interest are considered likely to benefit from genome information and possibly may lead in the long term to significant advances in their management.[34][49]

There are also many tangible benefits for biologists. For example, a researcher investigating a certain form of cancer may have narrowed down his/her search to a particular gene. By visiting the human genome database on the World Wide Web, this researcher can examine what other scientists have written about this gene, including (potentially) the three-dimensional structure of its product, its function(s), its evolutionary relationships to other human genes, or to genes in mice or yeast or fruit flies, possible detrimental mutations, interactions with other genes, body tissues in which this gene is activated, and diseases associated with this gene or other datatypes. Further, deeper understanding of the disease processes at the level of molecular biology may determine new therapeutic procedures. Given the established importance of DNA in molecular biology and its central role in determining the fundamental operation of cellular processes, it is likely that expanded knowledge in this area will facilitate medical advances in numerous areas of clinical interest that may not have been possible without them.[50]

The analysis of similarities between DNA sequences from different organisms is also opening new avenues in the study of evolution. In many cases, evolutionary questions can now be framed in terms of molecular biology; indeed, many major evolutionary milestones (the emergence of the ribosome and organelles, the development of embryos with body plans, the vertebrate immune system) can be related to the molecular level. Many questions about the similarities and differences between humans and our closest relatives (the primates, and indeed the other mammals) are expected to be illuminated by the data in this project.[34][51]

The project inspired and paved the way for genomic work in other fields, such as agriculture. For example, by studying the genetic composition of Tritium aestivum, the worlds most commonly used bread wheat, great insight has been gained into the ways that domestication has impacted the evolution of the plant.[52] Which loci are most susceptible to manipulation, and how does this play out in evolutionary terms? Genetic sequencing has allowed these questions to be addressed for the first time, as specific loci can be compared in wild and domesticated strains of the plant. This will allow for advances in genetic modification in the future which could yield healthier, more disease-resistant wheat crops.

At the onset of the Human Genome Project several ethical, legal, and social concerns were raised in regards to how increased knowledge of the human genome could be used to discriminate against people. One of the main concerns of most individuals was the fear that both employers and health insurance companies would refuse to hire individuals or refuse to provide insurance to people because of a health concern indicated by someone's genes.[53] In 1996 the United States passed the Health Insurance Portability and Accountability Act (HIPAA) which protects against the unauthorized and non-consensual release of individually identifiable health information to any entity not actively engaged in the provision of healthcare services to a patient.[54]

Along with identifying all of the approximately 20,00025,000 genes in the human genome, the Human Genome Project also sought to address the ethical, legal, and social issues that were created by the onset of the project. For that the Ethical, Legal, and Social Implications (ELSI) program was founded in 1990. Five percent of the annual budget was allocated to address the ELSI arising from the project.[16][55] This budget started at approximately $1.57 million in the year 1990, but increased to approximately $18 million in the year 2014.[56]

Whilst the project may offer significant benefits to medicine and scientific research, some authors have emphasised the need to address the potential social consequences of mapping the human genome. "Molecularising disease and their possible cure will have a profound impact on what patients expect from medical help and the new generation of doctors' perception of illness."[57]

See more here:
Human Genome Project - Wikipedia

Posted in Human Genetic Engineering | Comments Off on Human Genome Project – Wikipedia

Human – Wikipedia

Human[1] Temporal range: 0.1950Ma Middle Pleistocene Recent An adult human male (left) and female (right) in Northern Thailand. Scientific classification Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Primates Suborder: Haplorhini Family: Hominidae Tribe: Hominini Genus: Homo Species: H.sapiens Binomial name Homo sapiens Linnaeus, 1758 Subspecies

Homo sapiens idaltu White et al., 2003 Homo sapiens sapiens

Modern humans (Homo sapiens, primarily ssp. Homo sapiens sapiens) are the only extant members of Hominina clade (or human clade), a branch of the taxonomical tribe Hominini belonging to the family of great apes. They are characterized by erect posture and bipedal locomotion; manual dexterity and increased tool use, compared to other animals; and a general trend toward larger, more complex brains and societies.[3][4]

Early homininsparticularly the australopithecines, whose brains and anatomy are in many ways more similar to ancestral non-human apesare less often referred to as "human" than hominins of the genus Homo.[5] Several of these hominins used fire, occupied much of Eurasia, and gave rise to anatomically modern Homo sapiens in Africa about 200,000 years ago.[6][7] They began to exhibit evidence of behavioral modernity around 50,000 years ago. In several waves of migration, anatomically modern humans ventured out of Africa and populated most of the world.[8]

The spread of humans and their large and increasing population has had a profound impact on large areas of the environment and millions of native species worldwide. Advantages that explain this evolutionary success include a relatively larger brain with a particularly well-developed neocortex, prefrontal cortex and temporal lobes, which enable high levels of abstract reasoning, language, problem solving, sociality, and culture through social learning. Humans use tools to a much higher degree than any other animal, are the only extant species known to build fires and cook their food, and are the only extant species to clothe themselves and create and use numerous other technologies and arts.

Humans are uniquely adept at utilizing systems of symbolic communication (such as language and art) for self-expression and the exchange of ideas, and for organizing themselves into purposeful groups. Humans create complex social structures composed of many cooperating and competing groups, from families and kinship networks to political states. Social interactions between humans have established an extremely wide variety of values,[9]social norms, and rituals, which together form the basis of human society. Curiosity and the human desire to understand and influence the environment and to explain and manipulate phenomena (or events) has provided the foundation for developing science, philosophy, mythology, religion, anthropology, and numerous other fields of knowledge.

Though most of human existence has been sustained by hunting and gathering in band societies,[10] increasing numbers of human societies began to practice sedentary agriculture approximately some 10,000 years ago,[11] domesticating plants and animals, thus allowing for the growth of civilization. These human societies subsequently expanded in size, establishing various forms of government, religion, and culture around the world, unifying people within regions to form states and empires. The rapid advancement of scientific and medical understanding in the 19th and 20th centuries led to the development of fuel-driven technologies and increased lifespans, causing the human population to rise exponentially. By February 2016, the global human population had exceeded 7.3 billion.[12]

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

In common usage, the word "human" generally refers to the only extant species of the genus Homo anatomically and behaviorally modern Homo sapiens.

In scientific terms, the meanings of "hominid" and "hominin" have changed during the recent decades with advances in the discovery and study of the fossil ancestors of modern humans. The previously clear boundary between humans and apes has blurred, resulting in now acknowledging the hominids as encompassing multiple species, and Homo and close relatives since the split from chimpanzees as the only hominins. There is also a distinction between anatomically modern humans and Archaic Homo sapiens, the earliest fossil members of the species.

The English adjective human is a Middle English loanword from Old French humain, ultimately from Latin hmnus, the adjective form of hom "man." The word's use as a noun (with a plural: humans) dates to the 16th century.[13] The native English term man can refer to the species generally (a synonym for humanity), and could formerly refer to specific individuals of either sex, though this latter use is now obsolete.[14]

The species binomial Homo sapiens was coined by Carl Linnaeus in his 18th century work Systema Naturae.[15] The generic name Homo is a learned 18th century derivation from Latin hom "man," ultimately "earthly being" (Old Latin hem a cognate to Old English guma "man," from PIE demon-, meaning "earth" or "ground").[16] The species-name sapiens means "wise" or "sapient." Note that the Latin word homo refers to humans of either gender, and that sapiens is the singular form (while there is no such word as sapien).[17]

The genus Homo evolved and diverged from other hominins in Africa, after the human clade split from the chimpanzee lineage of the hominids (great apes) branch of the primates. Modern humans, defined as the species Homo sapiens or specifically to the single extant subspecies Homo sapiens sapiens, proceeded to colonize all the continents and larger islands, arriving in Eurasia 125,00060,000 years ago,[18][19]Australia around 40,000 years ago, the Americas around 15,000 years ago, and remote islands such as Hawaii, Easter Island, Madagascar, and New Zealand between the years 300 and 1280.[20][21]

The closest living relatives of humans are chimpanzees (genus Pan) and gorillas (genus Gorilla).[22] With the sequencing of both the human and chimpanzee genome, current estimates of similarity between human and chimpanzee DNA sequences range between 95% and 99%.[22][23][24] By using the technique called a molecular clock which estimates the time required for the number of divergent mutations to accumulate between two lineages, the approximate date for the split between lineages can be calculated. The gibbons (Hylobatidae) and orangutans (genus Pongo) were the first groups to split from the line leading to the humans, then gorillas (genus Gorilla) followed by the chimpanzees (genus Pan). The splitting date between human and chimpanzee lineages is placed around 48 million years ago during the late Miocene epoch.[25][26] During this split, chromosome 2 was formed from two other chromosomes, leaving humans with only 23 pairs of chromosomes, compared to 24 for the other apes.[27][28]

There is little fossil evidence for the divergence of the gorilla, chimpanzee and hominin lineages.[29][30] The earliest fossils that have been proposed as members of the hominin lineage are Sahelanthropus tchadensis dating from 7 million years ago, Orrorin tugenensis dating from 5.7 million years ago, and Ardipithecus kadabba dating to 5.6 million years ago. Each of these species has been argued to be a bipedal ancestor of later hominins, but all such claims are contested. It is also possible that any one of the three is an ancestor of another branch of African apes, or is an ancestor shared between hominins and other African Hominoidea (apes). The question of the relation between these early fossil species and the hominin lineage is still to be resolved. From these early species the australopithecines arose around 4 million years ago diverged into robust (also called Paranthropus) and gracile branches,[31] possibly one of which (such as A. garhi, dating to 2.5 million years ago) is a direct ancestor of the genus Homo.[32]

The earliest members of the genus Homo are Homo habilis which evolved around 2.8 million years ago.[33]Homo habilis has been considered the first species for which there is clear evidence of the use of stone tools. More recently, however, in 2015, stone tools, perhaps predating Homo habilis, have been discovered in northwestern Kenya that have been dated to 3.3 million years old.[34] Nonetheless, the brains of Homo habilis were about the same size as that of a chimpanzee, and their main adaptation was bipedalism as an adaptation to terrestrial living. During the next million years a process of encephalization began, and with the arrival of Homo erectus in the fossil record, cranial capacity had doubled. Homo erectus were the first of the hominina to leave Africa, and these species spread through Africa, Asia, and Europe between 1.3to1.8 million years ago. One population of H. erectus, also sometimes classified as a separate species Homo ergaster, stayed in Africa and evolved into Homo sapiens. It is believed that these species were the first to use fire and complex tools. The earliest transitional fossils between H. ergaster/erectus and archaic humans are from Africa such as Homo rhodesiensis, but seemingly transitional forms are also found at Dmanisi, Georgia. These descendants of African H. erectus spread through Eurasia from ca. 500,000 years ago evolving into H. antecessor, H. heidelbergensis and H. neanderthalensis. The earliest fossils of anatomically modern humans are from the Middle Paleolithic, about 200,000 years ago such as the Omo remains of Ethiopia and the fossils of Herto sometimes classified as Homo sapiens idaltu.[35] Later fossils of archaic Homo sapiens from Skhul in Israel and Southern Europe begin around 90,000 years ago.[36]

Human evolution is characterized by a number of morphological, developmental, physiological, and behavioral changes that have taken place since the split between the last common ancestor of humans and chimpanzees. The most significant of these adaptations are 1. bipedalism, 2. increased brain size, 3. lengthened ontogeny (gestation and infancy), 4. decreased sexual dimorphism (neoteny). The relationship between all these changes is the subject of ongoing debate.[37] Other significant morphological changes included the evolution of a power and precision grip, a change first occurring in H. erectus.[38]

Bipedalism is the basic adaption of the hominin line, and it is considered the main cause behind a suite of skeletal changes shared by all bipedal hominins. The earliest bipedal hominin is considered to be either Sahelanthropus[39] or Orrorin, with Ardipithecus, a full bipedal,[40] coming somewhat later.[citation needed] The knuckle walkers, the gorilla and chimpanzee, diverged around the same time, and either Sahelanthropus or Orrorin may be humans' last shared ancestor with those animals.[citation needed] The early bipedals eventually evolved into the australopithecines and later the genus Homo.[citation needed] There are several theories of the adaptational value of bipedalism. It is possible that bipedalism was favored because it freed up the hands for reaching and carrying food, because it saved energy during locomotion, because it enabled long distance running and hunting, or as a strategy for avoiding hyperthermia by reducing the surface exposed to direct sun.[citation needed]

The human species developed a much larger brain than that of other primates typically 1,330 cm3 in modern humans, over twice the size of that of a chimpanzee or gorilla.[41] The pattern of encephalization started with Homo habilis which at approximately 600cm3 had a brain slightly larger than chimpanzees, and continued with Homo erectus (8001100cm3), and reached a maximum in Neanderthals with an average size of 12001900cm3, larger even than Homo sapiens (but less encephalized).[42] The pattern of human postnatal brain growth differs from that of other apes (heterochrony), and allows for extended periods of social learning and language acquisition in juvenile humans. However, the differences between the structure of human brains and those of other apes may be even more significant than differences in size.[43][44][45][46] The increase in volume over time has affected different areas within the brain unequally the temporal lobes, which contain centers for language processing have increased disproportionately, as has the prefrontal cortex which has been related to complex decision making and moderating social behavior.[41] Encephalization has been tied to an increasing emphasis on meat in the diet,[47][48] or with the development of cooking,[49] and it has been proposed [50] that intelligence increased as a response to an increased necessity for solving social problems as human society became more complex.

The reduced degree of sexual dimorphism is primarily visible in the reduction of the male canine tooth relative to other ape species (except gibbons). Another important physiological change related to sexuality in humans was the evolution of hidden estrus. Humans are the only ape in which the female is fertile year round, and in which no special signals of fertility are produced by the body (such as genital swelling during estrus). Nonetheless humans retain a degree of sexual dimorphism in the distribution of body hair and subcutaneous fat, and in the overall size, males being around 25% larger than females. These changes taken together have been interpreted as a result of an increased emphasis on pair bonding as a possible solution to the requirement for increased parental investment due to the prolonged infancy of offspring.[citation needed]

By the beginning of the Upper Paleolithic period (50,000 BP), full behavioral modernity, including language, music and other cultural universals had developed.[51][52] As modern humans spread out from Africa they encountered other hominids such as Homo neanderthalensis and the so-called Denisovans. The nature of interaction between early humans and these sister species has been a long-standing source of controversy, the question being whether humans replaced these earlier species or whether they were in fact similar enough to interbreed, in which case these earlier populations may have contributed genetic material to modern humans.[53] Recent studies of the human and Neanderthal genomes suggest gene flow between archaic Homo sapiens and Neanderthals and Denisovans.[54][55][56] In March 2016, studies were published that suggest that modern humans bred with hominins, including Denisovans and Neanderthals, on multiple occasions.[57]

This dispersal out of Africa is estimated to have begun about 70,000 years BP from Northeast Africa. Current evidence suggests that there was only one such dispersal and that it only involved a few hundred individuals. The vast majority of humans stayed in Africa and adapted to a diverse array of environments.[58] Modern humans subsequently spread globally, replacing earlier hominins (either through competition or hybridization). They inhabited Eurasia and Oceania by 40,000 years BP, and the Americas at least 14,500 years BP.[59][60]

Until about 10,000 years ago, humans lived as hunter-gatherers. They gradually gained domination over much of the natural environment. They generally lived in small nomadic groups known as band societies, often in caves. The advent of agriculture prompted the Neolithic Revolution, when access to food surplus led to the formation of permanent human settlements, the domestication of animals and the use of metal tools for the first time in history. Agriculture encouraged trade and cooperation, and led to complex society.[citation needed]

The early civilizations of Mesopotamia, Egypt, India, China, Maya, Greece and Rome were some of the cradles of civilization.[61][62][63] The Late Middle Ages and the Early Modern Period saw the rise of revolutionary ideas and technologies. Over the next 500 years, exploration and European colonialism brought great parts of the world under European control, leading to later struggles for independence. The concept of the modern world as distinct from an ancient world is based on a rapid change progress in a brief period of time in many areas.[citation needed] Advances in all areas of human activity prompted new theories such as evolution and psychoanalysis, which changed humanity's views of itself.[citation needed] The Scientific Revolution, Technological Revolution and the Industrial Revolution up until the 19th century resulted in independent discoveries such as imaging technology, major innovations in transport, such as the airplane and automobile; energy development, such as coal and electricity.[64] This correlates with population growth (especially in America)[65] and higher life expectancy, the World population rapidly increased numerous times in the 19th and 20th centuries as nearly 10% of the 100 billion people lived in the past century.[66]

With the advent of the Information Age at the end of the 20th century, modern humans live in a world that has become increasingly globalized and interconnected. As of 2010, almost 2billion humans are able to communicate with each other via the Internet,[67] and 3.3 billion by mobile phone subscriptions.[68] Although interconnection between humans has encouraged the growth of science, art, discussion, and technology, it has also led to culture clashes and the development and use of weapons of mass destruction.[citation needed] Human civilization has led to environmental destruction and pollution significantly contributing to the ongoing mass extinction of other forms of life called the Holocene extinction event,[69] which may be further accelerated by global warming in the future.[70]

Early human settlements were dependent on proximity to water and, depending on the lifestyle, other natural resources used for subsistence, such as populations of animal prey for hunting and arable land for growing crops and grazing livestock. But humans have a great capacity for altering their habitats by means of technology, through irrigation, urban planning, construction, transport, manufacturing goods, deforestation and desertification. Deliberate habitat alteration is often done with the goals of increasing material wealth, increasing thermal comfort, improving the amount of food available, improving aesthetics, or improving ease of access to resources or other human settlements. With the advent of large-scale trade and transport infrastructure, proximity to these resources has become unnecessary, and in many places, these factors are no longer a driving force behind the growth and decline of a population. Nonetheless, the manner in which a habitat is altered is often a major determinant in population change.[citation needed]

Technology has allowed humans to colonize all of the continents and adapt to virtually all climates. Within the last century, humans have explored Antarctica, the ocean depths, and outer space, although large-scale colonization of these environments is not yet feasible. With a population of over seven billion, humans are among the most numerous of the large mammals. Most humans (61%) live in Asia. The remainder live in the Americas (14%), Africa (14%), Europe (11%), and Oceania (0.5%).[71]

Human habitation within closed ecological systems in hostile environments, such as Antarctica and outer space, is expensive, typically limited in duration, and restricted to scientific, military, or industrial expeditions. Life in space has been very sporadic, with no more than thirteen humans in space at any given time.[72] Between 1969 and 1972, two humans at a time spent brief intervals on the Moon. As of December 2016, no other celestial body has been visited by humans, although there has been a continuous human presence in space since the launch of the initial crew to inhabit the International Space Station on October 31, 2000.[73] However, other celestial bodies have been visited by human-made objects.[74][75][76]

Since 1800, the human population has increased from one billion[77] to over seven billion,[78] In 2004, some 2.5 billion out of 6.3 billion people (39.7%) lived in urban areas. In February 2008, the U.N. estimated that half the world's population would live in urban areas by the end of the year.[79] Problems for humans living in cities include various forms of pollution and crime,[80] especially in inner city and suburban slums. Both overall population numbers and the proportion residing in cities are expected to increase significantly in the coming decades.[81]

Humans have had a dramatic effect on the environment. Humans are apex predators, being rarely preyed upon by other species.[82] Currently, through land development, combustion of fossil fuels, and pollution, humans are thought to be the main contributor to global climate change.[83] If this continues at its current rate it is predicted that climate change will wipe out half of all plant and animal species over the next century.[84][85]

Most aspects of human physiology are closely homologous to corresponding aspects of animal physiology. The human body consists of the legs, the torso, the arms, the neck, and the head. An adult human body consists of about 100 trillion (1014) cells. The most commonly defined body systems in humans are the nervous, the cardiovascular, the circulatory, the digestive, the endocrine, the immune, the integumentary, the lymphatic, the muscoskeletal, the reproductive, the respiratory, and the urinary system.[86][87]

Humans, like most of the other apes, lack external tails, have several blood type systems, have opposable thumbs, and are sexually dimorphic. The comparatively minor anatomical differences between humans and chimpanzees are a result of human bipedalism. One difference is that humans have a far faster and more accurate throw than other animals. Humans are also among the best long-distance runners in the animal kingdom, but slower over short distances.[88][89] Humans' thinner body hair and more productive sweat glands help avoid heat exhaustion while running for long distances.[90]

As a consequence of bipedalism, human females have narrower birth canals. The construction of the human pelvis differs from other primates, as do the toes. A trade-off for these advantages of the modern human pelvis is that childbirth is more difficult and dangerous than in most mammals, especially given the larger head size of human babies compared to other primates. This means that human babies must turn around as they pass through the birth canal, which other primates do not do, and it makes humans the only species where females usually require help from their conspecifics (other members of their own species) to reduce the risks of birthing. As a partial evolutionary solution, human fetuses are born less developed and more vulnerable. Chimpanzee babies are cognitively more developed than human babies until the age of six months, when the rapid development of human brains surpasses chimpanzees. Another difference between women and chimpanzee females is that women go through the menopause and become unfertile decades before the end of their lives. All species of non-human apes are capable of giving birth until death. Menopause probably developed as it has provided an evolutionary advantage (more caring time) to young relatives.[89]

Apart from bipedalism, humans differ from chimpanzees mostly in smelling, hearing, digesting proteins, brain size, and the ability of language. Humans' brains are about three times bigger than in chimpanzees. More importantly, the brain to body ratio is much higher in humans than in chimpanzees, and humans have a significantly more developed cerebral cortex, with a larger number of neurons. The mental abilities of humans are remarkable compared to other apes. Humans' ability of speech is unique among primates. Humans are able to create new and complex ideas, and to develop technology, which is unprecedented among other organisms on Earth.[89]

It is estimated that the worldwide average height for an adult human male is about 172cm (5ft 712in),[citation needed] while the worldwide average height for adult human females is about 158cm (5ft 2in).[citation needed] Shrinkage of stature may begin in middle age in some individuals, but tends to be typical in the extremely aged.[91] Through history human populations have universally become taller, probably as a consequence of better nutrition, healthcare, and living conditions.[92] The average mass of an adult human is 5464kg (120140lb) for females and 7683kg (168183lb) for males.[93] Like many other conditions, body weight and body type is influenced by both genetic susceptibility and environment and varies greatly among individuals. (see obesity)[94][95]

Although humans appear hairless compared to other primates, with notable hair growth occurring chiefly on the top of the head, underarms and pubic area, the average human has more hair follicles on his or her body than the average chimpanzee. The main distinction is that human hairs are shorter, finer, and less heavily pigmented than the average chimpanzee's, thus making them harder to see.[96] Humans have about 2 million sweat glands spread over their entire bodies, many more than chimpanzees, whose sweat glands are scarce and are mainly located on the palm of the hand and on the soles of the feet.[97]

The dental formula of humans is: 2.1.2.32.1.2.3. Humans have proportionately shorter palates and much smaller teeth than other primates. They are the only primates to have short, relatively flush canine teeth. Humans have characteristically crowded teeth, with gaps from lost teeth usually closing up quickly in young individuals. Humans are gradually losing their wisdom teeth, with some individuals having them congenitally absent.[98]

Like all mammals, humans are a diploid eukaryotic species. Each somatic cell has two sets of 23 chromosomes, each set received from one parent; gametes have only one set of chromosomes, which is a mixture of the two parental sets. Among the 23 pairs of chromosomes there are 22 pairs of autosomes and one pair of sex chromosomes. Like other mammals, humans have an XY sex-determination system, so that females have the sex chromosomes XX and males have XY.[99]

One human genome was sequenced in full in 2003, and currently efforts are being made to achieve a sample of the genetic diversity of the species (see International HapMap Project). By present estimates, humans have approximately 22,000 genes.[100] The variation in human DNA is very small compared to other species, possibly suggesting a population bottleneck during the Late Pleistocene (around 100,000 years ago), in which the human population was reduced to a small number of breeding pairs.[101][102]Nucleotide diversity is based on single mutations called single nucleotide polymorphisms (SNPs). The nucleotide diversity between humans is about 0.1%, i.e. 1 difference per 1,000 base pairs.[103][104] A difference of 1 in 1,000 nucleotides between two humans chosen at random amounts to about 3 million nucleotide differences, since the human genome has about 3 billion nucleotides. Most of these single nucleotide polymorphisms (SNPs) are neutral but some (about 3 to 5%) are functional and influence phenotypic differences between humans through alleles.[citation needed]

By comparing the parts of the genome that are not under natural selection and which therefore accumulate mutations at a fairly steady rate, it is possible to reconstruct a genetic tree incorporating the entire human species since the last shared ancestor. Each time a certain mutation (SNP) appears in an individual and is passed on to his or her descendants, a haplogroup is formed including all of the descendants of the individual who will also carry that mutation. By comparing mitochondrial DNA, which is inherited only from the mother, geneticists have concluded that the last female common ancestor whose genetic marker is found in all modern humans, the so-called mitochondrial Eve, must have lived around 90,000 to 200,000 years ago.[105][106][107]

Human accelerated regions, first described in August 2006,[108][109] are a set of 49 segments of the human genome that are conserved throughout vertebrate evolution but are strikingly different in humans. They are named according to their degree of difference between humans and their nearest animal relative (chimpanzees) (HAR1 showing the largest degree of human-chimpanzee differences). Found by scanning through genomic databases of multiple species, some of these highly mutated areas may contribute to human-specific traits.[citation needed]

The forces of natural selection have continued to operate on human populations, with evidence that certain regions of the genome display directional selection in the past 15,000 years.[110]

As with other mammals, human reproduction takes place as internal fertilization by sexual intercourse. During this process, the male inserts his erect penis into the female's vagina and ejaculates semen, which contains sperm. The sperm travels through the vagina and cervix into the uterus or Fallopian tubes for fertilization of the ovum. Upon fertilization and implantation, gestation then occurs within the female's uterus.

The zygote divides inside the female's uterus to become an embryo, which over a period of 38 weeks (9 months) of gestation becomes a fetus. After this span of time, the fully grown fetus is birthed from the woman's body and breathes independently as an infant for the first time. At this point, most modern cultures recognize the baby as a person entitled to the full protection of the law, though some jurisdictions extend various levels of personhood earlier to human fetuses while they remain in the uterus.

Compared with other species, human childbirth is dangerous. Painful labors lasting 24 hours or more are not uncommon and sometimes lead to the death of the mother, the child or both.[111] This is because of both the relatively large fetal head circumference and the mother's relatively narrow pelvis.[112][113] The chances of a successful labor increased significantly during the 20th century in wealthier countries with the advent of new medical technologies. In contrast, pregnancy and natural childbirth remain hazardous ordeals in developing regions of the world, with maternal death rates approximately 100 times greater than in developed countries.[114]

In developed countries, infants are typically 34kg (69pounds) in weight and 5060cm (2024inches) in height at birth.[115][not in citation given] However, low birth weight is common in developing countries, and contributes to the high levels of infant mortality in these regions.[116] Helpless at birth, humans continue to grow for some years, typically reaching sexual maturity at 12 to 15years of age. Females continue to develop physically until around the age of 18, whereas male development continues until around age 21. The human life span can be split into a number of stages: infancy, childhood, adolescence, young adulthood, adulthood and old age. The lengths of these stages, however, have varied across cultures and time periods. Compared to other primates, humans experience an unusually rapid growth spurt during adolescence, where the body grows 25% in size. Chimpanzees, for example, grow only 14%, with no pronounced spurt.[117] The presence of the growth spurt is probably necessary to keep children physically small until they are psychologically mature. Humans are one of the few species in which females undergo menopause. It has been proposed that menopause increases a woman's overall reproductive success by allowing her to invest more time and resources in her existing offspring, and in turn their children (the grandmother hypothesis), rather than by continuing to bear children into old age.[118][119]

For various reasons, including biological/genetic causes,[120] women live on average about four years longer than menas of 2013 the global average life expectancy at birth of a girl is estimated at 70.2 years compared to 66.1 for a boy.[121] There are significant geographical variations in human life expectancy, mostly correlated with economic developmentfor example life expectancy at birth in Hong Kong is 84.8years for girls and 78.9 for boys, while in Swaziland, primarily because of AIDS, it is 31.3years for both sexes.[122] The developed world is generally aging, with the median age around 40years. In the developing world the median age is between 15 and 20years. While one in five Europeans is 60years of age or older, only one in twenty Africans is 60years of age or older.[123] The number of centenarians (humans of age 100years or older) in the world was estimated by the United Nations at 210,000 in 2002.[124] At least one person, Jeanne Calment, is known to have reached the age of 122years;[125] higher ages have been claimed but they are not well substantiated.

Humans are omnivorous, capable of consuming a wide variety of plant and animal material.[126][127] Varying with available food sources in regions of habitation, and also varying with cultural and religious norms, human groups have adopted a range of diets, from purely vegetarian to primarily carnivorous. In some cases, dietary restrictions in humans can lead to deficiency diseases; however, stable human groups have adapted to many dietary patterns through both genetic specialization and cultural conventions to use nutritionally balanced food sources.[128] The human diet is prominently reflected in human culture, and has led to the development of food science.

Until the development of agriculture approximately 10,000 years ago, Homo sapiens employed a hunter-gatherer method as their sole means of food collection. This involved combining stationary food sources (such as fruits, grains, tubers, and mushrooms, insect larvae and aquatic mollusks) with wild game, which must be hunted and killed in order to be consumed.[129] It has been proposed that humans have used fire to prepare and cook food since the time of Homo erectus.[130] Around ten thousand years ago, humans developed agriculture,[131] which substantially altered their diet. This change in diet may also have altered human biology; with the spread of dairy farming providing a new and rich source of food, leading to the evolution of the ability to digest lactose in some adults.[132][133] Agriculture led to increased populations, the development of cities, and because of increased population density, the wider spread of infectious diseases. The types of food consumed, and the way in which they are prepared, have varied widely by time, location, and culture.

In general, humans can survive for two to eight weeks without food, depending on stored body fat. Survival without water is usually limited to three or four days. About 36 million humans die every year from causes directly or indirectly related to starvation.[134] Childhood malnutrition is also common and contributes to the global burden of disease.[135] However global food distribution is not even, and obesity among some human populations has increased rapidly, leading to health complications and increased mortality in some developed, and a few developing countries. Worldwide over one billion people are obese,[136] while in the United States 35% of people are obese, leading to this being described as an "obesity epidemic."[137] Obesity is caused by consuming more calories than are expended, so excessive weight gain is usually caused by an energy-dense diet.[136]

No two humansnot even monozygotic twinsare genetically identical. Genes and environment influence human biological variation from visible characteristics to physiology to disease susceptibly to mental abilities. The exact influence of genes and environment on certain traits is not well understood.[138][139]

Most current genetic and archaeological evidence supports a recent single origin of modern humans in East Africa,[140] with first migrations placed at 60,000 years ago. Compared to the great apes, human gene sequenceseven among African populationsare remarkably homogeneous.[141] On average, genetic similarity between any two humans is 99.9%.[142][143] There is about 23 times more genetic diversity within the wild chimpanzee population, than in the entire human gene pool.[144][145][146]

The human body's ability to adapt to different environmental stresses is remarkable, allowing humans to acclimatize to a wide variety of temperatures, humidity, and altitudes. As a result, humans are a cosmopolitan species found in almost all regions of the world, including tropical rainforests, arid desert, extremely cold arctic regions, and heavily polluted cities. Most other species are confined to a few geographical areas by their limited adaptability.[147]

There is biological variation in the human specieswith traits such as blood type, cranial features, eye color, hair color and type, height and build, and skin color varying across the globe. Human body types vary substantially. The typical height of an adult human is between 1.4m and 1.9m (4ft 7 in and 6ft 3 in), although this varies significantly depending, among other things, on sex and ethnic origin.[148][149] Body size is partly determined by genes and is also significantly influenced by environmental factors such as diet, exercise, and sleep patterns, especially as an influence in childhood. Adult height for each sex in a particular ethnic group approximately follows a normal distribution. Those aspects of genetic variation that give clues to human evolutionary history, or are relevant to medical research, have received particular attention. For example, the genes that allow adult humans to digest lactose are present in high frequencies in populations that have long histories of cattle domestication, suggesting natural selection having favored that gene in populations that depend on cow milk. Some hereditary diseases such as sickle cell anemia are frequent in populations where malaria has been endemic throughout historyit is believed that the same gene gives increased resistance to malaria among those who are unaffected carriers of the gene. Similarly, populations that have for a long time inhabited specific climates, such as arctic or tropical regions or high altitudes, tend to have developed specific phenotypes that are beneficial for conserving energy in those environmentsshort stature and stocky build in cold regions, tall and lanky in hot regions, and with high lung capacities at high altitudes. Similarly, skin color varies clinally with darker skin around the equatorwhere the added protection from the sun's ultraviolet radiation is thought to give an evolutionary advantageand lighter skin tones closer to the poles.[150][151][152][153]

The hue of human skin and hair is determined by the presence of pigments called melanins. Human skin color can range from darkest brown to lightest peach, or even nearly white or colorless in cases of albinism.[146] Human hair ranges in color from white to red to blond to brown to black, which is most frequent.[154] Hair color depends on the amount of melanin (an effective sun blocking pigment) in the skin and hair, with hair melanin concentrations in hair fading with increased age, leading to grey or even white hair. Most researchers believe that skin darkening is an adaptation that evolved as protection against ultraviolet solar radiation, which also helps balancing folate, which is destroyed by ultraviolet radiation. Light skin pigmentation protects against depletion of vitamin D, which requires sunlight to make.[155] Skin pigmentation of contemporary humans is clinally distributed across the planet, and in general correlates with the level of ultraviolet radiation in a particular geographic area. Human skin also has a capacity to darken (tan) in response to exposure to ultraviolet radiation.[156][157][158]

Within the human species, the greatest degree of genetic variation exists between males and females. While the nucleotide genetic variation of individuals of the same sex across global populations is no greater than 0.1%, the genetic difference between males and females is between 1% and 2%. Although different in nature[clarification needed], this approaches the genetic differentiation between men and male chimpanzees or women and female chimpanzees. The genetic difference between sexes contributes to anatomical, hormonal, neural, and physiological differences between men and women, although the exact degree and nature of social and environmental influences on sexes are not completely understood. Males on average are 15% heavier and 15cm taller than females. There is a difference between body types, body organs and systems, hormonal levels, sensory systems, and muscle mass between sexes. On average, there is a difference of about 4050% in upper body strength and 2030% in lower body strength between men and women. Women generally have a higher body fat percentage than men. Women have lighter skin than men of the same population; this has been explained by a higher need for vitamin D (which is synthesized by sunlight) in females during pregnancy and lactation. As there are chromosomal differences between females and males, some X and Y chromosome related conditions and disorders only affect either men or women. Other conditional differences between males and females are not related to sex chromosomes. Even after allowing for body weight and volume, the male voice is usually an octave deeper than the female voice. Women have a longer life span in almost every population around the world.[160][161][162][163][164][165][166][167][168]

Males typically have larger tracheae and branching bronchi, with about 30% greater lung volume per unit body mass. They have larger hearts, 10% higher red blood cell count, and higher hemoglobin, hence greater oxygen-carrying capacity. They also have higher circulating clotting factors (vitamin K, prothrombin and platelets). These differences lead to faster healing of wounds and higher peripheral pain tolerance.[169] Females typically have more white blood cells (stored and circulating), more granulocytes and B and T lymphocytes. Additionally, they produce more antibodies at a faster rate than males. Hence they develop fewer infectious diseases and these continue for shorter periods.[169]Ethologists argue that females, interacting with other females and multiple offspring in social groups, have experienced such traits as a selective advantage.[170][171][172][173][174] According to Daly and Wilson, "The sexes differ more in human beings than in monogamous mammals, but much less than in extremely polygamous mammals."[175] But given that sexual dimorphism in the closest relatives of humans is much greater than among humans, the human clade must be considered to be characterized by decreasing sexual dimorphism, probably due to less competitive mating patterns. One proposed explanation is that human sexuality has developed more in common with its close relative the bonobo, which exhibits similar sexual dimorphism, is polygynandrous and uses recreational sex to reinforce social bonds and reduce aggression.[176]

Humans of the same sex are 99.9% genetically identical. There is extremely little variation between human geographical populations, and most of the variation that does occur is at the personal level within local areas, and not between populations.[146][177][178] Of the 0.1% of human genetic differentiation, 85% exists within any randomly chosen local population, be they Italians, Koreans, or Kurds. Two randomly chosen Koreans may be genetically as different as a Korean and an Italian. Any ethnic group contains 85% of the human genetic diversity of the world. Genetic data shows that no matter how population groups are defined, two people from the same population group are about as different from each other as two people from any two different population groups.[146][179][180][181]

Current genetic research has demonstrated that humans on the African continent are the most genetically diverse.[182] There is more human genetic diversity in Africa than anywhere else on Earth. The genetic structure of Africans was traced to 14 ancestral population clusters. Human genetic diversity decreases in native populations with migratory distance from Africa and this is thought to be the result of bottlenecks during human migration.[183][184] Humans have lived in Africa for the longest time, which has allowed accumulation of a higher diversity of genetic mutations in these populations. Only part of Africa's population migrated out of the continent, bringing just part of the original African genetic variety with them. African populations harbor genetic alleles that are not found in other places of the world. All the common alleles found in populations outside of Africa are found on the African continent.[146]

Geographical distribution of human variation is complex and constantly shifts through time which reflects complicated human evolutionary history. Most human biological variation is clinally distributed and blends gradually from one area to the next. Groups of people around the world have different frequencies of polymorphic genes. Furthermore, different traits are non-concordant and each have different clinal distribution. Adaptability varies both from person to person and from population to population. The most efficient adaptive responses are found in geographical populations where the environmental stimuli are the strongest (e.g. Tibetans are highly adapted to high altitudes). The clinal geographic genetic variation is further complicated by the migration and mixing between human populations which has been occurring since prehistoric times.[146][185][186][187][188][189]

Go here to read the rest:
Human - Wikipedia

Posted in Human Genetic Engineering | Comments Off on Human – Wikipedia

Genetic Engineering: The Past, Present, and Future – The …

Inside this Article

This most pleasant, easy to read, and informative article takes you on an even easier to follow journey from a basic definition of genetic engineering through a couple of interesting historical highlights, then quickly moves you from an understanding of how genetic engineering is done, to its applications in the real world now and in the future. In closing Dr. Hadzimichalis provides a few thoughtful remarks on todays ethical and regulatory considerations.

In humans, as with any other organism, genetic engineering refers to any changes in genetic makeup that result from the direct manipulation of DNA using various technical methods. While this term is used often in mainstream media, much of the general population does not have a clear understanding of its meaning, current uses, and potential applications. The process of genetic engineering is intended to produce a useful or desirable characteristic in an organism and on a molecular level and may include additions, deletions, or targeted changes to the genome. More simply put, genetic engineering involves cutting, pasting, and/or editing DNA to produce a valuable effect. Interestingly, these alterations can involve introduction of genetic material from either the same or from different type of organism.

A variety of methods may be employed to produce a genetically modified organism (GMO). Historically, and still today, humans have indirectly modified the genomes of other species to produce desired products including domesticated animals and high yield plants varieties. By selecting the seeds from the best produce for next years crop and using the hardiest steers to fertilize the herd, food staples became gradually more robust and abundant.

However, breakthrough experiments from Hersey and Chase in 1952 confirming that DNA is the vessel for our genetic code, initiated further characterization of this biological macromolecule and prompted an in depth examination into methods to specifically modify it (http://jgp.rupress.org/content/36/1/39.full.pdf)). This has decreased the time it takes to appreciably improve an organism from decades and even centuries down to weeks and months.

Dr. Paul Berg and colleagues are credited with creating the first ever recombinant DNA molecule (molecules that are DNA sequences resulting from the use of laboratory methods), published in 1972. In this study, they described a novel way to combine DNA from different organisms and in fact, successfully combined DNA from a monkey virus (SV40) and a bacterial virus (lambda phage) (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC389671/). For this work, Dr. Berg was awarded the 1980 Nobel Prize in chemistry for his fundamental studies of the biochemistry of nucleic acids, with particular regard to recombinant-DNA (http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1980/).

Read the original post:
Genetic Engineering: The Past, Present, and Future - The ...

Posted in Human Genetic Engineering | Comments Off on Genetic Engineering: The Past, Present, and Future – The …

Human Genetic Enhancements: A Transhumanist Perspective

1. What is Transhumanism?

Transhumanism is a loosely defined movement that has developed gradually over the past two decades. It promotes an interdisciplinary approach to understanding and evaluating the opportunities for enhancing the human condition and the human organism opened up by the advancement of technology. Attention is given to both present technologies, like genetic engineering and information technology, and anticipated future ones, such as molecular nanotechnology and artificial intelligence.1

The enhancement options being discussed include radical extension of human health-span, eradication of disease, elimination of unnecessary suffering, and augmentation of human intellectual, physical, and emotional capacities.2 Other transhumanist themes include space colonization and the possibility of creating superintelligent machines, along with other potential developments that could profoundly alter the human condition. The ambit is not limited to gadgets and medicine, but encompasses also economic, social, institutional designs, cultural development, and psychological skills and techniques.

Transhumanists view human nature as a work-in-progress, a half-baked beginning that we can learn to remold in desirable ways. Current humanity need not be the endpoint of evolution. Transhumanists hope that by responsible use of science, technology, and other rational means we shall eventually manage to become post-human, beings with vastly greater capacities than present human beings have.

Some transhumanists take active steps to increase the probability that they personally will survive long enough to become post-human, for example by choosing a healthy lifestyle or by making provisions for having themselves cryonically suspended in case of de-animation.3 In contrast to many other ethical outlooks, which in practice often reflect a reactionary attitude to new technologies, the transhumanist view is guided by an evolving vision to take a more active approach to technology policy. This vision, in broad strokes, is to create the opportunity to live much longer and healthier lives, to enhance our memory and other intellectual faculties, to refine our emotional experiences and increase our subjective sense of well-being, and generally to achieve a greater degree of control over our own lives. This affirmation of human potential is offered as an alternative to customary injunctions against playing God, messing with nature, tampering with our human essence, or displaying punishable hubris.

Transhumanism does not entail technological optimism. While future technological capabilities carry immense potential for beneficial deployments, they also could be misused to cause enormous harm, ranging all the way to the extreme possibility of intelligent life becoming extinct. Other potential negative outcomes include widening social inequalities or a gradual erosion of the hard-to-quantify assets that we care deeply about but tend to neglect in our daily struggle for material gain, such as meaningful human relationships and ecological diversity. Such risks must be taken very seriously, as thoughtful transhumanists fully acknowledge.4

Transhumanism has roots in secular humanist thinking, yet is more radical in that it promotes not only traditional means of improving human nature, such as education and cultural refinement, but also direct application of medicine and technology to overcome some of our basic biological limits.

2. A Core Transhumanist Value: Exploring the Post-human Realm

The range of thoughts, feelings, experiences, and activities that are accessible to human organisms presumably constitute only a tiny part of what is possible. There is no reason to think that the human mode of being is any more free of limitations imposed by our biological nature than are the modes of being of other animals. Just as chimpanzees lack the brainpower to understand what it is like to be human, so too do we lack the practical ability to form a realistic intuitive understanding of what it would be like to be post-human.

This point is distinct from any principled claims about impossibility. We need not assert that post-humans would not be Turing computable or that their concepts could not be expressed by any finite sentences in human language. The impossibility is more like the impossibility for us to visualize a twenty-dimensional hypersphere or to read, with perfect recollection and understanding, every book in the Library of Congress. Our own current mode of being, therefore, spans but a minute subspace of what is possible or permitted by the physical constraints of the universe. It is not farfetched to suppose that there are parts of this larger space that represent extremely valuable ways of living, feeling, and thinking.

We can conceive of aesthetic and contemplative pleasures whose blissfulness vastly exceeds what any human being has yet experienced. We can imagine beings that reach a much greater level of personal development and maturity than current human beings do, because they have the opportunity to live for hundreds or thousands of years with full bodily and psychic vigor. We can conceive of beings that are much smarter than us, that can read books in seconds, that are much more brilliant philosophers than we are, that can create artworks, which, even if we could understand them only on the most superficial level, would strike us as wonderful masterpieces. We can imagine love that is stronger, purer, and more secure than any human being has yet harbored. Our everyday intuitions about values are constrained by the narrowness of our experience and the limitations of our powers of imagination. We should leave room in our thinking for the possibility that as we develop greater capacities, we shall come to discover values that will strike us as being of a far higher order than those we can realize as un-enhanced biological humans beings.

The conjecture that there are greater values than we can currently fathom does not imply that values are not defined in terms of our current dispositions. Take, for example, a dispositional theory of value such as the one described by David Lewis.5 According to Lewiss theory, something is a value for you if and only if you would want to want it if you were perfectly acquainted with it and you were thinking and deliberating as clearly as possible about it. On this view, there may be values that we do not currently want, and that we do not even currently want to want, because we may not be perfectly acquainted with them or because we are not ideal deliberators. Some values pertaining to certain forms of post-human existence may well be of this sort; they may be values for us now, and they may be so in virtue of our current dispositions, and yet we may not be able to fully appreciate them with our current limited deliberative capacities and our lack of the receptive faculties required for full acquaintance with them. This point is important because it shows that the transhumanist view that we ought to explore the realm of post-human values does not entail that we should forego our current values. The post-human values can be our current values, albeit ones that we have not yet clearly comprehended. Transhumanism does not require us to say that we should favor post-human beings over human beings, but that the right way of favoring human beings is by enabling us to realize our ideals better and that some of our ideals may well be located outside the space of modes of being that are accessible to us with our current biological constitution.

We can overcome many of our biological limitations. It is possible that there are some limitations that are impossible for us to transcend, not only because of technological difficulties but on metaphysical grounds. Depending on what our views are about what constitutes personal identity, it could be that certain modes of being, while possible, are not possible for us, because any being of such a kind would be so different from us that they could not be us. Concerns of this kind are familiar from theological discussions of the afterlife. In Christian theology, some souls will be allowed by God to go to heaven after their time as corporal creatures is over. Before being admitted to heaven, the souls would undergo a purification process in which they would lose many of their previous bodily attributes. Skeptics may doubt that the resulting minds would be sufficiently similar to our current minds for it to be possible for them to be the same person. A similar predicament arises within transhumanism: if the mode of being of a post-human being is radically different from that of a human being, then we may doubt whether a post-human being could be the same person as a human being, even if the post-human being originated from a human being.

We can, however, envision many enhancements that would not make it impossible for the post-transformation someone to be the same person as the pre-transformation person. A person could obtain considerable increased life expectancy, intelligence, health, memory, and emotional sensitivity, without ceasing to exist in the process. A persons intellectual life can be transformed radically by getting an education. A persons life expectancy can be extended substantially by being unexpectedly cured from a lethal disease. Yet these developments are not viewed as spelling the end of the original person. In particular, it seems that modifications that add to a persons capacities can be more substantial than modifications that subtract, such as brain damage. If most of someone currently is, including her most important memories, activities, and feelings, is preserved, then adding extra capacities on top of that would not easily cause the person to cease to exist.

Preservation of personal identity, especially if this notion is given a narrow construal, is not everything. We can value other things than ourselves, or we might regard it as satisfactory if some parts or aspects of ourselves survive and flourish, even if that entails giving up some parts of ourselves such that we no longer count as being the same person. Which parts of ourselves we might be willing to sacrifice may not become clear until we are more fully acquainted with the full meaning of the options. A careful, incremental exploration of the post-human realm may be indispensable for acquiring such an understanding, although we may also be able to learn from each others experiences and from works of the imagination. Additionally, we may favor future people being posthuman rather than human, if the posthumans would lead lives more worthwhile than the alternative humans would. Any reasons stemming from such considerations would not depend on the assumption that we ourselves could become posthuman beings.

Transhumanism promotes the quest to develop further so that we can explore hitherto inaccessible realms of value. Technological enhancement of human organisms is a means that we ought to pursue to this end. There are limits to how much can be achieved by low-tech means such as education, philosophical contemplation, moral self-scrutiny and other such methods proposed by classical philosophers with perfectionist leanings, including Plato, Aristotle, and Nietzsche, or by means of creating a fairer and better society, as envisioned by social reformists such as Marx or Martin Luther King. This is not to denigrate what we can do with the tools we have today. Yet ultimately, transhumanists hope to go further.

3. The Morality of Human Germ-Line Genetic Engineering

Most potential human enhancement technologies have so far received scant attention in the ethics literature. One exception is genetic engineering, the morality of which has been extensively debated in recent years. To illustrate how the transhumanist approach can be applied to particular technologies, we shall therefore now turn to consider the case of human germ-line genetic enhancements.

Certain types of objection against germ-line modifications are not accorded much weight by a transhumanist interlocutor. For instance, objections that are based on the idea that there is something inherently wrong or morally suspect in using science to manipulate human nature are regarded by transhumanists as wrongheaded. Moreover, transhumanists emphasize that particular concerns about negative aspects of genetic enhancements, even when such concerns are legitimate, must be judged against the potentially enormous benefits that could come from genetic technology successfully employed.6 For example, many commentators worry about the psychological effects of the use of germ-line engineering. The ability to select the genes of our children and to create so-called designer babies will, it is claimed, corrupt parents, who will come to view their children as mere products.7 We will then begin to evaluate our offspring according to standards of quality control, and this will undermine the ethical ideal of unconditional acceptance of children, no matter what their abilities and traits. Are we really prepared to sacrifice on the altar of consumerism even those deep values that are embodied in traditional relationships between child and parents? Is the quest for perfection worth this cultural and moral cost? A transhumanist should not dismiss such concerns as irrelevant. Transhumanists recognize that the depicted outcome would be bad. We do not want parents to love and respect their children less. We do not want social prejudice against people with disabilities to get worse. The psychological and cultural effects of commodifying human nature are potentially important.

But such dystopian scenarios are speculations. There is no firm ground for believing that the alleged consequences would actually happen. What relevant evidence we have, for instance regarding the treatment of children who have been conceived through the use of in vitro fertilization or embryo screening, suggests that the pessimistic prognosis is alarmist. Parents will in fact love and respect their children even when artificial means and conscious choice play a part in procreation.

We might speculate, instead, that germ-line enhancements will lead to more love and parental dedication. Some mothers and fathers might find it easier to love a child who, thanks to enhancements, is bright, beautiful, healthy, and happy. The practice of germ-line enhancement might lead to better treatment of people with disabilities, because a general demystification of the genetic contributions to human traits could make it clearer that people with disabilities are not to blame for their disabilities and a decreased incidence of some disabilities could lead to more assistance being available for the remaining affected people to enable them to live full, unrestricted lives through various technological and social supports. Speculating about possible psychological or cultural effects of germ-line engineering can therefore cut both ways. Good consequences no less than bad ones are possible. In the absence of sound arguments for the view that the negative consequences would predominate, such speculations provide no reason against moving forward with the technology.

Ruminations over hypothetical side-effects may serve to make us aware of things that could go wrong so that we can be on the lookout for untoward developments. By being aware of the perils in advance, we will be in a better position to take preventive countermeasures. For instance, if we think that some people would fail to realize that a human clone would be a unique person deserving just as much respect and dignity as any other human being, we could work harder to educate the public on the inadequacy of genetic determinism. The theoretical contributions of well-informed and reasonable critics of germ-line enhancement could indirectly add to our justification for proceeding with germ-line engineering. To the extent that the critics have done their job, they can alert us to many of the potential untoward consequences of germ-line engineering and contribute to our ability to take precautions, thus improving the odds that the balance of effects will be positive. There may well be some negative consequences of human germ-line engineering that we will not forestall, though of course the mere existence of negative effects is not a decisive reason not to proceed. Every major technology has some negative consequences. Only after a fair comparison of the risks with the likely positive consequences can any conclusion based on a cost-benefit analysis be reached.

In the case of germ-line enhancements, the potential gains are enormous. Only rarely, however, are the potential gains discussed, perhaps because they are too obvious to be of much theoretical interest. By contrast, uncovering subtle and non-trivial ways in which manipulating our genome could undermine deep values is philosophically a lot more challenging. But if we think about it, we recognize that the promise of genetic enhancements is anything but insignificant. Being free from severe genetic diseases would be good, as would having a mind that can learn more quickly, or having a more robust immune system. Healthier, wittier, happier people may be able to reach new levels culturally. To achieve a significant enhancement of human capacities would be to embark on the transhuman journey of exploration of some of the modes of being that are not accessible to us as we are currently constituted, possibly to discover and to instantiate important new values. On an even more basic level, genetic engineering holds great potential for alleviating unnecessary human suffering. Every day that the introduction of effective human genetic enhancement is delayed is a day of lost individual and cultural potential, and a day of torment for many unfortunate sufferers of diseases that could have been prevented. Seen in this light, proponents of a ban or a moratorium on human genetic modification must take on a heavy burden of proof in order to have the balance of reason tilt in their favor. Transhumanists conclude that the challenge has not been met.

4. Should Human Reproduction be Regulated?

One way of going forward with genetic engineering is to permit everything, leaving all choices to parents. While this attitude may be consistent with transhumanism, it is not the best transhumanist approach. One thing that can be said for adopting a libertarian stance in regard to human reproduction is the sorry track record of socially planned attempts to improve the human gene pool. The list of historical examples of state intervention in this domain ranges from the genocidal horrors of the Nazi regime, to the incomparably milder but still disgraceful semi-coercive sterilization programs of mentally impaired individuals favored by many well-meaning socialists in the past century, to the controversial but perhaps understandable program of the current Chinese government to limit population growth. In each case, state policies interfered with the reproductive choices of individuals. If parents had been left to make the choices for themselves, the worst transgressions of the eugenics movement would not have occurred. Bearing this in mind, we ought to think twice before giving our support to any proposal that would have the state regulate what sort of children people are allowed to have and the methods that may be used to conceive them.8

We currently permit governments to have a role in reproduction and child-rearing and we may reason by extension that there would likewise be a role in regulating the application of genetic reproductive technology. State agencies and regulators play a supportive and supervisory role, attempting to promote the interests of the child. Courts intervene in cases of child abuse or neglect. Some social policies are in place to support children from disadvantaged backgrounds and to ameliorate some of the worst inequities suffered by children from poor homes, such as through the provision of free schooling. These measures have analogues that apply to genetic enhancement technologies. For example, we ought to outlaw genetic modifications that are intended to damage the child or limit its opportunities in life, or that are judged to be too risky. If there are basic enhancements that would be beneficial for a child but that some parents cannot afford, then we should consider subsidizing those enhancements, just as we do with basic education. There are grounds for thinking that the libertarian approach is less appropriate in the realm of reproduction than it is in other areas. In reproduction, the most important interests at stake are those of the child-to-be, who cannot give his or her advance consent or freely enter into any form of contract. As it is, we currently approve of many measures that limit parental freedoms. We have laws against child abuse and child neglect. We have obligatory schooling. In some cases, we can force needed medical treatment on a child, even against the wishes of its parents.

There is a difference between these social interventions with regard to children and interventions aimed at genetic enhancements. While there is a consensus that nobody should be subjected to child abuse and that all children should have at least a basic education and should receive necessary medical care, it is unlikely that we will reach an agreement on proposals for genetic enhancements any time soon. Many parents will resist such proposals on principled grounds, including deep-seated religious or moral convictions. The best policy for the foreseeable future may therefore be to not legally require any genetic enhancements, except perhaps in extreme cases for which there is no alternative treatment. Even in such cases, it is dubious that the social climate in many countries is ready for mandatory genetic interventions.

The scope for ethics and public policy, however, extend far beyond the passing of laws requiring or banning specific interventions. Even if a given enhancement option is neither outlawed nor legally required, we may still seek to discourage or encourage its use in a variety of ways. Through subsidies and taxes, research-funding policies, genetic counseling practices and guidelines, laws regulating genetic information and genetic discrimination, provision of health care services, regulation of the insurance industry, patent law, education, and through the allocation of social approbation and disapproval, we may influence the direction in which particular technologies are applied. We may appropriately ask, with regard to genetic enhancement technologies, which types of applications we ought to promote or discourage.

5. Which Modifications Should Be Promoted and which Discouraged?

An externality, as understood by economists, is a cost or a benefit of an action that is not carried by a decision-maker. An example of a negative externality might be found in a firm that lowers its production costs by polluting the environment. The firm enjoys most of the benefits while escaping the costs, such as environmental degradation, which may instead paid by people living nearby. Externalities can also be positive, as when people put time and effort into creating a beautiful garden outside their house. The effects are enjoyed not exclusively by the gardeners but spill over to passersby. As a rule of thumb, sound social policy and social norms would have us internalize many externalities so that the incentives of producers more closely match the social value of production. We may levy a pollution tax on the polluting firm, for instance, and give our praise to the home gardeners who beautify the neighborhood.

Genetic enhancements aimed at the obtainment of goods that are desirable only in so far as they provide a competitive advantage tend to have negative externalities. An example of such a positional good, as economists call them, is stature. There is evidence that being tall is statistically advantageous, at least for men in Western societies. Taller men earn more money, wield greater social influence, and are viewed as more sexually attractive. Parents wanting to give their child the best possible start in life may rationally choose a genetic enhancement that adds an inch or two to the expected length of their offspring. Yet for society as a whole, there seems to be no advantage whatsoever in people being taller. If everybody grew two inches, nobody would be better off than they were before. Money spent on a positional good like length has little or no net effect on social welfare and is therefore, from societys point of view, wasted.

Health is a very different type of good. It has intrinsic benefits. If we become healthier, we are personally better off and others are not any worse off. There may even be a positive externality of enhancing ours own health. If we are less likely to contract a contagious disease, others benefit by being less likely to get infected by us. Being healthier, you may also contribute more to society and consume less of publicly funded healthcare.

If we were living in a simple world where people were perfectly rational self-interested economic agents and where social policies had no costs or unintended effects, then the basic policy prescription regarding genetic enhancements would be relatively straightforward. We should internalize the externalities of genetic enhancements by taxing enhancements that have negative externalities and subsidizing enhancements that have positive externalities. Unfortunately, crafting policies that work well in practice is considerably more difficult. Even determining the net size of the externalities of a particular genetic enhancement can be difficult. There is clearly an intrinsic value to enhancing memory or intelligence in as much as most of us would like to be a bit smarter, even if that did not have the slightest effect on our standing in relation to others. But there would also be important externalities, both positive and negative. On the negative side, others would suffer some disadvantage from our increased brainpower in that their own competitive situation would be worsened. Being more intelligent, we would be more likely to attain high-status positions in society, positions that would otherwise have been enjoyed by a competitor. On the positive side, others might benefit from enjoying witty conversations with us and from our increased taxes.

If in the case of intelligence enhancement the positive externalities outweigh the negative ones, then a prima facie case exists not only for permitting genetic enhancements aimed at increasing intellectual ability, but for encouraging and subsidizing them too. Whether such policies remain a good idea when all practicalities of implementation and political realities are taken into account is another matter. But at least we can conclude that an enhancement that has both significant intrinsic benefits for an enhanced individual and net positive externalities for the rest of society should be encouraged. By contrast, enhancements that confer only positional advantages, such as augmentation of stature or physical attractiveness, should not be socially encouraged, and we might even attempt to make a case for social policies aimed at reducing expenditure on such goods, for instance through a progressive tax on consumption.9

6. The Issue of Equality

One important kind of externality in germ-line enhancements is their effects on social equality. This has been a focus for many opponents of germ-line genetic engineering who worry that it will widen the gap between haves and have-nots. Today, children from wealthy homes enjoy many environmental privileges, including access to better schools and social networks. Arguably, this constitutes an inequity against children from poor homes. We can imagine scenarios where such inequities grow much larger thanks to genetic interventions that only the rich can afford, adding genetic advantages to the environmental advantages already benefiting privileged children. We could even speculate about the members of the privileged stratum of society eventually enhancing themselves and their offspring to a point where the human species, for many practical purposes, splits into two or more species that have little in common except a shared evolutionary history.10 The genetically privileged might become ageless, healthy, super-geniuses of flawless physical beauty, who are graced with a sparkling wit and a disarmingly self-deprecating sense of humor, radiating warmth, empathetic charm, and relaxed confidence. The non-privileged would remain as people are today but perhaps deprived of some their self-respect and suffering occasional bouts of envy. The mobility between the lower and the upper classes might disappear, and a child born to poor parents, lacking genetic enhancements, might find it impossible to successfully compete against the super-children of the rich. Even if no discrimination or exploitation of the lower class occurred, there is still something disturbing about the prospect of a society with such extreme inequalities.

While we have vast inequalities today and regard many of these as unfair, we also accept a wide range of inequalities because we think that they are deserved, have social benefits, or are unavoidable concomitants to free individuals making their own and sometimes foolish choices about how to live their lives. Some of these justifications can also be used to exonerate some inequalities that could result from germ-line engineering. Moreover, the increase in unjust inequalities due to technology is not a sufficient reason for discouraging the development and use of the technology. We must also consider its benefits, which include not only positive externalities but also intrinsic values that reside in such goods as the enjoyment of health, a soaring mind, and emotional well-being.

We can also try to counteract some of the inequality-increasing tendencies of enhancement technology with social policies. One way of doing so would be by widening access to the technology by subsidizing it or providing it for free to children of poor parents. In cases where the enhancement has considerable positive externalities, such a policy may actually benefit everybody, not just the recipients of the subsidy. In other cases, we could support the policy on the basis of social justice and solidarity.

Even if all genetic enhancements were made available to everybody for free, however, this might still not completely allay the concern about inequity. Some parents might choose not to give their children any enhancements. The children would then have diminished opportunities through no fault of their own. It would be peculiar, however, to argue that governments should respond to this problem by limiting the reproductive freedom of the parents who wish to use genetic enhancements. If we are willing to limit reproductive freedom through legislation for the sake of reducing inequities, then we might as well make some enhancements obligatory for all children. By requiring genetic enhancements for everybody to the same degree, we would not only prevent an increase in inequalities but also reap the intrinsic benefits and the positive externalities that would come from the universal application of enhancement technology. If reproductive freedom is regarded as too precious to be curtailed, then neither requiring nor banning the use of reproductive enhancement technology is an available option. In that case, we would either have to tolerate inequities as a price worth paying for reproductive freedom or seek to remedy the inequities in ways that do not infringe on reproductive freedom.

All of this is based on the hypothesis that germ-line engineering would in fact increase inequalities if left unregulated and no countermeasures were taken. That hypothesis might be false. In particular, it might turn out to be technologically easier to cure gross genetic defects than to enhance an already healthy genetic constitution. We currently know much more about many specific inheritable diseases, some of which are due to single gene defects, than we do about the genetic basis of talents and desirable qualities such as intelligence and longevity, which in all likelihood are encoded in complex constellations of multiple genes. If this turns out to be the case, then the trajectory of human genetic enhancement may be one in which the first thing to happen is that the lot of the genetically worst-off is radically improved, through the elimination of diseases such as Tay Sachs, Lesch-Nyhan, Downs Syndrome, and early-onset Alzheimers disease. This would have a major leveling effect on inequalities, not primarily in the monetary sense, but with respect to the even more fundamental parameters of basic opportunities and quality of life.

7. Are Germ-Line Interventions Wrong Because They Are Irreversible?

Another frequently heard objection against germ-line genetic engineering is that it would be uniquely hazardous because the changes it would bring are irreversible and would affect all generations to come. It would be highly irresponsible and arrogant of us to presume we have the wisdom to make decisions about what should be the genetic constitutions of people living many generations hence. Human fallibility, on this objection, gives us good reason not to embark on germ-line interventions. For our present purposes, we can set aside the issue of the safety of the procedure, understood narrowly, and stipulate that the risk of medical side-effects has been reduced to an acceptable level. The objection under consideration concerns the irreversibility of germ-line interventions and the lack of predictability of its long-term consequences; it forces us to ask if we possess the requisite wisdom for making genetic choices on behalf of future generations.

Human fallibility is not a conclusive ground for resisting germ-line genetic enhancements. The claim that such interventions would be irreversible is incorrect. Germ-line interventions can be reversed by other germ-line interventions. Moreover, considering that technological progress in genetics is unlikely to grind to an abrupt halt any time soon, we can count on future generations being able to reverse our current germ-line interventions even more easily than we can currently implement them. With advanced genetic technology, it might even be possible to reverse many germ-line modifications with somatic gene therapy, or with medical nanotechnology.11 Technologically, germ-line changes are perfectly reversible by future generations.

It is possible that future generations might choose to retain the modifications that we make. If that turns out to be the case, then the modifications, while not irreversible, would nevertheless not actually be reversed. This might be a good thing. The possibility of permanent consequences is not an objection against germ-line interventions any more than it is against social reforms. The abolition of slavery and the introduction of general suffrage might never be reversed; indeed, we hope they will not be. Yet this is no reason for people to have resisted the reforms. Likewise, the potential for everlasting consequences, including ones we cannot currently reliably forecast, in itself constitutes no reason to oppose genetic intervention. If immunity against horrible diseases and enhancements that expand the opportunities for human growth are passed on to subsequent generations in perpetuo, it would be a cause for celebration, not regret.

There are some kinds of changes that we need be particularly careful about. They include modifications of the drives and motivations of our descendants. For example, there are obvious reasons why we might think it worthwhile to seek to reduce our childrens propensity to violence and aggression. We would have to take care, however, that we do not do this in a way that would make future people overly submissive or complacent. We can conceive of a dystopian scenario along the lines of Brave New World, in which people are leading shallow lives but have been manipulated to be perfectly content with their sub-optimal existence. If the people transferred their shallow values to their children, humanity could get permanently stuck in a not-very-good state, having foolishly changed itself to lack any desire to strive for something better. This outcome would be dystopian because a permanent cap on human development would destroy the transhumanist hope of exploring the post-human realm. Transhumanists therefore place an emphasis on modifications which, in addition to promoting human well-being, also open more possibilities than they close and which increase our ability to make subsequent choices wisely. Longer active lifespans, better memory, and greater intellectual capacities are plausible candidates for enhancements that would improve our ability to figure out what we ought to do next. They would be a good place to start.12

Notes

1. See Eric K. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation (New York: John Wiley & Sons, Inc., 1992); Ray Kurzweil, The Age of Spiritual Machines: When Computers Exceed Human Intelligence (New York: Viking, 1999); Hans Moravec, Robot: Mere Machine to Transcendent Mind. (New York: Oxford University Press, 1999).

2. See Robert A. Freitas Jr., Nanomedicine, Volume 1: Basic Capabilities (Georgetown, Tex.: Landes Bioscience, 1999).

3. See Robert Ettinger, The Prospect of Immortality (New York: Doubleday, 1964); James Hughes, The Future of Death: Cryonics and the Telos of Liberal Individualism, Journal of Evolution and Technology 6 (2001).

4. See Eric K. Drexler, Engines of Creation: The Coming Era of Nanotechnology (London: Fourth Estate, 1985).

5. See David Lewis, Dispositional Theories of Value, Proceedings of the Aristotelian Society Supp. 63 (1989).

6. See Erik Parens, ed., Enhancing Human Traits: Ethical and Social Implications. (Washington, D. C: Georgetown University Press, 1998).

7. See Leon Kass, Life, Liberty, and Defense of Dignity: The Challenge for Bioethics (San Francisco: Encounter Books, 2002).

8. See Jonathan Glover, What Sort of People Should There Be? (New York: Penguin, 1984); Gregory Stock, Redesigning Humans: Our Inevitable Genetic Future (New York, Houghton Mifflin, 2002); and Allen Buchanan et al., From Chance to Choice: Genetics & Justice (Cambridge, England: Cambridge University Press, 2002).

9. See Robert H. Frank, Luxury Fever: Why Money Fails to Satisfy in an Era of Excess (New York: Free Press, 1999).

10. Cf. Lee M. Silver, Remaking Eden: How Genetic Engineering and Cloning will Transform the American Family (New York: Avon Books, 1997); and Nancy Kress, Beggars in Spain (Avon Books, 1993).

11. See Freitas, op. cit.

12. For their helpful comments I am grateful to Heather Bradshaw, Robert A. Freitas Jr., James Hughes, Gerald Lang, Matthew Liao, Thomas Magnell, David Rodin, Jeffrey Soreff, Mike Treder, Mark Walker, Michael Weingarten, and an anonymous referee of the Journal of Value Inquiry.

Excerpt from:
Human Genetic Enhancements: A Transhumanist Perspective

Posted in Human Genetic Engineering | Comments Off on Human Genetic Enhancements: A Transhumanist Perspective