Search Immortality Topics:

Page 53«..1020..52535455..6070..»


Category Archives: Human Genetic Engineering

What Does Every Engineer Want for the Holidays? – Medical Device and Diagnostics Industry

Engineers and scientists are really like most ordinary consumers except in their interest in experiences that deal with great technical achievements, failures and the future technologies that are yet to be. So, rather than a set of catchy products, this list will focus on unique experiences with particular appeal to engineers and scientists.

I. Books

Reading is an experience unlike no other in that it can be done by any literate person at almost any time and in any place. Here is a very short list of science and engineering related books released in 2019:

> Infinite Powers: The Story of Calculus The Language of the Universe, by Steven Strogatz (Atlantic Books)

This is the story of mathematics greatest ever idea: calculus. Without it, there would be no computers, no microwave ovens, no GPS, and no space travel. But before it gave modern man almost infinite powers, calculus was behind centuries of controversy, competition, and even death.

Professor Steven Strogatz charts the development of this seminal achievement from the days of Archimedes to todays breakthroughs in chaos theory and artificial intelligence. Filled with idiosyncratic characters from Pythagoras to Fourier, Infinite Powers is a compelling human drama that reveals the legacy of calculus on nearly every aspect of modern civilization, including science, politics, medicine, philosophy, and much besides.

> Six Impossible Things: The Quanta of Solace and the Mysteries of the Subatomic World, by John Gribbin (Icon Books Ltd.)

Quantum physics is strange. It tells us that a particle can be in two places at once. Indeed, that particle is also a wave, and everything in the quantum world can be described entirely in terms of waves, or entirely in terms of particles, whichever you prefer.

All of this was clear by the end of the 1920s. But to the great distress of many physicists, let alone ordinary mortals, nobody has ever been able to come up with a common sense explanation of what is going on. Physicists have sought quanta of solace in a variety of more or less convincing interpretations. Popular science master John Gribbin takes us on a tour through the big six, from the Copenhagen interpretation via the pilot wave and many worlds approaches.

> Hacking Darwin: Genetic Engineering and the Future of Humanityby Jamie Metzl (Sourcebooks)

At the dawn of the genetics revolution, our DNA is becoming as readable, writable, and hackable as our information technology. But as humanity starts retooling our own genetic code, the choices we make today will be the difference between realizing breathtaking advances in human well-being and descending into a dangerous and potentially deadly genetic arms race.

Enter the laboratories where scientists are turning science fiction into reality. Look towards a future where our deepest beliefs, morals, religions, and politics are challenged like never before and the very essence of what it means to be human is at play. When we can engineer our future children, massively extend our lifespans, build life from scratch, and recreate the plant and animal world, should we?

II. Engineering Coding Boot Camps

All engineers need to stay current in their own discipline as well as learn new skills. What better way to accomplish that goal that with an uber-focused bootcamp.

> Flatiron School

Flatiron School offers on-campus (throughout the US) and online programs in software engineering, data science, and UX/UI Design. The schools immersive courses aim to launch students into careers as software engineers, data scientists, and UX/UI designers through a rigorous curriculum and the support of seasoned instructors and personal career coaches. Through labs and projects, this school teaches students to think and build like software engineers and data scientists. The UX/UI Design includes a client project to give students client-facing experience.

> Hack Reactor

This 12-week immersive coding school provides software engineering education, career placement services, and a network of professional peers. The school has campuses in major US cities as well as an online. During the first six weeks at Hack Reactor, students learn the fundamentals of development, full stack JavaScript and are introduced to developer tools and technologies. In the final six weeks, students work on personal and group projects, using the skills they have learned. After 800+ hours of curriculum, students graduate as full-stack software engineers and JavaScript programmers.

> Codesmith

This program offers a full-time, 12-week full stack software engineering bootcamp in Los Angeles and New York City. Codesmith is a selective program focusing largely on computer science and full-stack JavaScript, with an emphasis on technologies like React, Redux, Node, build tools, Dev Ops and machine learning. This program enables Codesmith students (known as Residents) to build open-source projects, with the aim of moving into positions as skilled software engineers. Codesmith Residents gain a deep understanding of advanced JavaScript practices, fundamental computer science concepts (such as algorithms and data structures), and object-oriented and functional programming. The program helps residents develop strong problem-solving abilities and technical communication skills.

III. Engineer-themed video games

Tired of playing Minecraft, Tetris and other teckie games?Add these new challenges to a virtual stocking stuffers.

> Scrap Mechanic

Scrap Mechanic is a multiplayer sandbox game which drops players right into a world where they literally engineer your own adventures! Players choose from the 100+ building parts at their disposal and create anything from crazy transforming vehicles to a house that moves.

> Automachef

Automachef is an indie puzzle game in which players have to build automatic kitchens for a robotic fast food tycoon who believes he's a human. Sounds good, doesn't it?

> Factorio

Factorio is a game in which you build and maintain factories. Players will mine resources, research technologies, build infrastructures, automate production and fightenemies. Players must use their imagination to design your factory, combine simple elements into ingenious structures, apply management skills to keep it working, and protect it from the creatures who dont like them.

Image Source: Factorio

IV. Engineer-Themed Escape Rooms

An escape room is a game in which a team of players cooperatively discover clues, solve puzzles, and accomplish tasks in one or more rooms in order to progress and accomplish a specific goal in a limited amount of time. The goal is often to escape from the site of the game.

While such escape rooms have become popular in recent years, few tend be filled with puzzles that are based on engineering or science. One that fits the latter categories is calledLabEscape, created by University of Illinois physicist. There are 3 separate missions, each dealing with renowned quantum physicist Professor Schrdenberg. Each mission features a unique set of awesome puzzles and challenges, all designed to amaze, delight, and astound!

Another example is the recently opened Mind-Field Escapes. All Clear is an engineering-focused mission that takes place in a bomb shelter. The scenario is as follows: Its been four years and the shelling has stop. Now its time for the surviors to come out. Unfortunately, someone fed several of the instruction manual to the rats, which means no one really remembers how everything works. All Clear has electrical, mechanical, pneumatic, hydraulics puzzles and more. Its fun for any engineer. Other engineering focused future missions will include Mr Harveys Room and Dr. K. L. Koffs lab.

V. Tours for Engineers

Heres a short list of engineering-related adventures to get off the bucket list.

> Arecibo Observatory

Ever wonder about the radio telescope buried deep in the jungles of Puerto Rico, which has served as a backdrop for TV shows and movies like the X-Files and James Bond, among others. Then maybe a trip to Arecibo is in order.

> Manhattan Project National Historical Park B Reactor

The B Reactor National Historic Landmark is the world's first full-scale plutonium production reactor and part of the Manhattan Project National Historical Park. Sign up for a tour and learn more about the people, events, science, and engineering that led to the creation of the atomic bombs that helped bring an end to World War II.

> Apollo Mission Control Center

In 2019, NASA finished refurbishing the iconic room where space exploration began. In honor of the 50th anniversary of the Apollo 11 mission to the Moon, the Agency has refurbished the historic mission control center at Johnson Space Center in Houston, where engineers guided astronauts to their one small step.

VI. Movies for the engineer in all of us

Engineers and scientist like a variety of movies and TV shows, especially those that have cool technology or a science fiction theme. Here are three that made the list in 2019.

> Deadly Engineering 2019 edition, Amazon Original

Engineering failures are Icarus-like moments when our overreaching, greed and desire to conquer the impossible can cost not just reputations, but millions of dollars, the environment and lives. Each episode will focus on one disaster, looking at dramatic archive news footage of the disaster occurring and its devastating impact. Check out a few of the recent episode titles: The Chernobyl Conspiracy,NASAs Challenger Disaster, Doom on the Titanic, and Nightmare in Hells Valley.

> Avengers: Endgame

Whether you are a Marvel fan or not, Endgame presents some pretty cool tech from Tony Starks Ironman suit, Antmans quantum adventures to the time-traveling machine.

> The Current War

The Current Waris the latest film to retell the major events of the decade-long battle between Thomas Edison, George Westinghouse and Nikola Tesla to bring electricity to America of the late 1800s. This current retelling focuses on the personality differences between these great inventors and entrepreneurs but includes enough technical bits to ensure the films interest for electrical, mechanical and manufacturing engineers. It is well worth the price of admission.

RELATED ARTICLES:

John Blyler is a Design News senior editor, covering the electronics and advanced manufacturing spaces. With a BS in Engineering Physics and an MS in Electrical Engineering, he has years of hardware-software-network systems experience as an editor and engineer within the advanced manufacturing, IoT and semiconductor industries. John has co-authored books related to system engineering and electronics for IEEE, Wiley, and Elsevier.

See more here:
What Does Every Engineer Want for the Holidays? - Medical Device and Diagnostics Industry

Posted in Human Genetic Engineering | Comments Off on What Does Every Engineer Want for the Holidays? – Medical Device and Diagnostics Industry

Aspen Neuroscience gets funding to pursue personalized cell therapy for Parkinsons disease – The San Diego Union-Tribune

Aspen Neuroscience, a new San Diego biotech company working on stem cell treatment for Parkinsons disease, has come out of stealth mode and raised $6.5 million to pursue clinical testing for its therapy.

Co-founded by well-known stem cell scientist Jeanne Loring, Aspen Neuroscience proposes creating stem cells from modified skin cells of Parkinsons patents via genetic engineering.

The stem cells, which can become any type of cell in the body, then would undergo a process that makes them specialize into dopamine-releasing neurons.

People with Parkinsons lose a large number up to 50 percent at diagnosis of specific brain cells that make the chemical dopamine.

Without dopamine, nerve cells cannot communicate with muscles and people are left with debilitating motor problems.

Once these modified skin cells have been engineered to specialize in producing dopamine, they can be transplanted into the Parkinsons patient to restore the types of neurons lost to the disease.

The reason we called it Aspen is because l was raised in the Rocky Mountain states, said Loring. When there is a forest fire in the Rockies, the evergreens are wiped out but the aspens are the fist that regenerate after the burn. So it is a metaphor for regeneration.

Aspen still has a long way to go before its proposed therapy would be available to Parkinsons patients. It has been meeting with the U.S. Food and Drug Administration to provide animal trial data and other information in hopes of getting permission to start human clinical trials.

But the company expects the earliest it would get the go-ahead from FDA to start human trials would be 2021.

Loring has been working on the therapy for eight years. She is professor emeritus and founding director of the Center for Regenerative Medicine at the Scripps Research Institute.

Loring co-founded the 20-employee company with Andres Bratt-Leal, a former post-doctoral researcher in Lorings lab at Scripps.

Joining them as Aspens Chief Executive is Dr. Howard Federoff, former vice chancellor for health affairs and chief executive of the University of California Irvine Health System.

Federoff said the company is the only one pursuing the use of Parkinsons patients own cells as part of neuron replacement therapy.

Aspens proprietary approach does not require the use of immuno-suppression drugs, which can be given when transplanted cells come from another person and perhaps limit the effectiveness of the treatment.

Aspens approach is a therapy that is likely to benefit from the fact that your own cells know how to make the best connections with their own target cells in the brain, even in the setting of Parkinsons disease, said Federoff. So when transplanted it is able to set back the clock on Parkinsons.

In addition to Aspens main therapy, it is researching a gene-editing treatment for forms of Parkinsons common in certain families.

Aspens research work up to now has been supported by Summit for Stem Cell, a non-profit on which provides a variety of services for people with Parkinsons disease.

The new seed funding round was led by Domain Associates and Axon Ventures, with additional participation from Alexandria Venture Investments, Arch Venture Partners, OrbiMed and Section 32.

Aspens financial backing, combined with its experienced and proven leadership team, positions it well for future success, said Kim Kamdar, a partner at Domain Associates. Domain prides itself on investing in companies that can translate scientific research into innovative medicines and therapies that make a difference in peoples lives. We clearly see Aspen as fitting into that category, as it is the only company using a patients own cells for replacement therapy in Parkinsons disease.

More:
Aspen Neuroscience gets funding to pursue personalized cell therapy for Parkinsons disease - The San Diego Union-Tribune

Posted in Human Genetic Engineering | Comments Off on Aspen Neuroscience gets funding to pursue personalized cell therapy for Parkinsons disease – The San Diego Union-Tribune

Aspen Neuro Bags $6.5M to Test Parkinson’s Disease Stem Cell Therapy – Xconomy

XconomySan Diego

Nearly nine years ago Jeanne Loring and her colleagues at Scripps Research debuted a test that leveraged advances in genomics and data science to determine, without testing in animals, whether human stem cells were pluripotent, or able to become any type of cell in the body.

Being able to prove that has become increasingly important as scientists look to induced pluripotent stem cells (iPSCs)mature, specialized cells that have been reprogrammed as immature cells, regaining the capability of becoming any type of cellas material for new regenerative medicines.

Now Loring and Andres Bratt-Leal, who joined her lab in 2012 as a post-doctoral researcher, have founded a biotech that combines stem cell biology and genomics know-how to advance a potential cell therapy for Parkinsons disease.

The startup announced Thursday it raised a seed round of $6.5 million to support its work. Aspens lead drug candidate, which is in preclinical testing, is intended to replace neurons in the brains of people with the disease, which causes those cells to become damaged or die.

When people with Parkinsons disease lose neurons, they also lose a chemical messenger the cells produce, called dopamine. Without dopamine, communication between nerve cells falters, which leads to the debilitating motor problems that characterize the disease. Existing Parkinsons drugs aim to alter dopamine levels. Aspen, however, wants to fix the upstream problem that leads to those lowered levels by reconstructing patients damaged neural networks.

The cell therapy would involve harvesting patients own living cells through a skin biopsy, reprogramming them to immature cells, or iPSCs, then further engineering them to become predisposed to mature into neurons. Once enough of those cells have been grown in the lab, those neuron precursor cells would be delivered directly to the brain.

Using a patients own cells avoids the dangerous immune system reactions that can occur when donor cells are used in such therapies, and obviates the need for immunosuppression drugs. Two cell therapies that use genetic engineering have been approved by the FDA, both of which take and tweak patients T cells into treatments for cancer. Stem cell transplants have been used to treat some cancers.

Aspen worked to ensure the company could ably manufacture a so-called autologous replacement cell therapy, or one from a patients one cells, by improving the process of differentiating iPSCs into dopamine neurons, Loring says. And the group developed another predictive genomic-based test, similar to the effort Loring spearheaded nearly a decade ago to determine whether cells were pluripotent, that can detect which iPSCs are destined to become neurons.

(Bratt-Leal) put his biological engineering expertise into coming up with a way that was reproducible, that we would get the same cells no matter who we got the original cells from, she says.

The company plans to test the therapy in patients that they determine, through genomic testing, have the most common form of Parkinsons, which is referred to as sporadic and arises without a clear genetic predisposition. It also has a second treatment in the works that it intends to develop for patients with familial forms of the disease, and uses a gene editing toolyet to be selectedto alter their stem cells during the reprogramming process.

Howard Federoff, who was most recently vice chancellor for health affairs and CEO of the UC Irvine Health system, is Aspens CEO. Federoff says he has come to believe that Parkinsons patients need more than just to stabilize their disease They need to turn the clock back.

Many companies are working on drugs to treat Parkinsons, but most are meant to manage symptoms rather than reverse the disease. Levodopa, which supplants missing dopamine, is used widely, but it can cause side effects, including involuntary movement called dyskinesia; and, as the disease progresses, the drug eventually stops working between doses.

Aspen claims it is the only company working toward an autologous neuron replacement. The company, however, will need to raise a Series A round to move its drug candidates through Phase 2 proof-of-concept trials, Loring says.

The company raised its seed round from a group of investors including Domain Associates, Alexandria Venture Investments, Arch Venture Partners, Axon Ventures, OrbiMed, and Section 32. Initially, it was financed through grants from Summit for Stem Cell, a San Diego-based nonprofit.

Sarah de Crescenzo is an Xconomy editor based in San Diego. You can reach her at sdecrescenzo@xconomy.com.

Continued here:
Aspen Neuro Bags $6.5M to Test Parkinson's Disease Stem Cell Therapy - Xconomy

Posted in Human Genetic Engineering | Comments Off on Aspen Neuro Bags $6.5M to Test Parkinson’s Disease Stem Cell Therapy – Xconomy

These Quotes Will Bring the Luck You Need on Friday the 13th – Inc.

This week will include Friday the 13th. Whatever you do on that day, don't walk under a ladder, cross paths with a black cat, or break a mirror! There's no telling what tragedy could result. What gives on this weird superstition? No, it doesn't have anything to do with the Knights Templar. Historically, 13 has long been considered an unlucky number. There also developed the idea of Friday being unlucky. Then Thomas Lawson combined them in his 1907 novel Friday the Thirteenth, and popular culture took over from there.

Luck, then, has become a fundamental necessity every Friday the 13th. But generally speaking, luck isn't a clear cut as it may initially seem. Is it real? There may be a certain randomness to the universe, but is the concept of "luck" the best way to describe it? Does it all shake out in the end? Someone that seems lucky in business could be incredibly unlucky in their personal lives. Is luck good? Does it encourage us to rely on something else, instead of on our own hard work? And if we have luck, can we ever really know it? Cormac McCarthy said, "You never know what worse luck your bad luck has saved you from." It almost makes it feel...unlucky.

Whether you're a believer in luck or not, here are 13 quotes to put it all in perspective this Friday the 13th:

The opinions expressed here by Inc.com columnists are their own, not those of Inc.com.

Follow this link:
These Quotes Will Bring the Luck You Need on Friday the 13th - Inc.

Posted in Human Genetic Engineering | Comments Off on These Quotes Will Bring the Luck You Need on Friday the 13th – Inc.

$125 million for Inscripta may usher in the next wave of genetic engineering – TechCrunch

In these waning days of the second decade of the twenty-first century, technologists and investors are beginning to lay the foundations for new, truly transformational technologies that have the potential to reshape entire industries and rewrite the rules of human understanding.

It may sound lofty, but new achievements from businesses and research institutions in areas like machine learning, quantum computing and genetic engineering mean that the futures imagined in science fiction are simply becoming science.

And among the technologies that could potentially have the biggest effect on the way we live, nothing looms larger than genetic engineering.

Investors and entrepreneurs are deploying hundreds of millions of dollars to create the tools that researchers, scientists and industry will use to re-engineer the building blocks of life to perform different functions in agriculture, manufacturing and medicine.

One of these companies, 10X Genomics, which gives users hardware and software to determine the functionality of different genetic code, has already proven how lucrative this early market can be. The company, which had its initial public offering earlier this year, is now worth $6 billion.

Another, the still-private company Inscripta, is helmed by a former 10X Genomics executive. The Boulder, Colo.-based startup is commercializing a machine that can let researchers design and manufacture small quantities of new organisms. If 10X Genomics is giving scientists and businesses a better way to read and understand the genome, then Inscripta is giving those same users a new way to write their own genetic code and make their own organisms.

Its a technology that investors are falling over themselves to finance. The company, which closed on $105 million in financing earlier in the year (through several tranches, which began in late 2018), has just raised another $125 million on the heels of launching its first commercial product. Investors in the round include new and previous investors like Paladin Capital Group, JS Capital Management, Oak HC/FT and Venrock.

Biology has unlimited potential to positively change this world, says Kevin Ness, the chief executive of Inscripta . Its one of the most important new technology forces that will be a major player in the global economy.

Ness sees Inscripta as breaking down one of the biggest barriers to the commercialization of genetic engineering, which is access to the technology.

While genome centers and biology foundries can manufacture massive quantities of new biological material for industrial uses, its too costly and centralized for most researchers. We can put the biofoundry capabilities into a box that can be pushed to a global researcher, says Ness.

Earlier this year, the company announced that it was taking orders for its first bio-manufacturing product; the new capital is designed to pay for expanding its manufacturing capabilities.

That wasnt the only barrier that Inscripta felt that it needed to break down. The company also developed a proprietary biochemistry for gene editing, hoping to avoid having to pay fees to one of the two laboratories that were engaged in a pitched legal battle over who owned the CRISPR technology (the Broad Institute and the University of California both had claims to the technology).

See the original post:
$125 million for Inscripta may usher in the next wave of genetic engineering - TechCrunch

Posted in Human Genetic Engineering | Comments Off on $125 million for Inscripta may usher in the next wave of genetic engineering – TechCrunch

Another way to edit the genome – Bangalore Mirror

By Santanu Chakraborty

The problem extends beyond that of accuracy of snipping out bits of DNA and replacing them with other sequences

Editing of human genomes is commonplace in laboratories around the world. What I mean by that is scientists routinely tinker with the genomes of individual cells derived from humans and being grown in a dish. More generally, various mammals typically mice are used as model systems to develop genetic technologies of the future. It is in these systems small animals and cells growing in dishes that the technologies of the future are first developed. The aim is two fold, one is to understand the mechanisms of life well and the other is to use them for human benefit. So it is hardly a surprise that the editing of entire human genomes would happen sooner or later, even if it should violate ethical norms of the day. One such work was revealed recently when scientists in China led by He Jiankui used a newly developed gene editing tool, commonly known as CRISPR, to create babies meant to be resistant to the HIV virus. This proved extremely controversial setting off a debate, to put it politely, that continues to rage.

There is a de-facto embargo on editing the genomes on embryos. Why should that be a problem and editing single cells in the laboratory not? To understand that and put some more recent work, which I will refer to later, into context let us consider the following. How would you go about curing a genetic disease if you had the ability to alter the genome of a single cell? Note that the genome of a human cell is contained in a few massive threadlike molecules made up of only four component molecules whose combined length when strung together is approximately four billion molecules long. This exists inside the nucleus, a balloon like compartment inside the cell. Now all this happens on a tiny scale as each cell is only a few microns in diameter with one micron being only a millionth of a meter. Life has evolved molecular machines to work at this scale selecting its components and ways of putting them together over millions of years.

Experiments of mice have yielded extremely powerful proofs of concept which continues to drive the development of such technologies. A recent paper by Peter et al. (Nature Communications, 2019, 10:4112) used CRISPR to alter the genome of mice to recover lost neuronal connectivity. A certain gene (something called C11orf46 but we will call it Gene 1 for short) is implicated in the loss of neuronal fibers that connect one half of the brain to the other.

Read the original post:
Another way to edit the genome - Bangalore Mirror

Posted in Human Genetic Engineering | Comments Off on Another way to edit the genome – Bangalore Mirror