Search Immortality Topics:

Page 116«..1020..115116117118..130140..»


Category Archives: Gene Medicine

Current research: 2020 Latest Report on Exosome Diagnostics Market Report Technologies, Analyze the Pipeline Landscape and Key Companies – WhaTech…

Exosome Diagnostics Market Report analysis including industry Overview, Country Analysis, Key Trends, Key Retail Innovations, Competitive Landscape and Sector Analysis for upcoming years.

ReportsnReports added a new report on The Exosome Diagnostics Market Technologies report delivers the clean elaborated structure of the Report comprising each and every business related information of the market at a global level. The complete range of information related to the Exosome Diagnostics Market Technologies is obtained through various sources and this obtained the bulk of the information is arranged, processed, and represented by a group of specialists through the application of different methodological techniques and analytical tools such as SWOT analysis to generate a whole set of trade based study regarding the Exosome Diagnostics Market Technologies.

Download a Free PDF Sample of Exosome Diagnostics Market Technologies Research Report at:

http://www.reportsnreports.com/contactme=1781607

Top Companies mentioned in this report are Capricor Therapeutics Inc, Evox Therapeutics Ltd, ReNeuron Group Plc, Stem Cell Medicine Ltd, Tavec Inc, Codiak Biosciences Inc, Therapeutic Solutions International Inc, ArunA Biomedical Inc, Ciloa 85.

This latest report is on Exosome Diagnostics Market Technologies which explores the application of exosome technologies within the pharmaceutical and healthcare industries. Exosomes are small cell-derived vesicles that are abundant in bodily fluids, including blood, urine and cerebrospinal fluid as well as in in vitro cell culture.

These vesicles are being used in a variety of therapeutic applications, including as therapeutic biomarkers, drug delivery systems and therapies in their own right. Research within this area remains in the nascent stages, although a number of clinical trials have been registered within the field.

Exosomes have several diverse therapeutic applications, largely centering on stem cell and gene therapy.

Exosomes have been identified as endogenous carriers of RNA within the body, allowing for the intracellular transportation of genetic material to target cells.

As such, developers have worked to engineer exosomes for the delivery of therapeutic miRNA and siRNA-based gene therapies. As RNA is highly unstable within the body, a number of different biological vector systems have been developed to enhance their transport within the circulation, including viruses and liposomes.

Similarly, exosomes derived from stem cells have also been identified for their therapeutic applications, particularly in the treatment of cancer and cardiovascular disease. Exosome technologies offer several advantages over existing biologic-based drug delivery systems.

Reasons to buy this Report:

Develop a comprehensive understanding of exosome technologies and their potential for use within the healthcare sector, Analyze the pipeline landscape and gain insight into the key companies investing in exosomes technologies, Identify trends in interventional and observational clinical trials relevant to exosomes.

Get this Report @ http://www.reportsnreports.com/purchasme=1781607

Scope of this Report:

What are the features of the exosome lifecycle?,How are therapeutic exosomes prepared?,How do exosome therapies in development differ in terms of stage of development, molecule type and therapy area?,Which companies are investing in exosome technologies?,How many clinical trials investigate exosomes as biomarkers, therapeutics and vectors?

Table of contents for Exosome Diagnostics Market Technologies:

1 Table of Contents 4

1.1 List of Tables 6

1.2 List of Figures 7

2 Exosomes in Healthcare 8

2.1 Overview of Exosomes 8

2.2 Drug Delivery Systems 9

2.2.1 Modified Release Drug Delivery Systems 9

2.2.2 Targeted Drug Delivery Systems 10

2.2.3 Liposomes 12

2.2.4 Viruses 14

2.2.5 Exosomes 17

2.3 The Exosome Lifecycle 18

2.4 Exosomes in Biology 18

2.5 Exosomes in Medicine 19

2.5.1 Biomarkers 19

2.5.2 Vaccines 20

2.6 Exosomes as a Therapeutic Target 20

2.7 Exosomes as Drug Delivery Vehicles 21

2.8 Therapeutic Preparation of Exosomes 21

2.8.1 Isolation and Purification 22

2.8.2 Drug Loading 22

2.8.3 Characterization 23

2.8.4 Bioengineering 23

2.8.5 Biodistribution and In Vivo Studies 23

2.8.6 Advantages of Exosome Therapies 24

2.8.7 Disadvantages of Exosome Therapies 24

2.9 Exosomes in Therapeutic Research 25

2.9.1 Exosome Gene Therapies 25

2.9.2 Exosome in Stem Cell Therapy 26

2.10 Exosomes in Oncology 27

2.10.1 Immunotherapy 27

2.10.2 Gene Therapy 28

2.10.3 Drug Delivery 29

2.10.4 Biomarkers 30

2.11 Exosomes in CNS Disease 30

2.11.1 Tackling the Blood-Brain Barrier 30

2.11.2 Exosomes in CNS Drug Delivery 31

2.11.3 Gene Therapy 32

2.12 Exosomes in Other Diseases 33

2.12.1 Cardiovascular Disease 33

2.12.2 Metabolic Disease 33

3 Assessment of Pipeline Product Innovation 36

3.1 Overview 36

3.2 Exosome Pipeline by Stage of Development and Molecule Type 36

3.3 Pipeline by Molecular Target 37

3.4 Pipeline by Therapy Area and Indication 38

3.5 Pipeline Product Profiles 38

3.5.1 AB-126 - ArunA Biomedical Inc. 38

3.5.2 ALX-029 and ALX-102 - Alxerion Biotech 39

3.5.3 Biologics for Autism - Stem Cell Medicine Ltd 39

3.5.4 Biologic for Breast Cancer - Exovita Biosciences Inc. 39

3.5.5 Biologics for Idiopathic Pulmonary Fibrosis and Non-alcoholic Steatohepatitis - Regenasome Pty 39

3.5.6 Biologic for Lysosomal Storage Disorder - Exerkine 39

3.5.7 Biologics for Prostate Cancer - Cells for Cells 40

3.5.8 CAP-2003 - Capricor Therapeutics Inc. 40

3.5.9 CAP-1002 - Capricor Therapeutics Inc. 41

3.5.10 CIL-15001 and CIL-15002 - Ciloa 42

3.5.11 ExoPr0 - ReNeuron Group Plc 42

3.5.12 MVAX-001 - MolecuVax Inc. 43

3.5.13 Oligonucleotides to Activate miR124 for Acute Ischemic Stroke - Isfahan University of Medical Sciences 44

3.5.14 Oligonucleotides to Inhibit KRAS for Pancreatic Cancer - Codiak BioSciences Inc. 44

3.5.15 Proteins for Neurology and Proteins for CNS Disorders and Oligonucleotides for Neurology - Evox Therapeutics Ltd 44

3.5.16 TVC-201 and TVC-300 - Tavec Inc. 45

4 Assessment of Clinical Trial Landscape 48

4.1 Interventional Clinical Trials 48

4.1.1 Clinical Trials by Therapy Type 48

4.1.2 Clinical Trials by Therapy Area 49

4.1.3 Clinical Trials by Stage of Development 50

4.1.4 Clinical Trials by Start Date and Status 50

4.2 Observational Clinical Trials 51

4.2.1 Clinical Trials by Therapy Type 51

4.2.2 Clinical Trials by Therapy Area 51

4.2.3 Clinical Trials by Stage of Development 52

4.2.4 Clinical Trials by Start Date and Status 53

4.2.5 List of All Clinical Trials 54

5 Company Analysis and Positioning 67

5.1 Company Profiles 67

5.1.1 Capricor Therapeutics Inc. 67

5.1.2 Evox Therapeutics Ltd 72

5.1.3 ReNeuron Group Plc 73

5.1.4 Stem Cell Medicine Ltd 77

5.1.5 Tavec Inc. 78

5.1.6 Codiak Biosciences Inc. 80

The rest is here:
Current research: 2020 Latest Report on Exosome Diagnostics Market Report Technologies, Analyze the Pipeline Landscape and Key Companies - WhaTech...

Posted in Gene Medicine | Comments Off on Current research: 2020 Latest Report on Exosome Diagnostics Market Report Technologies, Analyze the Pipeline Landscape and Key Companies – WhaTech…

How do bodies position arms, legs, wings and organs? – Knowable Magazine

In the 1986 horror classic The Fly, a scientist played by Jeff Goldblum manages, quite unintentionally, to mix his biology with that of a housefly with gruesome results.

But the real-world mutant fruit flies that scientists used to understand body patterning are almost as bizarre: Flies with legs on their brows instead of antennae. Flies with extra chest sections, complete with duplicate wings. Flies missing big chunks of their heads.

These freaky flies have something in common: Theyre mixing up their head-to-tail body plans. And they earned three scientists the Nobel Prize in Physiology or Medicine in 1995.

Two of the scientists, Eric Wieschaus and Christiane Nsslein-Volhard, conducted a now-famous genetic screen of fruit fly embryos in 1979 and 1980 while working at the European Molecular Biology Laboratory in Heidelberg, Germany. By feeding parent flies a powerful mutagen, they created a horde of larvae with genetic mistakes, including ones that affected how the fly embryo arranges bits of tissue, from head to tail, in sections a process called segmentation. (The pair tell the tale of this landmark experiment in the 2016 Annual Review of Cell and Developmental Biology.)

The other Nobel laureate, Edward Lewis of Caltech, discovered key players, later named Hox genes, that tell these fruit fly segments and other body parts what tissues and structures they should become.

Fruit flies, it turns out, have their own segmentation path, different from ours: They make a big chunk of tissue and then slice it up, like one would a loaf of bread. In contrast, vertebrates (including humans) churn out segments one by one, like a string of sausages, as they build the tissue. But many of the genes involved Hox and others found later are the same.

A landmark genetics screen by two scientists unearthed mutants with segmentation defects in the fruit fly Drosophila. On the left is the outer layer, or cuticle, of a normal early larva. To the right are ones of various mutants, with clear abnormalities.

CREDIT: E. WIESCHAUS & C. NSSLEIN-VOLHARD / AR CELL AND DEVELOPMENTAL BIOLOGY 2016

These commonalities extend to the need for a sort of ruler that guides segmentation and Hox actions by helping cells identify their position in the body. That ruler takes the form of a two-way gradient. Cells closest to the head end make lots of a chemical called retinoic acid, and those at the tail end make two other compounds, called FGF and Wnt. These diffuse along the body, such that different spots contain different amounts of the chemicals. So, for example, a cell thats closer to the head than the tail will know its position because its bathed in plenty of retinoic acid, but not so much Wnt or FGF.

Vertebrate segments arise from tissue called the mesoderm. Sandwiched between the cells that will make skin and those that will make most internal organs, the mesoderm will yield tissues such as bone and muscle.

As the embryo grows, part of the mesoderm tissue near the head begins to make its segments in the form of beads of tissue called somites, one on each side of the future spinal cord. They are squeezed out of that mesoderm like toothpaste from a tube, says Robb Krumlauf, a developmental biologist at the Stowers Institute for Medical Research in Kansas City, Missouri. These will turn into vertebrae and skeletal muscles. (Other body parts will develop from cells outside of the segments.)

If the segmentation process goes wrong, vertebrae can take the wrong shape: half-vertebrae, fused vertebrae or wedge-shaped ones, for example. In people, this causes a type of scoliosis, and also may affect the kidneys, heart and other body parts.

How does the embryo make just the right number of segments, all the right size? In the 1970s, English researchers came up with a model they called clock and wavefront. The embryos clock would tick to indicate each time a segment should be produced. The wavefront would consist of a maturation process traveling from head to tail, and cells at the crest of that maturation wave would be ready to segment. Whenever the clock ticked, they would spit out a new segment.

The developing mammalian embryo produces two somites, one each side of the future spinal canal, every time an internal clock ticks. The process is guided by a protein called FGF that is made by the tail end of the embryo and diffuses along its length, forming a gradient. Somite production occurs at a spot (the wave front) where the concentration of FGF is at just the right level when the clock makes a tick. The process repeats itself over and over, gradually building up segments, from which vertebrae and skeletal muscle are made. Two other molecules, Wnt and retinoic acid, also form gradients, and with FGF these are key to telling tissues where they are along an embryos length.

At that time, scientists had no idea what molecules would control either clock or wavefront, or if the theory was even correct. The first hard evidence for a clock came from experiments with chicken eggs, published in 1997.

Developmental biologist Olivier Pourqui, now at Harvard Medical School, was studying the chick version of a gene called hairy that is involved in segmentation in fruit flies. He and his colleagues saw the hairy gene turn on in a cyclical manner: starting out at the tail, and then closer to the head, every 90 minutes. And every 90 minutes, the embryo made a new segment.

That study confirmed that a ticking clock did underlie segmentation, says Michalis Averof, a comparative developmental biologist at CNRS in Lyon, France. In 2012, he reported a similar oscillator in beetles.

Scientists still dont know what sets that clocks pace, but they now know that a variety of other proteins, including two of those ruler proteins, Wnt and FGF (and another called Notch), turn on genes like hairy. The other part of the system the wavefront of maturation is characterized by concentrations of FGF. Since FGF is made at the tail end, levels of the protein will be highest there and lowest at the head. Cells that have a low enough level of FGF when the clock ticks will form a segment.

Changing the speed of the clock can have profound effects on the body plan, as Pourqui found in a 2008 study on snakes. Snakes have hundreds of vertebrae, compared to the few dozen in other vertebrates like chickens, mice and humans. How did this come to be? Compared with that of a mouse, their clock is accelerated, Pourqui found. The faster it ticks, the more segments get made, creating the snakes long spine. He doesnt yet know why the snake clock ticks faster, though.

The bone-and-muscle segments, and the rest of the embryos developing tissues, need instructions so that the ones near the front make shoulders and arms, the ones at the back end make hips and legs, and so on. This process, too, depends on the ruler laid down by retinoic acid, Wnt and FGF. The position of cells with respect to the ruler tells them which Hox genes to activate. The Hox genes then turn on other genes, to make the right size and shape of vertebrae, or a tail, arm, liver, etc.

Its complicated: Mammals have 39 different Hox genes, activated in different combinations along the body and with different parts to play. For example, mice usually grow a defined series of vertebrae, including 13 thoracic segments with ribs and six lumbar segments without. But when scientists bred mice to lack the Hox10 gene, the creatures grew little ribs on the lumbar segments. In rare cases in people, mutations in Hox genes cause diverse effects such as club foot, hair loss and extra fingers and toes.

Lewis, who worked with Hox mutant flies in the 1970s, also discovered a remarkable pattern to the Hox genes. In DNA, they are lined up in the same order in which they are produced, from head to tail, in the embryo. Genes at one end of the line spring into action in response to retinoic acid, with that signal emanating from the head; the other end responds to Wnt and FGF, signals from the rear.

A collection of genes called HOX are activated in different parts of an animals body plan, telling cells and tissues what to become. In the DNA, the genes line up in the same order as they are used in a developing embryo. There are remarkable similarities between the HOX genes of disparate creatures, such as fruit flies, mice and humans. In mammals, the HOX genes diversified so that there are four sets (HOX A, B, C and D) to the flys single set. Duplications also led to an expanded number of HOX genes in each set.

Much remains unknown about how bodies are arranged how the same set of Hox genes creates such different body plans in different animals, for example, and how the pace of the segmentation clock sets just right to make a spine to fit a snake or a mouse or a person. Studying such things in people, of course, is difficult. So Pourqui and colleagues recently turned to human stem cells in a dish.

Using genetic trickery, they engineered the cells to flash yellow every time a certain clock gene turned on. Watching for the yellow glow, the researchers detected a clock that had five hours between each tick. Pourqui now aims to figure out just what controls that five-hour timing.

Its astounding, Krumlauf says, how similar the parts of the body-plan system are across such a wide variety of organisms. Each animal uses many of the same genetic tools, in different ways, to create its own unique shape.

In that respect, then, its not so surprising that Jeff Goldblums character melded so completely with a fly. Wnt, FGF, Hox genes its how we apply them that makes us the creatures we are.

Go here to see the original:
How do bodies position arms, legs, wings and organs? - Knowable Magazine

Posted in Gene Medicine | Comments Off on How do bodies position arms, legs, wings and organs? – Knowable Magazine

Metformin Activates the AMPK-mTOR Pathway by Modulating lncRNA TUG1 to | DDDT – Dove Medical Press

Ganhua You, 1, 2 Xiangshu Long, 3, 4 Fang Song, 3, 4 Jing Huang, 3, 4 Maobo Tian, 3, 4 Yan Xiao, 3, 4 Shiyan Deng, 3, 4 Qiang Wu 3, 4

1Guizhou University School of Medicine, Guiyang 550025, Peoples Republic of China; 2Guizhou Institute for Food and Drug Control, Guiyang 550004, Peoples Republic of China; 3Department of Cardiology, Guizhou Provincial Peoples Hospital, Guiyang 550002, Peoples Republic of China; 4Department of Cardiology, Peoples Hospital of Guizhou University, Guiyang 550002, Peoples Republic of China

Correspondence: Qiang WuDepartment of Cardiology, Guizhou Provincial Peoples Hospital, 83 Zhongshan East Road, Guiyang, Guizhou, Peoples Republic of ChinaTel +86-0851-85937194Fax +86-0851-85924943Email wqgz0851@126.com

Background: Metformin has been shown to inhibit the proliferation and migration of vascular wall cells. However, the mechanism through which metformin acts on atherosclerosis (AS) via the long non-coding RNA taurine up-regulated gene 1 (lncRNA TUG1) is still unknown. Thus, this research investigated the effect of metformin and lncRNA TUG1 on AS.Methods: First, qRT-PCR was used to detect the expression of lncRNA TUG1 in patients with coronary heart disease (CHD). Then, the correlation between metformin and TUG1 expression in vitro and their effects on proliferation, migration, and autophagy in vascular wall cells were examined. Furthermore, in vivo experiments were performed to verify the anti-AS effect of metformin and TUG1 to provide a new strategy for the prevention and treatment of AS.Results: qRT-PCR results suggested that lncRNA TUG1 expression was robustly upregulated in patients with CHD. In vitro experiments indicated that after metformin administration, the expression of lncRNA TUG1 decreased in a time-dependent manner. Metformin and TUG1 knockdown via small interfering RNA both inhibited proliferation and migration while promoted autophagy via the AMPK/mTOR pathway in vascular wall cells. In vivo experiments with a rat AS model further demonstrated that metformin and sh-TUG1 could inhibit the progression of AS.Conclusion: Taken together, our data demonstrate that metformin might function to prevent AS by activating the AMPK/mTOR pathway via lncRNA TUG1.

Keywords: metformin, taurine up-regulated gene 1, AMPK/mTOR, autophagy, atherosclerosis

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

View original post here:
Metformin Activates the AMPK-mTOR Pathway by Modulating lncRNA TUG1 to | DDDT - Dove Medical Press

Posted in Gene Medicine | Comments Off on Metformin Activates the AMPK-mTOR Pathway by Modulating lncRNA TUG1 to | DDDT – Dove Medical Press

‘Beethoven mice’ prevent deafness: Medicine’s next big thing? – WNDU-TV

Researchers at Harvard Medical School and Boston Children's Hospital have found a potential treatment for hereditary deafness, the same condition thought to have caused Ludwig van Beethoven to lose his hearing.

The scientists are using a new gene-editing approach that they say could someday prevent profound hearing loss.

Beethoven's Symphony No. 5 is a cornerstone of classical music. It is hard to believe the composer was almost completely deaf from a genetic condition when he finished it.

"These children are born fairly normal, but then over 10 or 20 years, they lose their hearing," Harvard neurobiology professor Dr. David Corey.

Aptly named "Beethoven mice" might hold the key to a potential cure. Scientists believe the animals have a defect in the same gene that may have caused Beethoven's deafness.

"Our genome is composed of about 3 billion letters of DNA that together make up 20,000 genes," Corey explained. "For the disease we're studying, one mistake in the DNA in one of the genes causes deafness."

Researchers identified that hearing gene called TMC1. It's a gene that comes in pairs.

Using a newly refined gene-editing system, they disabled the defective copy of the TMC1 gene, leaving the good gene in place.

"By eliminating just the bad copy, that would be sufficient to preserve hearing," Corey said.

The scientists then delivered the edited DNA back into the cells of the mice and tested their hearing.

"We put little scalp electrodes on the back of the head, play sounds into the ear and can measure the brain activity in response," Boston Children's Hospital professor of otolaryngology Dr. Jeffrey Holt said.

Researchers say the mice were able to hear sounds as low as 45 decibels, the level of a quiet conversation.

"This could be life-changing," Holt said.

A famed composer, his namesake mice and a team of scientists are using cutting-edge medicine to help people who would otherwise go deaf.

The scientists say this research paves the way for using the new editing system to treat as many as 3,500 other genetic diseases that are caused by one defective copy of a gene.

It's important to note that Holt holds patents on TMC1 gene therapy.

MEDICAL BREAKTHROUGHSRESEARCH SUMMARYTOPIC: BEETHOVEN MICE PREVENT DEAFNESS: MEDICINE'S NEXT BIG THING?REPORT: MB #4689

BACKGROUND: In the United States, hearing loss affects 48 million people and can occur at birth or develop at any age. One out of three people over the age 65 have some degree of hearing loss, and two out of three people over the age 75 have a hearing loss. Children in the United States are estimated at 3 million in having a hearing loss, and of those, 1.3 million are under the age of three. One of the leading causes of hearing loss is noise, and while preventable, can be permanent. Listening to a noisy subway for just 15 minutes a day over time can cause permanent damage to one's hearing. Listening to music on a smartphone at high volumes over time can cause permanent damage to one's hearing as well. The number of people with hearing loss is more than those living with Parkinson's, epilepsy, Alzheimer's, and diabetes combined. (Source: https://chchearing.org/facts-about-hearing-loss/ and https://hearinghealthfoundation.org/hearing-loss-tinnitus-statistics/)

TREATMENTS: The treatment you receive will depend on the cause and severity of the hearing loss. A reversible cause of hearing loss is earwax blockage where your doctor may remove earwax using suction or a small tool with a loop on the end. Some types of hearing loss can be treated with surgery, including abnormalities of the ear drum or bones of hearing (ossicles). Repeated infections with persistent fluid may result in your doctor inserting small tubes to help your ears drain. If your hearing loss is due to damage to your inner ear, a hearing aid can be helpful. With more severe hearing loss and limited benefit from conventional hearing aids, a cochlear implant may be an option. Unlike a hearing aid that amplifies sound and directs it into your ear canal, a cochlear implant bypasses damaged or nonworking parts of your inner ear and directly stimulates the hearing nerve. (Source: https://www.mayoclinic.org/diseases-conditions/hearing-loss/diagnosis-treatment/drc-20373077)

GENE EDITING WITH CRISPR: Scientists at Harvard Medical School and Boston Children's Hospital have used a newly tailored gene-editing approach in mice thought to have the same genetic defect that caused famed composer Beethoven to go deaf in adulthood. CRISPR-Cas9 gene editing works by using a molecule to identify the mutant DNA sequence. Once the system pinpoints the mutated DNA, the cutting enzyme, or Cas9, "snips" it; however, the gene editors are not always accurate. Sometimes, the guide RNA that leads the enzyme to the target site and the Cas9 enzyme are not precise and could cut the wrong DNA. The Harvard and Boston Children's scientists are using a modified Cas9 enzyme derived from Staphylococcus aureus bacteria that they are finding is significantly more accurate. (Source: https://hms.harvard.edu/news/saving-beethoven)

See the original post:
'Beethoven mice' prevent deafness: Medicine's next big thing? - WNDU-TV

Posted in Gene Medicine | Comments Off on ‘Beethoven mice’ prevent deafness: Medicine’s next big thing? – WNDU-TV

Decibel Therapeutics Announces Strategic Research Focus on Regenerative Medicine for the Inner Ear – Yahoo Finance

Company signs option agreement with The Rockefeller University to access intellectual property covering compounds targeting key regeneration pathway

Decibel Therapeutics, a development-stage biotechnology company developing novel therapeutics for hearing loss and balance disorders, today announced a new strategic research focus on regenerative medicine approaches for the inner ear. The company is also announcing a collaboration and option agreement that gives Decibel exclusive access to novel compounds targeting proteins in a critical regenerative pathway.

Decibels research focus on regeneration will be powered by the companys research and translation platform. The company has built one of the most sophisticated single cell genomics and bioinformatics platforms in the industry to identify and validate targets. Decibel has also developed unique insights into regulatory pathways and inner ear delivery mechanisms that together enable precise control over gene expression in the inner ear and differentiate its AAV-based gene therapy programs.

"Our deep understanding of the biology of the inner ear and our advanced technological capabilities come together to create a powerful platform for regenerative medicine therapies for hearing and balance disorders," said Laurence Reid, Ph.D., acting CEO of Decibel. "We see an exciting opportunity to leverage this platform to address a broad range of hearing and balance disorders that severely compromise quality of life for hundreds of millions of people around the world."

The first program in Decibels regeneration portfolio aims to restore balance function using an AAV-based gene therapy (DB-201), which utilizes a cell-specific promoter to selectively deliver a regeneration-promoting gene to target cells. In collaboration with Regeneron Pharmaceuticals, Decibel will initially evaluate DB-201 as a treatment for bilateral vestibulopathy, a debilitating condition that significantly impairs balance, mobility, and stability of vision. Ultimately, this program may have applicability in a broad range of age-related balance disorders. There are currently no approved medicines to restore balance. Decibel expects to initiate IND-enabling experiments for this program in the first half of 2020.

Decibel is also pursuing novel targets for the regeneration of critical cells in both the vestibule and cochlea of the inner ear; these targets may be addressable by gene therapy or other therapeutic modalities. As a key component of that program, Decibel today announced an exclusive worldwide option agreement with The Rockefeller University, which has discovered a novel series of small-molecule LATS inhibitors. LATS kinases are a core component of the Hippo signaling pathway, which plays a key role in regulating both tissue regeneration and the proliferation of cells in the inner ear that are crucial to hearing and balance. The agreement gives Decibel an exclusive option to license this series of compounds across all therapeutic areas.

The agreement also establishes a research collaboration between Decibel and A. James Hudspeth, M.D., Ph.D., the F.M. Kirby Professor at The Rockefeller University and the director of the F.M. Kirby Center for Sensory Neuroscience. Dr. Hudspeth is a world-renowned neuroscientist, a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and a Howard Hughes Medical Institute investigator. Dr. Hudspeth has been the recipient of numerous prestigious awards, including the 2018 Kavli Prize in Neuroscience.

"Rockefeller scientists are at the leading edge of discovery, and we are excited to see the work of Dr. Hudspeth move forward in partnership with Decibel," said Jeanne Farrell, Ph.D., associate vice president for technology advancement at The Rockefeller University. "The ambitious pursuit of harnessing the power of regenerative medicine to create a new option for patients with hearing loss could transform how we address this unmet medical need in the future."

In parallel with its new research focus on regenerative strategies, Decibel will continue to advance key priority preclinical and clinical programs. DB-020, the companys clinical-stage candidate designed to prevent hearing damage in people receiving cisplatin chemotherapy, is in an ongoing Phase 1b trial. Decibel will also continue to progress DB-OTO, a gene therapy for the treatment of genetic congenital deafness, which is being developed in partnership with Regeneron Pharmaceuticals. The DB-OTO program aims to restore hearing to people born with profound hearing loss due to a mutation in the otoferlin gene and is expected to progress to clinical trials in 2021.

Story continues

To support the new research focus, Decibel is restructuring its employee base and discontinuing some early-stage discovery programs.

About Decibel Therapeutics, Inc.Decibel Therapeutics, a development-stage biotechnology company, has established the worlds first comprehensive drug discovery, development, and translational research platform for hearing loss and balance disorders. Decibel is advancing a portfolio of discovery-stage programs aimed at restoring hearing and balance function to further our vision of a world in which the benefits and joys of hearing are available to all. Decibels lead therapeutic candidate, DB-020, is being investigated for the prevention of ototoxicity associated with cisplatin chemotherapy. For more information about Decibel Therapeutics, please visit decibeltx.com or follow @DecibelTx.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200129005162/en/

Contacts

Matthew Corcoran, Ten Bridge Communicationsmcorcoran@tenbridgecommunications.com (617) 866-7350

Read more:
Decibel Therapeutics Announces Strategic Research Focus on Regenerative Medicine for the Inner Ear - Yahoo Finance

Posted in Gene Medicine | Comments Off on Decibel Therapeutics Announces Strategic Research Focus on Regenerative Medicine for the Inner Ear – Yahoo Finance

Precision Medicine in Primary Care: Bespoke. Genetic and Genomic. And Maybe Not Ready. – Managed Care magazine

Say precision medicine and people think of personalized cancer treatment. But this innovation has already begun to revolutionize primary care tooeven though the jury is still out, in many cases, on whether it makes a clear difference in outcomes.

Just what precision (alias personalized) medicine is isnt always spelled out precisely. But usually it is discussed as prevention or treatment that takes into account individual differences among patients, most often genetic differences. Some people expand the concept to consider individual differences in environment and lifestyle.

In adult primary care, two subsets of precision medicine have attracted the most attention recently: predictive genetic testing and pharmacogenomics.

Predictive genetic testing is what it sounds like: A genetic test that forecasts a persons chance of getting a disease. The term is also applied to germline genetic tests that provide some indication of the predisposition being passed down to offspring. Proponents see predictive genetic testing for certain inherited conditions as a way to unearth risks in people who can then get early treatment or take preventive steps to head off serious and possibly costly conditions. Actor Angelina Jolie put BRCA testing as a predictive genetic test into the public consciousness with her announcement in 2013 that she underwent a double mastectomy after testing positive for a BRCA mutation.

Pharmacogenomics studies show how a persons genes can affect his or her response to medications. Ideally, pharmacogenomic (sometimes called pharmacogenetic) results could end some of the trial and error with drugs and help providers and patients choose the most effective drug right off the bat.

Where federal dollars are concerned, precision medicine has already stepped out of the cancer box. In 2015, President Barack Obama committed $215 million to precision medicine research, including a genomic study of more than a million Americans to extend precision medicine from cancer to other diseases. A year later, the 21st Century Cures Act expanded this funding to $1.5 billion over the next 10 years.

Aided by a multibillion-dollar genomic testing industry, some providers have started testing precision medicine beyond oncology. In 2018, Geisinger Health System in central Pennsylvania made a splash by announcing that it would add DNA sequencing to routine primary care. A small number of other hospitals are starting to monetize these tests. In August 2019, STAT reported that a handful of academic medical centers, including Brigham and Womens Hospital and the Mayo Clinic, have started elective genome sequencing clinics for generally healthy patients willing to pay hundreds, sometimes thousands of dollars in cash for a genetic workup.

Skeptics see carts preceding horses; solid evidence that routine genetic testing results in better outcomes is lacking. As one genome-sequencing clinic leader conceded in the STAT article, such testing can lead to expensive follow-up testing. Not surprisingly, payers have been reluctant to cover sequencing tests of various kinds.

Regulators have breathed life into some kinds of testing and poured cold water on others. Last year, 23andMe was the first testing company to get FDA approval to market a direct-to-consumer genetic test for three (of the more than 1,000 known) BRCA gene mutations linked to increased risk of breast, ovarian, and prostate cancer. But in April 2019, the agency issued a warning letter to Inova Health System in Northern Virginia to stop marketing pharmacogenomics tests it claimed could predict patients responses to antidepressants, opioids, and other drugs. The FDA said it was unaware of data to support these claims.

A survey published two years ago in Clinical Pharmacology and Therapeutics found that clopidogrel, a blood thinner, was the medication most commonly tested for a druggene interaction, followed by simvastatin and warfarin. Nearly 40 academic medical centers and community health systems testing ways to implement pharmacogenomics in clinical practice were surveyed.

Some evidence suggests that traditional screening methods may not identify everyone at risk for certain inherited conditions. In a study published in Science three years ago, researchers at Geisinger and Regeneron (which manufactures Praluent, a drug used to treat familial hypercholesterolemia) found that only about one in four people carrying the familial hypercholesterolemia gene variant met the Dutch Lipid Clinic Network criteria (widely used diagnostic criteria) for genetic testing. Still, evidence for the clinical utility of many pharmacogenomic or predictive genetic tests is pretty scanty at this point.

Right now, for the average primary care provider, there are a relatively limited number of situations where pharmacogenomic testing is clearly beneficial to outcomes in a way thats dramatic, says Greg Feero, MD, a faculty member at Maine Dartmouth Family Medicine Residency and a former senior advisor to the director of the NIHs genomics research division.

For predictive genetic testing, there are a few notable exceptionshereditary breast and ovarian cancer, Lynch syndrome, and familial hypercholesterolemiaif certain criteria such as family history of the condition are met. The CDC has designated genomics applications for these conditions as Tier 1, the highest tier on its evidence-based ranking system of genomic applications by their potential for a positive public health impact.

In a 2017 editorial published in American Family Physician, Vinay Prasad, MD, and Adam Obley, MD, of Oregon Health and Science University said that rigorous meta-analyses havent yet shown that genotype-guided dosing for warfarin, clopidogrel, or antidepressant selection is better than usual care. Prasad is a well-known critic of what he sees as the proliferation of medical treatments and therapies without good evidence behind them. We need to know on a broad scale that [these tests] improve outcomes for patients, and dont just reassure physicians theyre choosing a better drug, Obley tells Managed Care.

Prasad and Obley also argued in their editorial that without further proof of improved outcomes, routine genetic testing could just fuel more inappropriate care. Guidelines carve out clear boundaries for who should get tested because there are scenarios in which the risks and benefits of preventive measures arent known, they said, noting that the U.S. Preventive Services Task Force advises against genetic testing for BRCA mutations in women without a family history of BRCA-related cancers.

A small pilot study suggests that genetic testing in primary care may not lead to improved outcomes. In 2017, The Annals of Internal Medicine published the first randomized trial of whole-genome sequencing in primary care. Gene variants were found in 20% of the participants whose genomes were sequenced. But six months later none of them had improved outcomes.

The test produces lots of information, says Obley, who wasnt involved in the study. But its not clear that any patient was managed differently in a way that improved their health.

Without evidence supporting the clinical utility of routine pharmacogenomics or genetic testing, most payers are unwilling to cover them. Some exceptions exist, such as employers that offer routine genetic testing as an employee benefit. In a blog post published in 2018, Color Genomics touted Visa and the German software company SAP as customers. Medicare covers pharmacogenomic testing of two gene variants that predict warfarin responsiveness for beneficiaries enrolled in a randomized, controlled clinical study that meets certain standards.

The high cost of genetic testing has been cited as another reason insurance coverage is limited, but payers may not budge even as testing gets cheaper. The cost of doing the test itself has been declining quite rapidly, says Kathryn Phillips, a health economics professor at University of CaliforniaSan Francisco who researches personalized medicine access, quality, and reimbursement. She has disclosed in recent studies that she is a paid consultant for Illumina, a DNA sequencing company. But she says its hardand its going to take longerto figure out where to use genetics in primary care in healthy populations, and [for insurers] to pay for it.

The current state of evidence and bleak reimbursement prospects havent deterred early adopters from embracing precision medicine in primary care. For Megan Mahoney, MD, chief of general primary care at Stanford Medicine, precision medicine begins with going after data on key determinants of healthnot just genes, but also environmental factors, social determinants, and health behaviors.

In a yearlong pilot of 50 patientsmore than half of whom were at risk for cardiovascular conditionsStanford Medicine care teams created personalized care plans to prevent and manage chronic illness. The plans leveraged data from several sources, including genetic-risk assessments and genetic testing for the three CDC Tier 1 conditions and remote monitoring devices.

Before the pilot, which ended in 2018, Stanford did not offer routine genetic testing in primary care. So far, that hasnt changed. But Stanford is making the genetic-risk assessment tested in the pilot available to its primary care providers, hoping it can increase screening rates for the Tier 1 conditions, says Mahoney. Studies show that many primary care providers are uncomfortable evaluating and addressing genetic risk. Five patients in the pilot discovered through the genetic risk screening that theyre at high risk for breast cancer, demonstrating that this type of tool can help to identify previously unknown risks.

Post-pilot, Stanford is also offering patients with poorly controlled blood pressure connection to a Bluetooth-enabled blood pressure cuff and health coaching as part of a larger study. Genetic testing has dominated the discussion of precision medicine in primary care, but Stanfords experience shows that it isnt the only way to tailor preventive care to individual patients needs.

Even if clinical utility is ultimately shown, folding precision medicine into primary care will likely follow the path of many new developments in medicine: There will be some early adopters, but most practices will have a wait-and-see and depends-on-the-reimbursement attitude.

Educating doctors on how to interpret, use, and communicate genetic testing results to patients will be one of the biggest hurdles. Theyll be learning on the job, says Susanne Haga, associate professor of internal medicine at Duke Universitys medical school, who leads educational activities in genetics and genomics for the Duke Center for Applied Genomics. An obstacle course of other possible barriers awaits: the limited number of certified genetic counselors, concerns about privacy and genetic discrimination, and the potential for the lack of diversity in genomic data sets to exacerbate disparities in care.

Still, Haga sees the convergence of three factors that will force the health care systems hand and usher in precision medicine in primary care: patients increasing ability to influence decisions about their care, the declining cost of testing, and a critical mass of people, numbering in the millions, who will have had their DNA sequenced in genome programs such as Geisingers or several national genomics research initiatives.

Its coming, she says, one way or another.

Follow this link:
Precision Medicine in Primary Care: Bespoke. Genetic and Genomic. And Maybe Not Ready. - Managed Care magazine

Posted in Gene Medicine | Comments Off on Precision Medicine in Primary Care: Bespoke. Genetic and Genomic. And Maybe Not Ready. – Managed Care magazine