Search Immortality Topics:

Page 130«..1020..129130131132..140150..»


Category Archives: Genetic Medicine

IDEAYA Biosciences and Boston Children’s Hospital Collaborate on Preclinical Evaluation of IDE196 for Sturge Weber Syndrome – a Rare Disease…

SOUTH SAN FRANCISCO, Calif., Jan. 10, 2020 /PRNewswire/ -- IDEAYA Biosciences, Inc. (NASDAQ:IDYA), an oncology-focused precision medicine company committed to the discovery and development of targeted therapeutics, announced that the company has entered into a Sponsored Research Agreement with Boston Children's Hospital for preclinical evaluation of the role of protein kinase C (PKC) in Sturge Weber syndrome (SWS), a rare neurocutaneous disorder characterized by capillary malformations and associated with mutations in GNAQ.

Under the agreement, IDEAYA will collaborate with and support research at Boston Children's Hospital in the laboratory of Dr. Joyce Bischoff, Ph.D., Research Associate, Department of Surgery and Professor, Harvard Medical School, who is Principal Investigator of the research studies. The preclinical research will evaluate IDE196, a potent, selective PKC inhibitor, in vitro to assess whether pharmacological inhibition of PKC in endothelial cells having GNAQ mutations will restore normal cell function, as well as in vivo to assess whether pharmacological inhibition of PKC can regulate blood vessel size in murine models that recapitulate enlarged vessels seen in SWS capillary malformations.

SWS is a rare disease characterized by a facial birthmark, neurological abnormalities (e.g. seizures) and glaucoma, which occurs in 1 to 20,000 to 50,000 live births. The disease is believed to be mediated by a somatic GNAQ mutation in skin or brain tissue which enhances signaling in the PKC pathway in a reported 88% (n=26) of SWS patients. (NEJM Shirley et al., May 2019). "SWS is a rare disease that can present debilitating symptoms for patients, such as choroidal hemangiomas which may lead to glaucoma. There are no current FDA approved treatments specifically developed for SWS highlighting the high unmet medical need for these patients," noted Dr. Bischoff, Ph.D.

IDE196 is a potent, selective, small molecule inhibitor of protein kinase C (PKC), which IDEAYA is evaluating in a Phase 1/2 basket trial in patients with Metastatic Uveal Melanoma or other solid tumors, such as cutaneous melanoma, having GNAQ or GNA11 hotspot mutations which enhance signaling in the PKC pathway. "We are excited to work with Boston Children's Hospital to evaluate IDE196 activity in preclinical models relevant to Sturge Weber, a rare disease believed to be driven by genetic mutation of GNAQ. This important work is part of our broader strategy to deliver precision medicine therapies for patients with GNAQ or GNA11 mutations, by targeting the underlying biology of the disease," said Yujiro S. Hata,Chief Executive Officer and President at IDEAYA Biosciences.

About IDEAYA Biosciences

IDEAYA is an oncology-focused precision medicine company committed to the discovery and development of targeted therapeutics for patient populations selected using molecular diagnostics. IDEAYA's approach integrates capabilities in identifying and validating translational biomarkers with small molecule drug discovery to select patient populations most likely to benefit from the targeted therapies IDEAYA is developing. IDEAYA is applying these capabilities across multiple classes of precision medicine, including direct targeting of oncogenic pathways and synthetic lethality which represents an emerging class of precision medicine targets.

Forward-Looking Statements

This press release contains forward-looking statements, including, but not limited to, statements related to IDE196 activity in preclinical models relevant to Sturge Weberand IDEAYA's ability to deliver precision medicine therapies. Such forward-looking statements involve substantial risks and uncertainties that could cause IDEAYA's preclinical and clinical development programs, future results, performance or achievements to differ significantly from those expressed or implied by the forward-looking statements. Such risks and uncertainties include, among others, the uncertainties inherent in the drug development process, including IDEAYA's programs' early stage of development, the process of designing and conducting preclinical and clinical trials, the regulatory approval processes, the timing of regulatory filings, the challenges associated with manufacturing drug products, IDEAYA's ability to successfully establish, protect and defend its intellectual property and other matters that could affect the sufficiency of existing cash to fund operations. IDEAYA undertakes no obligation to update or revise any forward-looking statements. For a further description of the risks and uncertainties that could cause actual results to differ from those expressed in these forward-looking statements, as well as risks relating to the business of IDEAYA in general, see IDEAYA's recent Quarterly Report on Form 10-Q filed on November 13, 2019 and any current and periodic reports filed with the U.S. Securities and Exchange Commission.

SOURCE IDEAYA Biosciences, Inc.

Home

Read the original here:
IDEAYA Biosciences and Boston Children's Hospital Collaborate on Preclinical Evaluation of IDE196 for Sturge Weber Syndrome - a Rare Disease...

Posted in Genetic Medicine | Comments Off on IDEAYA Biosciences and Boston Children’s Hospital Collaborate on Preclinical Evaluation of IDE196 for Sturge Weber Syndrome – a Rare Disease…

In defence of imprecise medicine: the benefits of routine treatments for common diseases – The Conversation UK

The NHS states that it will be the world-leading healthcare system in its use of cutting-edge genomic technologies to predict and diagnose inherited and acquired disease, and to personalise treatments and interventions. As all diseases are either inherited or acquired, this is no modest claim.

This approach to medical care is known as precision medicine, and given the hype that surrounds the model, you might be forgiven for thinking that the usual practice of imprecise medicine is greatly inferior. And yet it has been the routine and, in many respects, indiscriminate use of effective treatments for a range of common diseases that has improved the health of large numbers of patients over the past few decades.

Precision medicine assumes that genes play a big role in causing diseases and that new treatments targeting genes and their processes can have significant benefits. The government is so enthusiastic about this new approach that in 2019 it offered gene sequencing to the entire UK population, albeit for a fee. In announcing this initiative, Health Secretary Matt Hancock said there are huge benefits to sequencing as many genomes as we can every genome sequenced moves us a step closer to unlocking life-saving treatments.

But just how big are the benefits likely to be? How relevant is precision medicine to preventing and treating the diseases responsible for most premature deaths and hospital admissions in the UK, such as heart disease, stroke, hip fracture and dementia diseases where genetic links are not clear.

In a study of half a million participants in the UK Biobank project, 1.7 million separate gene variants were shown to be associated with heart disease. Yet in combination, these variants accounted for less than 3% of heart disease after considering known causes such as smoking and high cholesterol.

Precision medicine seems likely to offer most promise for preventing and treating less common diseases, as they are more likely to have a major genetic cause. The poster child for precision medicine is the drug trastuzumab (also known as Herceptin), which was developed following the discovery of HER2, a genetic factor implicated in about 20% of breast cancer cases.

Trastuzumab targets a specific biological mechanism that is involved in HER2 positive cancer, and treatment with this drug improves survival and reduces cancer recurrence. But the effects are not quite as remarkable as has been sometimes suggested. A meta-analysis of clinical trials reported that after ten years, 74% of patients treated with trastuzumab remained alive and recurrence-free compared with 62% of those who did not receive trastuzumab. A worthwhile effect for sure, but only for about 10-15% of patients.

Comparing these important but small gains with the impact of an imprecise approach taken to other diseases offers a stark contrast. For example, HIV used to be a death sentence. Today, 94% of people with the disease are still alive after 30 years, thanks to antiretroviral drugs. Similarly, deaths in the five-year period following a heart attack declined by 70% between 1979 and 2013, largely due to the routine use of drugs such as aspirin, ACE inhibitors and statins.

Interestingly, for both heart attacks and HIV, when efforts have been made to personalise treatment, it has generally led to worse outcomes; in large part as a consequence of doctors withholding treatments they believe may not be beneficial or could be dangerous for a particular person. Unfortunately, such clinical insights are more often wrong than right.

Its hard not to conclude that the nations health would be better served by the NHS if it aspired to be a global leader in the standardisation of care for common serious diseases. Lets not let the current enthusiasm for precision medicine blind us to the benefits of the imprecise medicine we know saves millions of lives every year.

Read this article:
In defence of imprecise medicine: the benefits of routine treatments for common diseases - The Conversation UK

Posted in Genetic Medicine | Comments Off on In defence of imprecise medicine: the benefits of routine treatments for common diseases – The Conversation UK

New year health kicks are great but your environment is also vital | Dr Robert Wright – The Guardian

Exercising and eating better as part of our new year health kicks are great, but we should also think more deeply about the role the environment plays on our health. As a professor of environmental medicine, I believe this is an exciting new area of study that will play a big part in the future of personalized medicine.

Consider this, every day we are bombarded with messages: genes that cause cancer, supplements that prevent Alzheimers disease, diets that prevent asthma, chemicals that make us gain weight. But while headlines frequently proclaim game changing new findings, over the last 20 years in the US and Europe our health status as a population has seriously deteriorated. Rates of obesity, diabetes, heart disease, cancer and learning disorders continue to rise. Genetic variation may be part of the puzzle that explains why we get sick, but clearly there are missing pieces.

After all, 20 years of increasing obesity and diabetes represents only a single generation. If our genes didnt change in the last 20 years, then our environment must have.

Genes never work in isolation. Instead, they determine how we react to our diet, social surroundings, physical environment, infections and chemical exposures. Environment is the missing piece of the puzzle.

The old 20th-century concept of nature v nurture needs to be redefined, as genetics and environment do not compete, they work hand in hand, sometimes to our benefit and sometimes to our detriment. The correct formula is really nature times nurture. Right now the nurture part of that equation is largely unknown, but that may soon change.

Recently, a new concept has arisen, the science of the exposome: the measurement of all the health-relevant environmental factors across the lifetime.

The exposome is to our environment what genomics is to our genetics. Most of what we know about environment and health is still a black box consisting of yet to be discovered risk factors we too often attribute to bad luck ie because we dont measure the environmental cause, the problem appears random.

But most of what we now understand about genetics was also a black box in the 20th century.

Physicians see the role of environment daily even if it is not clear to them that environment is the cause. For example, a child with autism develops more frequent combative oppositional behaviors and emotional outbursts. An adult with diabetes cant seem to control her blood sugar despite higher doses of insulin. A newborn is born with blue skin but a normal heart.

For each of these cases, sequencing the genome would not have identified the cause. The autistic child had lead poisoning because of pica brought on by autism, the diabetic adult used perfumes high in phthalates, chemicals that affect metabolism and the newborn baby drank formula mixed with well water contaminated by fertilizer runoff that reacted with his hemoglobin.

In each case, genomics would not have given us the correct answer, but if we had the tools to measure the exposome, we would have made the correct diagnosis. Just as importantly, because the underlying causes were environmental, we can treat the problem with interventions.

Furthermore, in most diseases, environment and genetics work in combination. Its very rare to have a genetic variant that causes Alzheimers disease, but it is fairly common to have a genetic variant that makes us susceptible to environments that can cause Alzheimers. The different between those with the genetic variant who get sick and those who dont is their different environments.

Imagine a visit to your physician in which you begin by handing over your smartwatch to have its data downloaded, followed by a blood draw to measure your chemical environment and nutritional status, then you update your lifetime home address and occupational history into a secure computer that houses your genomic data. This then computes your personalized risk score for heart disease, diabetes and other diseases. Or, if you already have one of these diseases, computes the ideal treatment regimen based on this big data. This is how we will be able to personalize medicine.

We are not there yet, but the technology to measure the exposome is far more advanced than the general public, and even many researchers, realize. There are now lab tests that can demonstrate the presence of thousands of chemicals in our bodies and satellites that record our daily weather, air pollution, light exposure and built environment. Public records have data on water quality, age of housing, local crime statistics, outdoor noise levels and even where disease clusters are occurring. Cellphones are ubiquitous and can link our daily behavior and movement patterns with the quality of the local air and water while simultaneously measuring our heart rate, physical activity and sleep quality.

Computational science has advanced to a point where storage of terabytes of data is routine and computer clusters are found in every major university and methods to bring these databases together are no longer science fiction. Artificial intelligence and other big data approaches to genomics also provide a roadmap for analyzing exposomic data.

Understanding how environment affects your health will empower people to make the changes in their lifestyle that will matter most. To understand what food to buy, which fragrances to avoid, where and when to exercise, etc. All the pieces to solve this puzzle are beginning to come together. What is needed is the grand vision to invest in and integrate exposomic science into public health and clinical medicine. This is the final piece of the puzzle. Once we understand our exposome and integrate it with our genome, we will finally understand why and how chronic diseases have become so common and how we can start to reverse their trends in society.

Dr Robert Wright is a pediatrician, medical toxicologist, environmental epidemiologist and director of the Institute for Exposomic Research at the Icahn School of Medicine at Mount Sinai

Excerpt from:
New year health kicks are great but your environment is also vital | Dr Robert Wright - The Guardian

Posted in Genetic Medicine | Comments Off on New year health kicks are great but your environment is also vital | Dr Robert Wright – The Guardian

Biofidelity and Agilent complete successful molecular assay study for rapid and accurate detection of key lung cancer mutations – BioSpace

Biofidelity assay has potential to make high precision, cost-effective and non-invasive diagnosis more widely available, improving treatment and patient outcomes

Cambridge, UK, 9th January 2020 Biofidelity Ltd, a company developing high performing novel molecular assays for the detection of targeted, low-frequency genetic mutations, today announced the successful completion of a study to detect key lung cancer mutations in collaboration with Agilent Technologies, a global leader in life sciences, diagnostics, and applied chemical markets.

The collaboration, using an assay developed by Biofidelity, demonstrated an improvement in sensitivity of 50 times that achieved with current FDA-approved PCR-based diagnostics, matching that of specialized NGS assays, which require error-correction technology, while providing a dramatic simplification of workflows from more than 100 steps, to just 4 (four). Assays were performed using standard laboratory instrumentation, demonstrating the potential for straightforward adoption of Biofidelitys panels in decentralised testing laboratories around the world.

As well as extremely high sensitivity, 100% specificity was achieved in the detection of multiplexed panels of mutations from both tissue and plasma, with no false positives observed across more than 750 assays. Analysis of results is also dramatically simpler than sequencing-based assays, providing physicians a clear, simple, actionable result, with a turnaround time of less than 3 hours, making the Biofidelity assay suitable for recurrent patient monitoring.

Genetic testing for lung cancer mutations is usually carried out through invasive tissue biopsy, an expensive procedure carrying significant risk for patients with advanced disease. Up to 10% of such tests fail due to the lack of sensitivity of current testing solutions and poor sample quality.

Liquid biopsy, or testing directly from the patients blood, offers a non-invasive alternative with significant potential benefits to patients. However, its use has been limited by the lack of cost-effective, robust and rapid tests which are sufficiently sensitive to enable detection of the very small fractions of tumor DNA present in such samples.

Of the nearly 2 million new cases of non-small-cell lung cancer (NSCLC) diagnosed each year worldwide, fewer than 5% of patients receive high-sensitivity, non-invasive genetic testing. The assay developed by Biofidelity could provide a simple solution, enabling access to high-precision genetic testing for more than 1.7m new NSCLC patients every year with a test that outperforms DNA sequencing in a fraction of the time.

Work was supported by InnovateUK grant number 105202 as part of the Investment Accelerator: Innovation in Precision Medicine program.

Dr Barnaby Balmforth, Chief Executive Officer of Biofidelity, commented: Our goal is to improve patient outcomes in oncology by enabling much greater access to the highest precision diagnostic tests. This collaboration with Agilent in lung cancer has again demonstrated that Biofidelitys molecular assays dramatically increase the effectiveness and speed of diagnosis, supporting early detection of disease, better targeting of therapies and improved patient monitoring. By combining diagnostic outperformance and rapid results in a simple, cost-efficient format using existing instrumentation, we believe we have the potential to bring high precision testing to many more NSCLC patients, substantially reducing the need for invasive biopsies.

Tad Weems, Managing Director, Agilent Early Stage Partnerships, commented: As both a scientific collaborator and an investor in the company, Agilent has been impressed by the data from Biofidelitys assays, which detected a selection of NSCLC DNA mutations at extremely low frequencies in both tissue and plasma samples without the need for DNA sequencing. Biofidelitys assays are specific and sensitive, with the potential to provide improved and rapid routine cancer diagnostics.

Notes To Editors

About Biofidelity

Biofidelity has developed a molecular assay with a simple workflow and fast time-to-result which can transform the detection of genetic abnormalities within a sample by reliably detecting large panels of DNA mutations at extremely low frequencies.

This assay has a simple workflow and is suitable for routine use in diagnostics labs around the world, without the need for investment in new instrumentation or infrastructure.

Biofidelity is developing genetic panels for use in precision medicine and patient monitoring across a range of diseases including NSCLC and colorectal cancer

Located in Cambridge, UK, Biofidelity is a private company founded in 2019.

For more information, visit http://www.biofidelity.com, or follow us on LinkedIn: Biofidelity.

Issued for and on behalf of Biofidelity by Instinctif Partners.For more information please contact:

BiofidelityDr Barnaby Balmforth, CEOT: +44 1223 358652E: info@biofidelity.com

Instinctif PartnersTim Watson / Genevieve WilsonT: +44 20 7457 2020E: Biofidelity@instinctif.com

Visit link:
Biofidelity and Agilent complete successful molecular assay study for rapid and accurate detection of key lung cancer mutations - BioSpace

Posted in Genetic Medicine | Comments Off on Biofidelity and Agilent complete successful molecular assay study for rapid and accurate detection of key lung cancer mutations – BioSpace

Machine Learning and Artificial Intelligence Are Poised to Revolutionize Asthma Care – Pulmonology Advisor

The advent of large data sets from many sources (big data), machine learning, and artificial intelligence (AI) are poised to revolutionize asthma care on both the investigative and clinical levels, according to an article published in the Journal of Allergy and Clinical Immunology.

According to the researchers, a patient with asthma endures approximately 2190 hours of experiencing and treating or not treating their asthma symptoms. During 15-minute clinic visits, only a short amount of time is spent understanding and treating what is a complex disease, and only a fraction of the necessary data is captured in the electronic health record.

Our patients and the pace of data growth are compelling us to incorporate insights from Big Data to inform care, the researchers posit. Predictive analytics, using machine learning and artificial intelligence has revolutionized many industries, including the healthcare industry.

When used effectively, big data, in conjunction with electronic health record data, can transform the patients healthcare experience. This is especially important as healthcare continues to embrace both e-health and telehealth practices. The data resulting from these thoughtful digital health innovations can result in personalized asthma management, improve timeliness of care, and capture objective measures of treatment response.

According to the researchers, the use of machine learning algorithms and AI to predict asthma exacerbations and patterns of healthcare utilization are within both technical and clinical reach. The ability to predict who is likely to experience an asthma attack, as well as when that attack may occur, will ultimately optimize healthcare resources and personalize patient management.

The use of longitudinal birth cohort studies and multicenter collaborations like the Severe Asthma Research Program have given clinical investigators a broader understanding of the pathophysiology, natural history, phenotypes, seasonality, genetics, epigenetics, and biomarkers of the disease. Machine learning and data-driven methods have utilized this data, often in the form of large datasets, to cluster patients into genetic, molecular, and immune phenotypes. These clusters have led to work in the genomics and pharmacogenomics fields that should ultimately lead to high-fidelity exacerbation predictions and the advent of true precision medicine.

This work, the researchers noted, if translated into clinical practice can potentially link genetic traits to phenotypes that can for example predict rapid response, or non-response to medications like albuterol and steroids, or identify an individuals risk for cortisol suppression.

As with any innovation, though, challenges abound. One in particular is the siloed nature of the clinical and scientific insights about asthma that have come to light in recent years. Although data are now being generated and interpreted across various domains, researchers must still contend with a lack of data standards and disease definitions, data interoperability and sharing difficulties, and concerns about data quality and fidelity.

Machine learning and AI present their own challenges; namely, those who utilize these technologies must consider the issues of fairness, bias, privacy, and medical bioethics. Legal accountability and medical responsibility issues must also be considered as algorithms are adopted into routine practice.

We must, as clinicians and researchers, constructively transform the concern and lack of understanding many clinicians have about digital health, [machine learning], and [artificial intelligence] into educated and critical engagement, the researchers concluded. Our job is to use [machine learning and artificial intelligence] tools to understand and predict how asthma affects patients and help us make decisions at the patient and population levels to treat it better.

Reference

Messinger AI, Luo G, Deterding RR. The doctor will see you now: How machine learning and artificial intelligence can extend our understanding and treatment of asthma [published online December 25, 2019]. J Allergy Clin Immunol. doi: 10.1016/j.jaci.2019.12.898

See original here:
Machine Learning and Artificial Intelligence Are Poised to Revolutionize Asthma Care - Pulmonology Advisor

Posted in Genetic Medicine | Comments Off on Machine Learning and Artificial Intelligence Are Poised to Revolutionize Asthma Care – Pulmonology Advisor

Are You Doing The Wrong Detox For Your Genes? Plus, Foods & Habits To Use – mindbodygreen.com

As a doctor of Chinese medicine, I'm always looking for ways to get toxins out of my life. Whether it be skin care products, clean eating, or plastics, health is affected by lifestyle behaviors. And, in our current society, we are exposed to an unhealthy amount of chemicals throughout our lifetime, and I believe that they eventually take a toll on our body.

Nutrigenomics is a facet of epigenetics that integrates genomic science with nutrition and other environmental factors such as cigarette smoking, alcohol consumption, and exercise. Each of us carries a blueprint, if you will, within our genetic code, that signals our body to express genetic variations. This means that by studying your individual genetic code, you can help your body minimize unfavorable genetic expressions, like chronic disease.

Even though our genes are fundamental for determining expression and function, what we put in our mouth directly affects the extent to which certain genes are expressed.

This gives an individual a certain power over their genetic expression. But first, you must understand your genes and epigenetics.

See the article here:
Are You Doing The Wrong Detox For Your Genes? Plus, Foods & Habits To Use - mindbodygreen.com

Posted in Genetic Medicine | Comments Off on Are You Doing The Wrong Detox For Your Genes? Plus, Foods & Habits To Use – mindbodygreen.com