Search Immortality Topics:

Page 21«..10..20212223..3040..»


Category Archives: Human Genetic Engineering

Biologic Therapeutics Market Estimated to Flourish at by 2025 – Cole of Duty

Global Biologic Therapeutics Market: Snapshot

The branch of science that deals with manufacturing medicines and pharmaceutical products based on biological origins is called biological therapeutics. Any pharmaceutical drug product manufactured from semi-synthesized and biological sources is included under this field. Owing to rapid advances experienced by this sector, a distinct biologic therapeutics market has formed. This market is mainly being driven by a rising demand for better healthcare treatments occurring all over the world.

Know the Growth Opportunities in Emerging Markets

The global biological therapeutics market mainly comprises of derivatives extracted from whole blood and other blood components, organs and tissue transplants, stem cell therapy, human breast milk, fecal microbiota, human reproductive cells, and antibodies. Several biological materials could are also extracted from other animals.

The global biological therapeutics market not only deals with extracted biologic materials from the market, but also involves providing treatments based on the use of these materials. Most biologic therapeutic substance include individual components such as thrombolytic agents, interferons, monoclonal antibodies, additional products, interleukin-based products, haematopoietic growth factors, hormones, and therapeutic enzymes. Materials used for producing biopharmaceuticals might also be derived from recombinant E. coli or yeast cultures, mammalian cell cultures, plant cell cultures, and mosses.

The global biologic therapeutics market is boosted through the presence of cancer, diabetes, and another coronary heart diseases. A growing geriatric population also has been responsible for making the market gain extensive revenue in the form of quality treatment processes. However, the market might be restrained due to high cost of extraction of the biologic materials. Nevertheless, extensive research and development carried out by many businesses in this market might offset the restraints substantially.

Global Biologic Therapeutics Market: Overview

The global biologic therapeutics market is predicted to benefit from the rising applications of biological products. Biological products could be made of sugars, nucleic acids, proteins, or complex combinations of these substances, or may be living components such as cells and tissues. Biological products are used to prevent diseases, diagnose diseases, or treat or cure medical conditions.

Global Biologic Therapeutics Market: Key Trends and Opportunities

First and foremost, increasing reimbursement for biologics is predicted to positively influence the biologic therapeutics market in the upcoming years. Medical insurance companies and state-run insurance schemes are increasingly accepting claims against biologic therapeutics. Biologic therapeutics are gaining popularity due the efficacy of biologic therapeutic drugs and fewer side effects than chemical-based drugs. This is because biologic drugs are obtained from natural sources such as plants, or even living components such as cells and tissues of animals, microorganisms, or humans. These fragments are further treated to make therapeutic products such as blood components, vaccines, and recombinant therapeutic proteins.

Increasing prevalence of chronic diseases such as cancer, diabetes, and coronary artery diseases and a growing geriatric population are some other factors contributing to the biologic therapeutics market. In addition, mounting clinical trials and innovative research and development practices to develop novel drugs is boosting the growth of biologic therapeutics market.

On the flip side, manufacturing difficulties due to complexities of drug molecules is challenging the growth of biologic therapeutics market. Nevertheless, increasing research and development in the pharmaceutical sector and rising applications of biologics is anticipated to provide new opportunities to this market.

Global Biologic Therapeutics Market: Market Potential

The Genetic Technology module for TechVision Opportunity Engine provides the most recent R&D advancements and developments while looking into opportunities for profit in the exploding genetic technology field via joint ventures, acquisitions, and technology transfer. The entire range of genetic technology applications covered in the module includes latest developments in omics technologies, which include genetic, cellular, and alternative therapies; genetically modified plants and animals, and sequencing technologies.

The health and wellness cluster of genetic technology techvision opportunity engine looks into developments across several areas, which include genetic engineering, drug discovery and development, regenerative medicine, cosmetic procedures, nanomedicine, drug delivery, smart healthcare, pain and disease management, and personalized medicine.

Order this Report TOC for Detailed Statistics

Global Biologic Therapeutics Market: Geographical Outlook

As per the reports analysis, the worldwide biologic therapeutics market could see a classification into North America, Europe, Asia Pacific, Latin America, and the Middle East and Africa. North America, among them, could secure a leading position due to a robust research infrastructure and presence of expert researchers and scientists for biotechnology research. Europe is a key market for biologic therapeutics due to high level of biotechnology research and pioneering research in the field of biotechnology. Asia Pacific is likely to emerge as a significant market for biologic therapeutics with increasing advancement in biotechnology research.

Global Biologic Therapeutics Market: Competitive Landscape

The worldwide biologic therapeutics market is predicted to witness the prominence of several key players, namely Pfizer Inc., Novartis Global, Smith Medical, Concord Biotech, H. Lundbeck A/S, AstraZeneca, Merck & Co. Inc., GlaxoSmithKline plc, Aurobindo Pharma Ltd., and Retractable Technologies Inc. Market players could resort to common business strategies, viz. product innovation, cutting-edge developments, and acquisitions to push up growth in the market.

Originally posted here:
Biologic Therapeutics Market Estimated to Flourish at by 2025 - Cole of Duty

Posted in Human Genetic Engineering | Comments Off on Biologic Therapeutics Market Estimated to Flourish at by 2025 – Cole of Duty

Genetically modified mosquitoes could be released in Florida and Texas beginning this summer silver bullet or jumping the gun? – The Conversation US

This summer, for the first time, genetically modified mosquitoes could be released in the U.S.

On May 1, 2020, the company Oxitec received an experimental use permit from the U.S. Environmental Protection Agency to release millions of GM mosquitoes (labeled by Oxitec as OX5034) every week over the next two years in Florida and Texas. Females of this mosquito species, Aedes aegypti, transmit dengue, chikungunya, yellow fever and Zika viruses. When these lab-bred GM males are released and mate with wild females, their female offspring die. Continual, large-scale releases of these OX5034 GM males should eventually cause the temporary collapse of a wild population.

However, as vector biologists, geneticists, policy experts and bioethicists, we are concerned that current government oversight and scientific evaluation of GM mosquitoes do not ensure their responsible deployment.

Coral reefs that can withstand rising sea temperatures, American chestnut trees that can survive blight and mosquitoes that cant spread disease are examples of how genetic engineering may transform the natural world.

Genetic engineering offers an unprecedented opportunity for humans to reshape the fundamental structure of the biological world. Yet, as new advances in genetic decoding and gene editing emerge with speed and enthusiasm, the ecological systems they could alter remain enormously complex and understudied.

Recently, no group of organisms has received more attention for genetic modification than mosquitoes to yield inviable offspring or make them unsuitable for disease transmission. These strategies hold considerable potential benefits for the hundreds of millions of people impacted by mosquito-borne diseases each year.

Although the EPA approved the permit for Oxitec, state approval is still required. A previously planned release in the Florida Keys of an earlier version of Oxitecs GM mosquito (OX513) was withdrawn in 2018 after a referendum in 2016 indicated significant opposition from local residents. Oxitec has field-trialed their GM mosquitoes in Brazil, the Cayman Islands, Malaysia and Panama.

The public forum on Oxitecs recent permit application garnered 31,174 comments opposing release and 56 in support. The EPA considered these during their review process.

However, it is difficult to assess how EPA regulators weighed and considered public comments and how much of the evidence used in final risk determinations was provided solely by the technology developers.

The closed nature of this risk assessment process is concerning to us.

There is a potential bias and conflict of interest when experimental trials and assessments of ecological risk lack political accountability and are performed by, or in close collaboration with, the technology developers.

This scenario becomes more troubling with a for-profit technology company when cost- and risk-benefit analyses comparing GM mosquitoes to other approaches arent being conducted.

Another concern is that risk assessments tend to focus on only a narrow set of biological parameters such as the potential for the GM mosquito to transmit disease or the potential of the mosquitoes new proteins to trigger an allergic response in people and neglect other important biological, ethical and social considerations.

To address these shortcomings, the Institute for Sustainability, Energy and Environment at University of Illinois Urbana-Champaign convened a Critical Conversation on GM mosquitoes. The discussion involved 35 participants from academic, government and nonprofit organizations from around the world with expertise in mosquito biology, community engagement and risk assessment.

A primary takeaway from this conversation was an urgent need to make regulatory procedures more transparent, comprehensive and protected from biases and conflicts of interest. In short, we believe it is time to reassess risk assessment for GM mosquitoes. Here are some of the key elements we recommend.

First, an official, government-funded registry for GM organisms specifically designed to reproduce in the wild and intended for release in the U.S. would make risk assessments more transparent and accountable. Similar to the U.S. database that lists all human clinical trials, this field trial registry would require all technology developers to disclose intentions to release, information on their GM strategy, scale and location of release and intentions for data collection.

This registry could be presented in a way that protects intellectual property rights, just as therapies entering clinical trials are patent-protected in their registry. The GM organism registry would be updated in real time and made fully available to the public.

Second, a broader set of risks needs to be assessed and an evidence base needs to be generated by third-party researchers. Because each GM mosquito is released into a unique environment, risk assessments and experiments prior to and during trial releases should address local effects on the ecosystem and food webs. They should also probe the disease transmission potential of the mosquitos wild counterparts and ecological competitors, examine evolutionary pressures on disease agents in the mosquito community and track the gene flow between GM and wild mosquitoes.

To identify and assess risks, a commitment of funding is necessary. The U.S. EPAs recent announcement that it would improve general risk assessment analysis for biotechnology products is a good start. But regulatory and funding support for an external advisory committee to review assessments for GM organisms released in the wild is also needed; diverse expertise and local community representation would secure a more fair and comprehensive assessment.

Furthermore, independent researchers and advisers could help guide what data are collected during trials to reduce uncertainty and inform future large-scale releases and risk assessments.

The objective to reduce or even eliminate mosquito-borne disease is laudable. GM mosquitoes could prove to be an important tool in alleviating global health burdens. However, to ensure their success, we believe that regulatory frameworks for open, comprehensive and participatory decision-making are urgently needed.

This article was updated to correct the date that Oxitec withdrew its OX513 trial application to 2018.

[Deep knowledge, daily. Sign up for The Conversations newsletter.]

Read more from the original source:
Genetically modified mosquitoes could be released in Florida and Texas beginning this summer silver bullet or jumping the gun? - The Conversation US

Posted in Human Genetic Engineering | Comments Off on Genetically modified mosquitoes could be released in Florida and Texas beginning this summer silver bullet or jumping the gun? – The Conversation US

Genetically Modified Mosquitoes Could be Released in Florida and Texas This Summer – The Daily Beast

This article originally appeared on The Conversation.

This summer, for the first time, genetically modified mosquitoes could be released in the U.S.

On May 1, 2020, the company Oxitec received an experimental use permit from the U.S. Environmental Protection Agency to release millions of GM mosquitoes (labeled by Oxitec as OX5034) every week over the next two years in Florida and Texas. Females of this mosquito species, Aedes aegypti, transmit dengue, chikungunya, yellow fever and Zika viruses. When these lab-bred GM males are released and mate with wild females, their female offspring die. Continual, large-scale releases of these OX5034 GM males should eventually cause the temporary collapse of a wild population.

However, as vector biologists, geneticists, policy experts and bioethicists, we are concerned that current government oversight and scientific evaluation of GM mosquitoes do not ensure their responsible deployment.

Coral reefs that can withstand rising sea temperatures, American chestnut trees that can survive blight and mosquitoes that cant spread disease are examples of how genetic engineering may transform the natural world.

Genetic engineering offers an unprecedented opportunity for humans to reshape the fundamental structure of the biological world. Yet, as new advances in genetic decoding and gene editing emerge with speed and enthusiasm, the ecological systems they could alter remain enormously complex and understudied.

Recently, no group of organisms has received more attention for genetic modification than mosquitoesto yield inviable offspring or make them unsuitable for disease transmission. These strategies hold considerable potential benefits for the hundreds of millions of people impacted by mosquito-borne diseases each year.

Although the EPA approved the permit for Oxitec, state approval is still required. A previously planned release in the Florida Keys of an earlier version of Oxitecs GM mosquito (OX513) was withdrawn in 2016 after a referendum indicated significant opposition from local residents. Oxitec has field-trialed their GM mosquitoes in Brazil, the Cayman Islands, Malaysia and Panama.

The public forum on Oxitecs recent permit application garnered 31,174 comments opposing release and 56 in support. The EPA considered these during their review process.

However, it is difficult to assess how EPA regulators weighed and considered public comments and how much of the evidence used in final risk determinations was provided solely by the technology developers.

The closed nature of this risk assessment process is concerning to us.

There is a potential bias and conflict of interest when experimental trials and assessments of ecological risk lack political accountability and are performed by, or in close collaboration with, the technology developers.

This scenario becomes more troubling with a for-profit technology company when cost- and risk-benefit analyses comparing GM mosquitoes to other approaches arent being conducted.

Another concern is that risk assessments tend to focus on only a narrow set of biological parameterssuch as the potential for the GM mosquito to transmit disease or the potential of the mosquitoes new proteins to trigger an allergic response in peopleand neglect other important biological, ethical and social considerations.

To address these shortcomings, the Institute for Sustainability, Energy and Environment at University of Illinois Urbana-Champaign convened a Critical Conversation on GM mosquitoes. The discussion involved 35 participants from academic, government and nonprofit organizations from around the world with expertise in mosquito biology, community engagement and risk assessment.

A primary takeaway from this conversation was an urgent need to make regulatory procedures more transparent, comprehensive and protected from biases and conflicts of interest. In short, we believe it is time to reassess risk assessment for GM mosquitoes. Here are some of the key elements we recommend.

First, an official, government-funded registry for GM organisms specifically designed to reproduce in the wild and intended for release in the U.S. would make risk assessments more transparent and accountable. Similar to the U.S. database that lists all human clinical trials, this field trial registry would require all technology developers to disclose intentions to release, information on their GM strategy, scale and location of release and intentions for data collection.

This registry could be presented in a way that protects intellectual property rights, just as therapies entering clinical trials are patent-protected in their registry. The GM organism registry would be updated in real time and made fully available to the public.

Second, a broader set of risks needs to be assessed and an evidence base needs to be generated by third-party researchers. Because each GM mosquito is released into a unique environment, risk assessments and experiments prior to and during trial releases should address local effects on the ecosystem and food webs. They should also probe the disease transmission potential of the mosquitos wild counterparts and ecological competitors, examine evolutionary pressures on disease agents in the mosquito community and track the gene flow between GM and wild mosquitoes.

To identify and assess risks, a commitment of funding is necessary. The U.S. EPAs recent announcement that it would improve general risk assessment analysis for biotechnology products is a good start. But regulatory and funding support for an external advisory committee to review assessments for GM organisms released in the wild is also needed; diverse expertise and local community representation would secure a more fair and comprehensive assessment.

Furthermore, independent researchers and advisers could help guide what data are collected during trials to reduce uncertainty and inform future large-scale releases and risk assessments.

The objective to reduce or even eliminate mosquito-borne disease is laudable. GM mosquitoes could prove to be an important tool in alleviating global health burdens. However, to ensure their success, we believe that regulatory frameworks for open, comprehensive and participatory decision-making are urgently needed.

Written by Brian Allan, Associate Professor of Entomology, University of Illinois at Urbana-Champaign; Chris Stone, Medical Entomologist, University of Illinois at Urbana-Champaign; Holly Tuten, Vector Ecologist, University of Illinois at Urbana-Champaign; Jennifer Kuzma, Goodnight-NCGSK Distinguished Professor, North Carolina State University; Natalie Kofler, Levenick Resident Scholar in Sustainability, University of Illinois at Urbana-Champaign.

Follow this link:
Genetically Modified Mosquitoes Could be Released in Florida and Texas This Summer - The Daily Beast

Posted in Human Genetic Engineering | Comments Off on Genetically Modified Mosquitoes Could be Released in Florida and Texas This Summer – The Daily Beast

Human waves populated the Caribbean islands – Cosmos

Pirates or no pirates, the islands of the Caribbean were settled and resettled by at least three successive waves of colonists from the American mainland, according to a new study.

The examination of ancient DNA from 93 islanders who lived between 400 and 3200 years ago reveals a complex population history and ties to broader, inter-continental human expansions in both North and South America, according to an international research team.

The DNA evidence adds to the archaeological data and enables us to test specific hypotheses as to how the Caribbean was first settled, says Hannes Schroeder from Denmarks University of Copenhagen, a senior author on a paper in the journal Science.

The Caribbean was one of the last regions in the Americas to be settled. Archaeological evidence suggests the first residents arrived about 8000 years ago, and that 3000 years later humans were widely dispersed.

However, much of the settlement history has relied on interpretations from archaeological findings, such as the stylistic comparison of artefact collections between Caribbean sites and those from the surrounding mainland.

While these approaches have illuminated broad-scale population movements, many of the more nuanced aspects of Caribbean population history remain unknown.

To try to fill these gaps, a team led by Kathrin Ngele from Germanys Max Planck Institute for the Science of Human History analysed the genomes of the 93 islanders using bone fragments excavated from 16 archaeological sites in Cuba, the Bahamas, Puerto Rico and Guadeloupe.

Due to the regions warm climate, the DNA were not very well preserved, but targeted enrichment techniques allow the researchers to extract new information.

This leads them to believe that there were at least three different population dispersals into the region: two earlier dispersals into the western Caribbean, one of which seems to be linked to earlier population dispersals in North America, and a third, more recent wave, which originated in South America.

And rather than a hinderance, it seems that the Caribbean Sea served as something of an aquatic motorway.

Big bodies of water are traditionally considered barriers for humans and ancient fisher hunter-gatherer communities are usually not perceived as great seafarers, says Ngele.

Our results continue to challenge that view, as they suggest there was repeated interaction between the islands and the mainland.

The researchers also report genetic differences between early settlers and newcomers from South America who, according to archaeological evidence, entered the region around 2800 years ago.

Although the different groups were present in the Caribbean at the same time, we found surprisingly little evidence of admixture between them, says Cosimo Posth, from the Max Planck Institute.

Continue reading here:
Human waves populated the Caribbean islands - Cosmos

Posted in Human Genetic Engineering | Comments Off on Human waves populated the Caribbean islands – Cosmos

Genetically modified mosquitoes could be released in Florida and Texas beginning this summer silver bullet or jumping the gun? – Thehour.com

(The Conversation is an independent and nonprofit source of news, analysis and commentary from academic experts.)

Brian Allan, University of Illinois at Urbana-Champaign; Chris Stone, University of Illinois at Urbana-Champaign; Holly Tuten, University of Illinois at Urbana-Champaign; Jennifer Kuzma, North Carolina State University, and Natalie Kofler, University of Illinois at Urbana-Champaign

(THE CONVERSATION) This summer, for the first time, genetically modified mosquitoes could be released in the U.S.

On May 1, 2020, the company Oxitec received an experimental use permit from the U.S. Environmental Protection Agency to release millions of GM mosquitoes (labeled by Oxitec as OX5034) every week over the next two years in Florida and Texas. Females of this mosquito species, Aedes aegypti, transmit dengue, chikungunya, yellow fever and Zika viruses. When these lab-bred GM males are released and mate with wild females, their female offspring die. Continual, large-scale releases of these OX5034 GM males should eventually cause the temporary collapse of a wild population.

However, as vector biologists, geneticists, policy experts and bioethicists, we are concerned that current government oversight and scientific evaluation of GM mosquitoes do not ensure their responsible deployment.

Genetic engineering for disease control

Coral reefs that can withstand rising sea temperatures, American chestnut trees that can survive blight and mosquitoes that cant spread disease are examples of how genetic engineering may transform the natural world.

Genetic engineering offers an unprecedented opportunity for humans to reshape the fundamental structure of the biological world. Yet, as new advances in genetic decoding and gene editing emerge with speed and enthusiasm, the ecological systems they could alter remain enormously complex and understudied.

Recently, no group of organisms has received more attention for genetic modification than mosquitoes to yield inviable offspring or make them unsuitable for disease transmission. These strategies hold considerable potential benefits for the hundreds of millions of people impacted by mosquito-borne diseases each year.

Although the EPA approved the permit for Oxitec, state approval is still required. A previously planned release in the Florida Keys of an earlier version of Oxitecs GM mosquito (OX513) was withdrawn in 2018 after a referendum in 2016 indicated significant opposition from local residents. Oxitec has field-trialed their GM mosquitoes in Brazil, the Cayman Islands, Malaysia and Panama.

The public forum on Oxitecs recent permit application garnered 31,174 comments opposing release and 56 in support. The EPA considered these during their review process.

Time to reassess risk assessment?

However, it is difficult to assess how EPA regulators weighed and considered public comments and how much of the evidence used in final risk determinations was provided solely by the technology developers.

The closed nature of this risk assessment process is concerning to us.

There is a potential bias and conflict of interest when experimental trials and assessments of ecological risk lack political accountability and are performed by, or in close collaboration with, the technology developers.

This scenario becomes more troubling with a for-profit technology company when cost- and risk-benefit analyses comparing GM mosquitoes to other approaches arent being conducted.

Another concern is that risk assessments tend to focus on only a narrow set of biological parameters such as the potential for the GM mosquito to transmit disease or the potential of the mosquitoes new proteins to trigger an allergic response in people and neglect other important biological, ethical and social considerations.

To address these shortcomings, the Institute for Sustainability, Energy and Environment at University of Illinois Urbana-Champaign convened a Critical Conversation on GM mosquitoes. The discussion involved 35 participants from academic, government and nonprofit organizations from around the world with expertise in mosquito biology, community engagement and risk assessment.

A primary takeaway from this conversation was an urgent need to make regulatory procedures more transparent, comprehensive and protected from biases and conflicts of interest. In short, we believe it is time to reassess risk assessment for GM mosquitoes. Here are some of the key elements we recommend.

Steps to make risk assessment more open and comprehensive

First, an official, government-funded registry for GM organisms specifically designed to reproduce in the wild and intended for release in the U.S. would make risk assessments more transparent and accountable. Similar to the U.S. database that lists all human clinical trials, this field trial registry would require all technology developers to disclose intentions to release, information on their GM strategy, scale and location of release and intentions for data collection.

This registry could be presented in a way that protects intellectual property rights, just as therapies entering clinical trials are patent-protected in their registry. The GM organism registry would be updated in real time and made fully available to the public.

Second, a broader set of risks needs to be assessed and an evidence base needs to be generated by third-party researchers. Because each GM mosquito is released into a unique environment, risk assessments and experiments prior to and during trial releases should address local effects on the ecosystem and food webs. They should also probe the disease transmission potential of the mosquitos wild counterparts and ecological competitors, examine evolutionary pressures on disease agents in the mosquito community and track the gene flow between GM and wild mosquitoes.

To identify and assess risks, a commitment of funding is necessary. The U.S. EPAs recent announcement that it would improve general risk assessment analysis for biotechnology products is a good start. But regulatory and funding support for an external advisory committee to review assessments for GM organisms released in the wild is also needed; diverse expertise and local community representation would secure a more fair and comprehensive assessment.

Furthermore, independent researchers and advisers could help guide what data are collected during trials to reduce uncertainty and inform future large-scale releases and risk assessments.

The objective to reduce or even eliminate mosquito-borne disease is laudable. GM mosquitoes could prove to be an important tool in alleviating global health burdens. However, to ensure their success, we believe that regulatory frameworks for open, comprehensive and participatory decision-making are urgently needed.

This article was updated to correct the date that Oxitec withdrew its OX513 trial application to 2018.

[Deep knowledge, daily. Sign up for The Conversations newsletter.]

This article is republished from The Conversation under a Creative Commons license. Read the original article here: https://theconversation.com/genetically-modified-mosquitoes-could-be-released-in-florida-and-texas-beginning-this-summer-silver-bullet-or-jumping-the-gun-139710.

Read the original:
Genetically modified mosquitoes could be released in Florida and Texas beginning this summer silver bullet or jumping the gun? - Thehour.com

Posted in Human Genetic Engineering | Comments Off on Genetically modified mosquitoes could be released in Florida and Texas beginning this summer silver bullet or jumping the gun? – Thehour.com

After the MadnessPandemic Silver Linings in Bioscience – NEO.LIFE

On March 16, a single tweet mobilized an army of over 700 geneticists from 36 countries to battle a tiny virus by trying to understand the role human genetics plays in why some people have no reaction to COVID-19, and others get very sick and die. Goal: aggregate genetic and clinical information on individuals affected by COVID-19, tweeted Andrea Gemma, a geneticist at the Institute for Molecular Medicine in Helsinki, Finland. Just a few weeks later the COVID-19 Host Genetics Initiative was up and running and is now identifying human genes associated with COVID and its symptomsnothing definitive yet, although the possibility of breakthroughs has been substantially improved by the combined DNA-discovery firepower of over 150 labs and biobanks that store and analyze millions of human genomes.

Nor is this pandemic display of raw scientific muscle and intensity of focus unique right now. Pandemic-bound researchers around the world are combining forces for possibly the largest scientific hive-mind effort in history thats converging on a single conundrum. It also arrives as a slew of technologies developed over the past generation are coming online and being applied to the COVID puzzleeverything from CRISPR gene editing and faster and cheaper genetic sequencing to social media and the integration of artificial intelligence and machine learning in bioresearch and health IT.

COVID-19 has ravaged bioscience just like it has cut a destructive and sometimes deadly swath through much of what we used to call normal. Yet even as labs have shuttered, experiments have halted, and droves of scientists and technicians have been laid offand research and clinical attention has been diverted from any disease thats non-COVIDis it possible that some scientific silver linings may emerge out of this tragic Year of the Pandemic?

Could we see a near-future surge of scientific advancement, what Stanford bio-informaticist Carlos Bustamante likened to what happened when we went to the moon? You had all this spillover technology that gave us, say, the Internet, he said. Or is it possible that somewhere, somehow, a new respect for science and evidence will emerge out of COVID-19? Theres kind of a reward system now for people to pay attention to facts, said George Church, Professor of Genetics at Harvard Medical School, rather than just making stuff up. And that reward is in terms of fewer relatives and friends and colleagues dying.

As the world is teetering and we struggle to absorb a daily barrage of less than sanguine newsnot only about COVID but also in politics, racial relations, and the economy NEO.LIFE asked prominent bioscientists and big thinkers if there might be glimmers of hope that will emerge when the all clear is finally declared.

Im seeing an intensity of purpose like Ive never seen before, said Eric Topol, director and founder of the Scripps Research Translational Institute. Putting this great big brain trust in science on such a seemingly insurmountable problem will change how we do things going forward.

We are seeing biologists working with statisticians, public health experts collaborating with logistics experts, added Katharina Voltz, founder and CEO of OccamzRazor. With the coronavirus, you need the experts on SARS, on spike proteins, on pulmonary diseases, to all come together and collaborate on a shared canvas.

Were asking questions we never asked about, say, the flu, added Carlos Bustamante, attributing this to the rise of the hive mind. For instance, were learning about COVID at a molecular phenotyping detail like weve not done for any other infectious disease. (Molecular refers mostly to genetics, and phenotype to observable traits in a human or other organism.) Its been amazing for this disease how weve accepted that different people respond differently to this infection. That is not true of almost any other large-scale infection we talk about.

We can take heart that for the first time in history we have the computing power to actually make sense of all of this complexity as artificial intelligence and machine learning in biology is moving from hype to reality. One of the trends that were seeing now is the application of machine learning to dissect and extract patterns from a deluge of genomic, proteomic, metabolic data, said Katharina Voltz. We can perform many experiments in silicoon the computerand only run the most important crucial parts of the experimental method in the lab, as a confirmation of our theoretical models.

Machine learning is going to transform how we think in biology, agreed Wayne Koff, CEO, Human Vaccines Project. Its going to generate hypotheses. We will be able to better focus on smaller groups of peoplethe vulnerable groups, the diseased, the elderly, the poor, the newborns, those living in the developing world.

Computers and the Internet are also lifelines for all of us personally needing to stay connected, and as biomedicine tries to navigate a world of shelter-in-place and social distancing. Weve just dragged the country through half a decade of telemedicine in three months, said Carlos Bustamante. Are we going to now give that all up and go back to having to wait in the doctors office with everybody else coughing to see a doctor?

I think this pandemic will be a big moment for biology, said synthetic biologist Pamela Silver, professor of Biochemistry and Systems Biology at Harvard Medical School. Biologys going to fix the COVID problem, but it can also fix a ton of other problems, tooproblems like the environment, food, and other diseases. And the only way were going to get there is with engineering biologymanipulating and improving the biological mechanisms.

One way to accomplish this is what Silver and other synthetic biologists call plug and playthe creation of basic biological components for research and for developing treatments and preventatives like vaccines that have been synthesized in a lab, ready to be deployed, say, when the next virus arrives. Im thinking that as we learn how to manipulate viruses and create methods for booting up responses faster it becomes a kind of plug-and-play system that is nimble, said Silver, and this goes not just for vaccines. It goes for everything, anything. You have a new disease, or any kind of therapeutic, and youre better prepared.

Eric Topol, however, frets about the neglect or lack of emphasis on non COVID-19 diseases. This is a concern and will continue to be for the near future. Katharina Volz added that once this crisis is over, we need to hyper-focus on other diseases, too. You really have to put this same urgency that we have for COVID now and apply it to other diseases that may have a potentially bigger economic and personal impact than COVID, she said, Alzheimers and Parkinsons and many others.

Weve just dragged the country through half a decade of telemedicine in three months.

Scientists also worry about the leadership vacuum they see in the world. I hope, as we go forward, we will get better leadership, said Eric Topol. Weve seen how science can contribute where it was given true authority, so I think thats going to be another path forwardI hopealthough in the U.S. we have horrible tensions between politics and science that shouldnt exist.

No one really knows what biomedicine will look like when this is over. But it is comforting to know that something positive may come out of COVID. As Carlos Bustamante said: I want everything I do to be drafted behind COVID. Im thinking of the mother of all cycling teams. [Cycling teams assign one cyclist to ride first in line so the others can draft behind them, which makes it easier for them to pedal]. And youre drafting behind COVID, and then once youve reached the finish line, you can take that energy and hopefully channel it into other disease areas that can be cured.

Read the original here:
After the MadnessPandemic Silver Linings in Bioscience - NEO.LIFE

Posted in Human Genetic Engineering | Comments Off on After the MadnessPandemic Silver Linings in Bioscience – NEO.LIFE