Search Immortality Topics:

Page 39«..1020..38394041..5060..»


Category Archives: Genetic Medicine

Genome Medical Reaches 90 Million Covered Lives in US – PRNewswire

As a nationwide telehealth medical practice, Genome Medical has assembled an extensive team of clinical genetic experts, including board-certified genetic counselors, medical geneticists and other specialists. This team delivers education, risk assessment, access to genetic testing and specialty care referrals -- all through virtual visits. During the COVID-19 pandemic, when two out of five Americans have avoided or delayed medical care1, access to safe virtual services is essential to ensure people at greatest risk are receiving the care they need. Genetic services support the diagnosis and care management of hereditary conditions and the identification of patients at an elevated risk for disease.

Some of the largest payers in the United States are recognizing the critical role geneticists and genetic counselors play. Their members can now self-refer and get in-network access to Genome Medical's genetic experts, and the payer's contracted providers can also make in-network referrals for their patients.

The 90 million covered lives are across multiple payers, including (in part):

"Genome Medical brings together telemedicine and genomics to tackle the rising need for genetic experts to guide patients and providers in making appropriate decisions around 1) who should get genetic testing, 2) which test is optimal and 3) how clinical care should be changed based on test results," said Steven B. Bleyl, M.D., Ph.D., chief medical officer of Genome Medical. "Patients can be seen sooner, and through telehealth, we extend the reach of genetic services to rural communities and underserved areas that have less access to in-person care. Genome Medical is a flexible and cost-effective solution for payers and their members."

Genome Medical can see 85% of cancer patients more quickly than in a traditional clinic setting.2 And in areas like pediatric genetics, where wait times of six months or more for an appointment are common, Genome Medical's growing clinical team can often see patients within a few days. The company's genetic experts are licensed in all 50 states and provide clinical genetics expertise across six major specialty areas: cancer, reproductive health, proactive health, pediatrics/rare disease, pharmacogenomics and cardiovascular genetics. Genome Medical's innovative services are trusted and utilized by health systems, hospitals, testing labs, payors, providers and employers.

Genome Medical is also committed to leveraging advanced technology-enabled solutions to transform the delivery of standard-of-care genetic health services. Beyond wider and accelerated access, the company's technology delivers a 5.5X return on investment in genetic services, while also reducing the cost of care by up to 75 percent.3,4 Its Genome Care DeliveryTM platform creates an efficient and comprehensive experience, including patient engagement and care navigation, risk assessment, self-directed education and informed consent through the Genome Care NavigatorTM, multi-modality patient support, and peer-to-peer provider consultations.

"We are pleased to see health plan partners continue to expand in-network coverage for our genetic health services," said Lisa Alderson, co-founder and CEO of Genome Medical. "It is estimated that tens of millions of patients in the United States meet medical management guidelines for referral to genetics, but most are still being missed. These patients could benefit from the advancements made in utilizing genomics for prevention, diagnosis and treatment. Giving their members access to Genome Medical and telegenetics is a significant step payers are taking in removing historical barriers."

About Genome MedicalGenome Medical is a national telegenomics technology, services and strategy company bringing genomic medicine to everyday care. Through our nationwide network of genetic specialists and efficient Genome Care DeliveryTM technology platform, we provide expert virtual genetic care for individuals and their families to improve health and well-being. We also help health care providers and their patients navigate the rapidly expanding field of genetics and utilize test results to understand the risk for disease, accelerate disease diagnosis, make informed treatment decisions and lower the cost of care. We are shepherding in a new era of genomic medicine by creating easy, efficient access to top genetic experts. Genome Medical is headquartered in South San Francisco. To learn more, visit genomemedical.com and follow @GenomeMed.

References

SOURCE Genome Medical

Genetic Counseling & Services from Anywhere | Genome Medical

Read more from the original source:
Genome Medical Reaches 90 Million Covered Lives in US - PRNewswire

Posted in Genetic Medicine | Comments Off on Genome Medical Reaches 90 Million Covered Lives in US – PRNewswire

New Study Highlights the Importance of Genetic Testing for Pancreatic Cancer Patients – PRNewswire

SAN FRANCISCO, Nov. 19, 2020 /PRNewswire/ -- Invitae (NYSE: NVTA), a leading medical genetics company, today presented study findings that show nine percent of patients with pancreatic cancer had genetic changes in DNA damage repair (DDR) genes that would make them eligible for PARP inhibitor therapy or clinical treatment trials. Despite professional guidelines that recommend testing for all pancreatic cancer patients, it remains underutilized in routine care. The study was presented at the National Society of Genetic Counselors 39th Annual Conference.

"New therapeutics have recently become available to treat pancreatic cancer for patients with certain changes in genes such as BRCA1 and BRCA2. Yet despite the availability of these treatments and professional guidelines recommending testing, utilization is still lagging," said Robert Nussbaum, M.D., chief medical officer of Invitae and study author. "Pathogenic variants in these genes are associated with an increased risk of other cancers as well, such as breast, ovarian and prostate cancer, which means that a failure to test patients with pancreatic cancer impacts not only their treatment, but also the health of their families."

Importantly, the study of over 2,000 patients found that 15% of patients with actionable genetic changes reported no family history of cancer, which underscores the limitations of using testing criteria based on reported family history. National Comprehensive Cancer Network (NCCN) guidelines recommend genetic counseling and germline genetic testing for everyone diagnosed with pancreatic cancer as well as their first degree relatives -- approximately 3.5 million individuals in the United States.

In addition to evaluating the clinical relevance of genetic testing results, the study offered sponsored, no-charge testing to patients to evaluate the role of cost as a barrier to testing. Researchers found a small but significant increase (2%) in testing among African-American patients compared to typical rates among patients using health insurance, suggesting reducing cost may increase access to testing among this population.

The research was presented at the virtual annual meeting of the National Society of Genetic Counselors. The full research presentation from Invitae included:

Oral platform presentations:

Poster presentations:

In addition to its scientific presence, Invitae will again partner with NSGC to present the Heart of Genetic Counseling award, which honors excellence in genetic counseling and patient care as recognized by patients. Nominations include stories from patients that highlight both the clinical and personal impact a genetic counselor had on their lives and the lives of their families. This year's award will be presented during a virtual ceremony on Thursday, November 17th. The finalists include:

About Invitae

Invitae Corporation (NYSE: NVTA) is a leading medical genetics company, whose mission is to bring comprehensive genetic information into mainstream medicine to improve healthcare for billions of people. Invitae's goal is to aggregate the world's genetic tests into a single service with higher quality, faster turnaround time, and lower prices. For more information, visit the company's website atinvitae.com.

Safe Harbor Statement

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including statements relating to the implications of the company's study results; and the importance and potential benefits of genetic testing for pancreatic cancer patients. Forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially, and reported results should not be considered as an indication of future performance. These risks and uncertainties include, but are not limited to: the company's history of losses; the company's ability to compete; the company's failure to manage growth effectively; the company's need to scale its infrastructure in advance of demand for its tests and to increase demand for its tests; the company's ability to use rapidly changing genetic data to interpret test results accurately and consistently; security breaches, loss of data and other disruptions; laws and regulations applicable to the company's business; and the other risks set forth in the company's filings with the Securities and Exchange Commission, including the risks set forth in the company's Quarterly Report on Form 10-Q for the quarter ended September 30, 2020. These forward-looking statements speak only as of the date hereof, and Invitae Corporation disclaims any obligation to update these forward-looking statements.

Contact:

Laura D'Angelo[emailprotected](628) 213-3283

SOURCE Invitae Corporation

http://www.invitae.com

More:
New Study Highlights the Importance of Genetic Testing for Pancreatic Cancer Patients - PRNewswire

Posted in Genetic Medicine | Comments Off on New Study Highlights the Importance of Genetic Testing for Pancreatic Cancer Patients – PRNewswire

Found: a genetic link to molecular events that precede symptoms in Alzheimers disease – Newswise

Newswise BOSTON (Nov. 18, 2020, 2:00 p.m. ET)Researchers at Tufts University School of Medicine have discovered a molecular mechanism that causes a traffic jam of enzymes traveling up and down neuronal axons, leading to the accumulation of amyloid beta a key feature and cause of Alzheimers disease. The enzyme, BACE1, gets backed up, causing the axons to clog and swell because of the increased production of the toxic amyloid protein.

The study, published today in Science Translational Medicine, reports that a human mutation more prevalent in African American patients with late onset Alzheimers triggers a traffic jam of BACE1 in axons. Identifying this mutation is a key step in understanding the underlying molecular mechanisms of the disease and provides a possible strategy for early diagnosis and targeted treatments.

In individuals with Alzheimers disease, the onset of symptoms happens about 20 years after the first changes start to develop in the brain, making therapeutic intervention extremely difficult, said Giuseppina Tesco, professor of neuroscience at Tufts University School of Medicine and senior and corresponding author on the study. So, we wanted to identify the mechanisms leading to the swelling of axons during the pre-symptomatic phase of Alzheimers disease, which could in turn provide a way to detect the disease early and possibly treat it more effectively.

Tufts researchers previously identified a gene, Gga3, which helps regulate the traffic of BACE1, or beta-site APP-cleaving enzyme 1, along the axon. In the new study, the researchers found that when the Gga3 gene is mutated or missing in mice, their brains present the same distinctive traffic jam of BACE1 in swelling axons that are found in the postmortem brains of early stage patients with Alzheimers disease. The researchers found that by disrupting the Gga3 gene, the traffic of BACE1 and other proteins along the axon is slowed or shut down. They also noted that a mutated or missing Gga3 leads to a severe accumulation of BACE1 in the axon, which results in axonal swellings both in cultured neurons and in a mouse model of Alzheimers disease prior to amyloid deposition.

In multiple clinical trials, BACE inhibitors administered to patients with advanced disease who already had significant accumulation of amyloid beta protein and neuronal damage have been unsuccessful. The researchers asked whether application of the inhibitors at the earliest stages of disease might be more effective. They found that the inhibitors prevented swelling of axons in mice and even improved the two-way flow of BACE1. Their results suggest that earlier application of BACE1 inhibitors could be more effective at slowing the accumulation of amyloid beta protein.

Using datasets from the National Institutes of Healths National Institute of Mental Health and the Alzheimers Disease Neuroimaging Initiative, the researchers discovered that mutations in Gga3 were more common among African Americans diagnosed with Alzheimers disease than other populations. Although the sample size was small, the researchers believe this finding may provide a case for identifying early stage interventions and treatments for this group of patients.

Our study provides a possible molecular explanation for the prevalence of axonopathy during the early stages of Alzheimers disease, before the formation of amyloid plaques, said Tesco. The mutation allowed us to determine that axonal alterations can be caused by accumulation of BACE1. Now an area of focus could be inhibiting BACE1 to prevent early axonal damage and perhaps this could also slow the development of amyloid plaques leading to disease.

The researchers note that the presence of neurofilament light chain (NfL) in blood plasma is a marker for axonal damage, and could be used to identify the best timing for use of BACE inhibitors to prevent or slow the progression of Alzheimers disease during its early pre-symptomatic stages.

The first author on the study is Selene Lomoio in the Tesco Lab at Tufts University School of Medicine. Additional study authors are from Tufts University School of Medicine, MassGeneral Institute for Neurodegenerative Disease, and Merck & Co.

This work was supported by awards from the National Institutes of Healths National Institute on Aging (RF1AG057148), Cure Alzheimers Fund, and a BrightFocus Foundation

Alzheimers Disease Research fellowship. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. For conflict of interest disclosure, see the study.

Lomoio, S., Willen, R., Kim, W., Ho, K.Z., Robinson, E.K., Prokopenko, D., Kennedy, M.E., Tanzi, R.E. and Tesco, G. (2020) Gga3 deletion and a GGA3 rare variant associated with late onset Alzheimers disease trigger BACE1 accumulation in axonal swellings. Science Translational Medicine. doi: https://doi.org/10.1126/scitranslmed.aba1871

###

About Tufts University School of Medicine

Tufts University School of Medicine is an international leader in medical and population health education and advanced research. It emphasizes rigorous fundamentals in a dynamic learning environment to educate physicians, scientists, and public health professionals to become leaders in their fields. The School of Medicine is renowned for excellence in education in general medicine, the biomedical sciences, and public health, as well as for research at the cellular, molecular, and population health level. It is affiliated with more than 20 teaching hospitals and health care facilities. Tufts University School of Medicine undertakes research that is consistently rated among the highest in the nation for its effect on the advancement of medical and prevention science.

The rest is here:
Found: a genetic link to molecular events that precede symptoms in Alzheimers disease - Newswise

Posted in Genetic Medicine | Comments Off on Found: a genetic link to molecular events that precede symptoms in Alzheimers disease – Newswise

CHOP Researchers Reverse Severe Lymphatic Disorder in Patient with Noonan Syndrome by Targeting Genetic Pathway – BioSpace

Precise treatment leads to resolution of patient's debilitating symptoms and complete remodeling of her lymphatic system

PHILADELPHIA, Nov. 20, 2020 /PRNewswire/ -- Researchers at Children's Hospital of Philadelphia (CHOP) have resolved a severe lymphatic disorder in a girl with Noonan Syndrome that had led to upper gastrointestinal bleeding, fluid collection around the lungs, and numerous surgeries that had been unable to resolve her symptoms. By identifying a genetic mutation along a pathway related to lymphatic vessel development and function, the research team was able to target the pathway using an existing drug they had used in a previous case to remodel a patient's lymphatic system.

The case study, which was published today in Pediatrics, describes a resolution of the patient's symptoms within three months while on the medication.

"This study is quite significant," said first author Yoav Dori, MD, PhD, Director of the Jill and Mark Fishman Center for Lymphatic Disorders at CHOP. "Inhibiting this pathway seems to have sweeping, widespread effects on the lymphatic system. How this process occurs is not fully understood, but is remarkable in its speed and breadth. This gives us a lot of hope for treating other patients with genetic mutations along this same pathway in the future."

The patient described in the paper, Maria, first came to CHOP when she was 14, after experiencing severe anemia due to upper gastrointestinal bleeding, as well as other symptoms including fluid build-up in the cavity around her lungs, chronic fatigue, delayed puberty, and difficulty gaining weight. Maria had been born with Noonan Syndrome, a genetic disorder that prevents normal development in various parts of the body and often results in short stature, heart defects and other physical problems, including an abnormal lymphatic system. Despite aggressive medical therapy elsewhere, Maria continued to bleed internally, and she underwent multiple blood transfusions to try to stabilize her health.

Within two days of transferring to CHOP, the lymphatics team, led by Dori, determined Maria had many lymphatic irregularities, which were leading to internal bleeding and lung problems, so they scheduled Maria's first intervention, a lymphatic embolization procedure that would seal the leaky vessels in her gut.

However, within two months of the procedure, Maria's gastrointestinal bleeding recurred. Over the following 8 months, she underwent two additional procedures, as well as a cauterization procedure to close off some of the blood vessels in her gut, but the benefits of each procedure lasted only about three months before the bleeding and her symptoms returned.

Based on whole exome sequencing done at CHOP's Center for Applied Genomics, the research team learned that Maria had a genetic mutation in the SOS1 gene, which operates along the RAS-MAPK pathway. This pathway involves mitogen-activated protein kinase (MEK), and Maria's mutation caused an overproduction of MEK, which resulted in the uncontrolled proliferation of her lymphatic vessels.

The research team had previously used a MEK inhibitor in another patient with a severe lymphatic disorder with great success. That patient had a mutation in the ARAF gene, which is also on the RAS-MAPK pathway. Within months of beginning treatment with trametinib, a MEK inhibitor, the patient saw a resolution of his symptoms and a complete remodeling of his lymphatic system.

Given that SOS1 operates on the same pathway as ARAF, Jean Belasco, MD, an oncologist in CHOP's Cancer Center who co-led the study, applied for compassionate use of the drug in Maria's case, given the lack of other treatment options.

"The success of trametinib in another patient with a mutation on the RAS-MAPK pathway encouraged us to try this approach, since other procedures and therapies continued to be unsuccessful," Belasco said. "Although we are in the early days of this type of personalized medicine, the hope is that by looking at patients' mutations, we can find more drugs and better care for patients with genetic diseases."

Within three months of starting the drug, Maria's vital signs stabilized. The bleeding stopped, her electrolyte, hemoglobin, and albumin levels returned to normal, and she began to gain weight. Maria's mother noticed that Maria wasn't going through periods of exhaustion anymore, and her pallor improved.

"She looks better than she's ever looked," her mother said. "She looks like a normal teenager. It's like night and day. She's also a lot happier. I think she knew deep down she was dying. The medicine gave her hope."

Hakon Hakonarson, Director of the Center for Applied Genomics and co-author of the paper, said that although Maria's SOS1 mutation is distinctly different than the ARAF mutation seen in the other patient, the drug was equally effective because it targets and blocks the function of MEK. He likened the scenario to a pathway where 15 events need to occur for a cell to function. Maria's SOS1 mutation might occur at step nine, whereas the ARAF mutation might occur at step three, but both genes are on a chain that ultimately passes through a tunnel that leads to phosphorylation and overactivity of MEK. Since both mutations were so-called gain of function mutations, MEK and thus lymphatic activity was overexpressed in both patients. The MEK inhibitor put the brakes on a system in overdrive.

"Remarkable advances in genetics have allowed us to uncover these mutations and cluster them into selective pathways and determine effective therapies based on genetic mutations with very high precision," said Hakonarson. "No one could have guessed that this drug would have worked for Maria without knowing the underlying genetics. This discovery is extremely important because Noonan Syndrome has the biggest patient population with alterations in MEK signaling. Not all Noonan patients will have mutations that respond to this therapy, but a very good number of them will."

He added that the treatment could also benefit patients with other genetic defects, though he noted the ongoing use of the drug treats the symptoms caused by these mutations, but does not fix the gene or cure the underlying condition.

"MEK inhibition has the potential to have significant effects on other organ systems affected by RAS-MAPK gene defects, such as the heart, eyes, skin and the coagulation system," Hakonarson said.

Hakonarson is also part of CHOP's Comprehensive Vascular Anomalies Program (CVAP), a CHOP Frontier Program that uses state-of-the-art genomics and personalized research strategies to determine the causes of complex vascular conditions and identify targeted therapies. The program works closely with the Lymphatic Imaging and Interventions Frontier Program, which is led by Dori. CHOP's Frontier Programs conduct cutting-edge research that translates into advanced clinical care. The CVAP, in particular, draws on the extensive clinical and genomic research capacity within the Cancer Center and Center for Applied Genomics.

Even with the success of the breakthrough treatment pioneered by these programs, it is not entirely clear why MEK inhibitors not only resolve patients' symptoms but also completely remodel their lymphatic systems. Hakonarson said one possibility is that when mutated genes cause uncontrolled growth of the lymphatic system, the body's vessels leak fluid everywhere in the body. When you shut down the unregulated growth, other homeostatic mechanisms that are balancing the system come into effect, so the overreactive cells that were growing out of control die and are replaced by normal cells that gradually build up the lymphatic system.

Whatever the mechanism, Maria's mother said her daughter had no hesitation at being the first patient with Noonan Syndrome to try this treatment to resolve a lymphatic issue.

"Maria saw the value from the beginning," she said. "She saw the value for herself, but she was also thinking of other Noonan kids, some of whom have passed away from lymphatic issues. She was willing and eager."

Dori et al. "Severe Lymphatic Disorder Resolved with MEK Inhibition in a Noonan Patient with SOS1 Mutation," Pediatrics, published online November 20, 2020, doi: 10.1542/2020-000123

About Children's Hospital of Philadelphia: Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals, and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country. In addition, its unique family-centered care and public service programs have brought the 564-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu

Contact: Natalie SolimeoChildren's Hospital of Philadelphia267-426-6246solimeon@chop.edu

View original content:http://www.prnewswire.com/news-releases/chop-researchers-reverse-severe-lymphatic-disorder-in-patient-with-noonan-syndrome-by-targeting-genetic-pathway-301177697.html

SOURCE Children's Hospital of Philadelphia

Go here to read the rest:
CHOP Researchers Reverse Severe Lymphatic Disorder in Patient with Noonan Syndrome by Targeting Genetic Pathway - BioSpace

Posted in Genetic Medicine | Comments Off on CHOP Researchers Reverse Severe Lymphatic Disorder in Patient with Noonan Syndrome by Targeting Genetic Pathway – BioSpace

These Algorithms Could End the Scourge of Tuberculosis – The New York Times

In some of the most remote and impoverished corners of the world, where respiratory illnesses abound and trained medical professionals fear to tread, diagnosis is increasingly powered by artificial intelligence and the internet.

In less than a minute, a new app on a phone or a computer can scan an X-ray for signs of tuberculosis, Covid-19 and 27 other conditions.

TB, the most deadly infectious disease in the world, claimed nearly 1.4 million lives last year. The app, called qXR, is one of many A.I.-based tools that have emerged over the past few years for screening and diagnosing TB.

The tools offer hope of flagging the disease early and cutting the cost of unnecessary lab tests. Used at large scale, they may also spot emerging clusters of disease.

Among all of the applications of A.I., I think digitally interpreting an image using an algorithm instead of a human radiologist is probably furthest along, said Madhukar Pai, the director of the McGill International TB Center in Montreal.

Artificial intelligence cannot replace clinicians, Dr. Pai and other experts cautioned. But the combination of A.I. and clinical expertise is proving to be powerful.

The machine plus clinician is better than the clinician, and its also better than machine alone, said Dr. Eric Topol, the director of the Scripps Research Translational Institute in San Diego and the author of a book on the use of A.I. in medicine.

In India, where roughly one-quarter of the worlds TB cases occur, an app that can flag the disease in remote locations is urgently needed.

The Chinchpada Christian Hospital in Nandurbar, a small town in northwest India, serves members of the Bhil tribal community, some of whom travel up to 125 miles to visit the center. The 50-bed hospital has eight doctors, and only the most rudimentary medical equipment.

Clear across the country, Simdega, one of the 20 poorest districts in India, is isolated from the nearest town, Rourkela, by nearly five hours of travel on bumpy roads. The tribal population in the district lives in tiny hamlets surrounded by dense, evergreen forest. Simdegas medical center, which has 60 beds and three doctors, is in a clearing of the forest literally in the middle of nowhere, said Dr. George Mathew, the director.

The meager staff has to manage everything that comes its way, from malaria to myocardial infarcts to convulsions to head injuries, Dr. Mathew said. Over the years he has taught himself to read X-rays, and when he is stumped he appeals to the radiologists among his far-flung friends and former colleagues.

Though Nandurbar and Simdega are separated by more than 800 miles, their populations are startlingly similar. Malaria, sickle cell disease and TB run rampant among them, compounded by poverty, reliance on spiritual healers and alcoholism even among the children.

TB tends to get neglected and diagnosis is delayed often, said Dr. Ashita Singh, the chief of medicine at the Nandurbar hospital. By the time people arrive at these medical centers, they often are very, very ill and have never even been evaluated anywhere else, she said.

But in some patients, the X-rays carry signs that are too subtle for a nonexpert to detect. Its in that group of patients where A.I. tech can be of great benefit, Dr. Singh said.

The arrival of the coronavirus and the lockdown that followed cut off these remote hospitals from the nearest towns, and from radiologists, too. It also further delayed and complicated TB diagnoses because both diseases affect the lungs.

A few months ago, both hospitals began using qXR, an app made by the Indian company Qure.ai and subsidized by the Indian government. The app allows the user to scan an X-ray. If it finds evidence of TB, it assigns the patient a risk score. Doctors can then perform confirmatory tests on patients with the highest risk.

At the hospital in Nandurbar, the app helped diagnose TB in 20 patients in October, Dr. Singh said.

Apps like qXR may also be useful in places with a low prevalence of TB, and for routine screening of people with H.I.V., who are at high risk of contracting TB, as well as for those who have other conditions, experts said.

Confused by the terms about coronavirus testing? Let us help:

Most chest X-rays for people who are suspected of having tuberculosis are read by people who are not remotely expert at interpreting them, said Dr. Richard E. Chaisson, a TB expert at Johns Hopkins University. If there were an A.I. package that could read the X-rays and the CT scans for you in some remote emergency room, that would be a huge, huge advance.

qXR is among the more promising of the A.I.-based apps for detecting TB. The company that made the app didnt realize that potential until a doctor at an Indian hospital suggested it a few years ago.

In studies comparing different A.I. applications that were conducted by the Stop TB Partnership, all of the A.I. apps outperformed experienced human readers, and qXR seemed to fare best.

The app identifies TB with an accuracy of 95 percent, according to Qure.ais chief executive, Prashant Warier. But that level of precision is not based on real-world conditions, which Dr. Topol called a common problem with A.I.-based apps. A TB program may be less precise in the United States or Western Europe than in India, because the prevalence of the disease is lower in those places, Dr. Topol added.

The app has only been tested in adults, but it is now being used in children 6 and above. Chest X-rays are particularly useful for pediatric TB because about 70 percent of the cases in children cannot be confirmed by lab tests, said Dr. Silvia S. Chiang, an expert in pediatric TB at Brown University.

There is a huge shortage of trained professionals who feel comfortable interpreting pediatric chest X-rays, she said, so developing and validating computer-assisted X-ray reading technologies in children would greatly help.

Qure.ai said that it was testing its app in children in Bangladesh, and that it would publish the data early next year. In the meantime, qXR and other apps will keep improving because they learn as they go.

The more X-rays you feed the beast, the better it gets, Dr. Pai said.

The experts were optimistic over all that A.I.-based apps could make an enormous impact on the control of TB, especially in countries like India that lack medical resources.

Im just dreaming of a time when something like this would be available to all the little primary and secondary health care centers in the government sector who hesitate to do X-rays because they dont have the confidence to read them, Dr. Singh said. If this was to be made available to every X-ray center in rural India, I think we could beat TB.

View post:
These Algorithms Could End the Scourge of Tuberculosis - The New York Times

Posted in Genetic Medicine | Comments Off on These Algorithms Could End the Scourge of Tuberculosis – The New York Times

Getting creative to help workers whose kids are stuck at home – The Boston Globe

"Because we are in an extraordinary time, it requires that extraordinary measure of saying, What is money well spent? " says chief human resources officer Susan OConnor. And over and over our response is, How is this helping the team member? We wouldnt want someone to leave because theres no alternative to making this work.

Other workplaces are offering money to cover additional child-care costs, accommodating flexible schedules to help parents manage family needs, and creating virtual programming to occupy kids when theyre not doing schoolwork.

The Phia Group, which helps employers manage health care costs, is trying to make life better for parents by utilizing one of its major assets: real estate. The company moved into a massive office in Canton this spring, just as the pandemic took hold. And though people have begun returning to the office with social distancing and infection-control protocols the property is still mostly empty.

So when schools opened in September with a heavy reliance on remote learning, Phia saw an opportunity to help. The company is letting students in middle school and high school accompany their parents to work, where its quiet and the Internet is reliable. The handful of students who come in can even hunker down in unused private offices. Linda Pestana has been bringing her 17-year-old son, Daniel, to the office several days a week. Its a vast improvement over their previous arrangement, she says, sharing a shaky Internet connection at their Stoughton home. Now, they make the 20-minute drive together in the morning, and Pestana runs her son home when his classes are over.

There are too many distractions at home, says Pestana, Phias human resources manager. I know my son would do his schoolwork, but Im sure theres always going to be that temptation to jump on the Xbox or go upstairs and take a nap.

Bringing guests into an office can be tricky in a pandemic. Public health and liability are a challenge, says Ron E. Peck, Phias executive vice president and general counsel. The company would have liked to offer the program to younger children, but due to concerns about whether it would have to follow day-care center regulations, it decided to limit access to kids 11 and over.

Setting up the program was a valuable experience, Peck says, as the company considers the legal and regulatory issues that will come with the resumption of regular office life. I have faith that this pandemic will end and well start to get to a sense of normalcy, he says, and Im thinking that the work weve put in now will allow us to continue to open space and provide resources to our employees and their families beyond COVID-19.

Employers have also found that offering programming targeted at kids can be helpful for workers. HubSpot, the Cambridge content marketing company, hired two teachers to create online courses and activities that students can participate in live via teleconference or watch later as recordings. The classes, held three or four times each week, are about 45 minutes long and cover topics including marine life, African animals, and outer space.

Alfresco Software, a Wellesley firm focused on content management, has encouraged kids to create online programs themselves. Children of employees have created classes on dance, baking, and American Sign Language, which have been popular with other workers' families.

At Sarepta Therapeutics in Cambridge, a biotech that develops genetic medicine for rare diseases, employees have access to a handful of options to help them find child care, including memberships to baby-sitting and tutoring services. But, as with Alfresco, Sareptas leaders realized that families there were eager to help take care of each other. So the company set up a directory of older and adult children who were looking for baby-sitting jobs, and families with younger kids or elderly members in need of care.

The program has provided a crucial connection between parents who need help and family members whose plans for school or internships, for instance have been disrupted by the pandemic. Sema Ariman, who leads a regulatory team at Sarepta, says the program has relieved some pressure on her family. She and her husband had been trying to balance child care and work with their two kids, Yasmeen, 7, and Yara, 5, learning from home. Sitters were hard to come by in their social circle because demand is so high, and Sareptas directory led them to a colleagues teenage daughter. The parents and kids love her she always brings crafts to make and it took some of the stress out of bringing a new person into their home. Here was someone internal, available in the company, and a direct contact, Ariman says.

Joan Nickerson, Sareptas head of human resources, says the company will keep looking for ways to help employees adapt to the difficult circumstances they face. Our employees really supported the extent we went to to make sure . . . they had what they need so they could continue the important work they do, Nickerson says. Being creative to help our employees goes a long way.

Andy Rosen can be reached at andrew.rosen@globe.com. Follow him on Twitter @andyrosen.

View original post here:
Getting creative to help workers whose kids are stuck at home - The Boston Globe

Posted in Genetic Medicine | Comments Off on Getting creative to help workers whose kids are stuck at home – The Boston Globe