Search Immortality Topics:

Page 4«..3456..1020..»


Category Archives: Diseases

Treating Diseases with Cord Blood Stem Cells | Diseases …

What stem cells can do todayopens doorways to even more, tomorrow

Cord blood stem cell transplants have already changed and saved thousands of lives around the world. Science is developing other miraculous uses for these precious cells, potentially impacting countless numbers of lives in the future.

Cord blood stem cells have been used to treat nearly 80 diseases, including numerous types of malignancies, anemias, inherited metabolic disorders and deficiencies of the immune system. The majority of cord blood transplants to date have been performed in patients younger than 18 years old. However, with the advancement in regenerative medicine, it is foreseeable that individuals of all ages can benefit from stem cell therapy in the near future. The source of cord blood used in transplants can be autologous (self) or allogeneic (such as a sibling or an unrelated third party).

Graft-versus-host disease, a complication associated with stem cell transplant therapy, occurs less frequently with umbilical cord stem cells vs. other types of stem cells; and, it is even rarer when the cord stem cells come from a blood related family member.

Below are some diseases currently being treated with stem cells. Although many cord blood stem cell treatments today are allogeneic (non-self), leading scientists believe that autologous (self) cord blood will have a role in treating Type I diabetes, other autoimmune diseases, and brain and cardiac injuries.

Leukemias Leukemia is a cancer of the blood immune system, whose cells are called leukocytes or white cells(all therapies are allogeneic)

Autologous stem cells may not be useful in the treatment for certain diseases listed above -www.parentsguidecordblood.org/diseases.php

See the article here:
Treating Diseases with Cord Blood Stem Cells | Diseases ...

Posted in Diseases | Comments Off on Treating Diseases with Cord Blood Stem Cells | Diseases …

Adult Stem Cell Foundation

Australia - New Zealand - Asia & Pacific Rim - China - Italy

The Foundation is a privately funded philanthropic (non profit) organization advising un-well people about how to gain access to Adult Stem Cell Therapy (ASCT). The Foundation is also promoting a plan to its members on how to prevent or limit the progression of degenerative diseases and other conditions. Degenerative disease is an escalating world problem that, if not controlled, could bankrupt our health systems.

A major objective of the Foundation is to highlight that people suffering from degenerative conditions now have the option of considering Adult Stem Cell Therapy. This therapy may improve quality of life for sufferers of Arthritis, MS, Parkinsons, Diabetes, Stroke, Alzheimers, Spinal Cord injuries, Cancer or Chronic Pain to name a few. A stem cell transplant, instead of a joint replacement, is fast becoming the preferred first option for orthopedic surgeons.

The Foundation intends to educate parents/carers of children suffering from a debilitating or degenerative condition like Cerebral Palsy, Muscular Dystrophy, Autism, Spinal injuries, Cystic fibrosis, ADHD etc. Stem cell treatments have progressed in leaps and bounds for these conditions. There are now state of the art clinics that specialize in treating the afore-mentioned conditions. Children can usually benefit substantially from an early intervention by stem cell therapies and other protocols because they are still growing. As an example: spending time in a mild hyperbaric chamber (HBO) can also be beneficial. Just fill out the Application Form for an experimental transplant and we will be only too happy to advise.

The ASCF has become a global Information Centre for stem cell therapy. The centre will only support clinics that have demonstrated they abide by the highest medical standards and have a proven track record of administering these types of therapies, in Australia and overseas. We can now advise locally which gives peace of mind to our members who are contemplating a procedure of this nature.

Creating awareness of the availability of stem cell therapy and that it has become viable for consideration.

To raise money from benefactors, including private and commercial sponsorships.

Here is the original post:
Adult Stem Cell Foundation

Posted in Diseases | Comments Off on Adult Stem Cell Foundation

Stem Cell Therapy for Neuromuscular Diseases | InTechOpen

Posted in Diseases | Comments Off on Stem Cell Therapy for Neuromuscular Diseases | InTechOpen

Stem cell therapy – Wikipedia, the free encyclopedia

This article is about the medical therapy. For the cell type, see Stem cell.

Stem cell therapy is the use of stem cells to treat or prevent a disease or condition.

Bone marrow transplant is the most widely used stem cell therapy, but some therapies derived from umbilical cord blood are also in use. Research is underway to develop various sources for stem cells, and to apply stem cell treatments for neurodegenerative diseases and conditions, diabetes, heart disease, and other conditions.

With the ability of scientists to isolate and culture embryonic stem cells, and with scientists' growing ability to create stem cells using somatic cell nuclear transfer and techniques to create induced pluripotent stem cells, controversy has crept in, both related to abortion politics and to human cloning. Additionally, efforts to market treatments based on transplant of stored umbilical cord blood have proven controversial.

For over 30 years, bone-marrow have been used to treat cancer patients with conditions such as leukaemia and lymphoma; this is the only form of stem cell therapy that is widely practiced.[1][2][3] During chemotherapy, most growing cells are killed by the cytotoxic agents. These agents, however, cannot discriminate between the leukaemia or neoplastic cells, and the hematopoietic stem cells within the bone marrow. It is this side effect of conventional chemotherapy strategies that the stem cell transplant attempts to reverse; a donor's healthy bone marrow reintroduces functional stem cells to replace the cells lost in the host's body during treatment. The transplanted cells also generate an immune response that helps to kill off the cancer cells; this process can go too far, however, leading to graft vs host disease, the most serious side effect of this treatment.[4]

Another stem cell therapy called Prochymal, was conditionally approved in Canada in 2012 for the management of acute graft-vs-host disease in children who are unresponsive to steroids.[5] It is an allogenic stem therapy based on mesenchymal stem cells (MSCs) derived from the bone marrow of adult donors. MSCs are purified from the marrow, cultured and packaged, with up to 10,000 doses derived from a single donor. The doses are stored frozen until needed.[6]

The FDA has approved five hematopoietic stem cell products derived from umbilical cord blood, for the treatment of blood and immunological diseases.[7]

In 2014, the European Medicines Agency recommended approval of Holoclar, a treatment involving stem cells, for use in the European Union. Holoclar is used for people with severe limbal stem cell deficiency due to burns in the eye.[8]

Research has been conducted to learn whether stem cells may be used to treat brain degeneration, such as in Parkinson's, Amyotrophic lateral sclerosis, and Alzheimer's disease.[9][10][11]

Healthy adult brains contain neural stem cells which divide to maintain general stem cell numbers, or become progenitor cells. In healthy adult animals, progenitor cells migrate within the brain and function primarily to maintain neuron populations for olfaction (the sense of smell). Pharmacological activation of endogenous neural stem cells has been reported to induce neuroprotection and behavioral recovery in adult rat models of neurological disorder.[12][13][14]

The rest is here:
Stem cell therapy - Wikipedia, the free encyclopedia

Posted in Diseases | Comments Off on Stem cell therapy – Wikipedia, the free encyclopedia

What are Stem Cells? – Medical News Today

knowledge center home stem cell research all about stem cells what are stem cells?

Stem cells are a class of undifferentiated cells that are able to differentiate into specialized cell types. Commonly, stem cells come from two main sources:

Both types are generally characterized by their potency, or potential to differentiate into different cell types (such as skin, muscle, bone, etc.).

Adult or somatic stem cells exist throughout the body after embryonic development and are found inside of different types of tissue. These stem cells have been found in tissues such as the brain, bone marrow, blood, blood vessels, skeletal muscles, skin, and the liver. They remain in a quiescent or non-dividing state for years until activated by disease or tissue injury.

Adult stem cells can divide or self-renew indefinitely, enabling them to generate a range of cell types from the originating organ or even regenerate the entire original organ. It is generally thought that adult stem cells are limited in their ability to differentiate based on their tissue of origin, but there is some evidence to suggest that they can differentiate to become other cell types.

Embryonic stem cells are derived from a four- or five-day-old human embryo that is in the blastocyst phase of development. The embryos are usually extras that have been created in IVF (in vitro fertilization) clinics where several eggs are fertilized in a test tube, but only one is implanted into a woman.

Sexual reproduction begins when a male's sperm fertilizes a female's ovum (egg) to form a single cell called a zygote. The single zygote cell then begins a series of divisions, forming 2, 4, 8, 16 cells, etc. After four to six days - before implantation in the uterus - this mass of cells is called a blastocyst. The blastocyst consists of an inner cell mass (embryoblast) and an outer cell mass (trophoblast). The outer cell mass becomes part of the placenta, and the inner cell mass is the group of cells that will differentiate to become all the structures of an adult organism. This latter mass is the source of embryonic stem cells - totipotent cells (cells with total potential to develop into any cell in the body).

In a normal pregnancy, the blastocyst stage continues until implantation of the embryo in the uterus, at which point the embryo is referred to as a fetus. This usually occurs by the end of the 10th week of gestation after all major organs of the body have been created.

However, when extracting embryonic stem cells, the blastocyst stage signals when to isolate stem cells by placing the "inner cell mass" of the blastocyst into a culture dish containing a nutrient-rich broth. Lacking the necessary stimulation to differentiate, they begin to divide and replicate while maintaining their ability to become any cell type in the human body. Eventually, these undifferentiated cells can be stimulated to create specialized cells.

Stem cells are either extracted from adult tissue or from a dividing zygote in a culture dish. Once extracted, scientists place the cells in a controlled culture that prohibits them from further specializing or differentiating but usually allows them to divide and replicate. The process of growing large numbers of embryonic stem cells has been easier than growing large numbers of adult stem cells, but progress is being made for both cell types.

Original post:
What are Stem Cells? - Medical News Today

Posted in Diseases | Comments Off on What are Stem Cells? – Medical News Today

Stem Cells Therapy

Welcome to the webpage for The Arizona Stem Cell Center.

We are the first and original facility offering autologous stem cell transplants derived from adipose tissue in Arizona.

Our unique and innovative process allows us to extract several million stem cells from a single fat biopsy. Our extraction technique involves minimal handling of the cells and same day transplantation. Using a patients own tissue as the source for cells minimizes rejection of the transplanted tissues, potentially maximizing the effectiveness of the transplant.

Here at Total Wellness/AZ Stem Cell Center, we have been using the technique of PRP (Platelet Rich Plasma) for the past decade for musculoskeletal injuries, autoimmune conditions like Lupus and Multiple Sclerosis, degenerative conditions like osteoarthritis, Parkinsons Syndrome and ALS (Amyotrophic Lateral Sclerosis) and chronic viral conditions (including Epstein-Barr, Cytomegalovirus and Herpes viruses). This is an incredibly versatile therapy that has its roots in the eclectic European medical armamentarium of the 1930s.

Platelet rich plasma can be employed as a matrix graft, often referred to as an autologous tissue graft. This platelet-rich plasma (PRP) matrix is defined as a tissue graft incorporating autologous growth factors and/or autologous undifferentiated cells in a cellular matrix where design depends on the receptor site and tissue of regeneration. (Crane D, Everts PAM. Practical Pain Management. 2008; January/February: 12- 26) 2008). We enrich the autologous tissue graft with hyaluronic acid for stem cell transplants.

The hypothesized reason why PRP with hyaluronic acid is so useful in autologous tissue grafts with stem cells is that platelets, a normal blood cell that aids in clotting, contain multiple growth factors that stimulate tissue growth. In particular, PRP stimulates the growth of collagen; the main component of connective tissue such as tendons and cartilage. These growth factors include transforming growth factor-? (TGF-B), fibroblast growth factor, platelet-derived growth factor, epidermal growth factor, connective tissue growth factor, and vascular endothelial growth factor.

These growth factors normally recruit undifferentiated stem cells to the site of injury and stimulate new tissue growth. Another constituent of platelets, stromal cell derived factor I alpha allows the newly recruited cells to adhere to the area. Hyaluronic acid is a nutritionally supportive polysaccharide substrate for stem cells that is found abundantly in embryonic tissue. When stem cells are harvested from the patients own tissues, PRP helps to activate the stem cells to actively become a desired tissue line and Hyaluronic Acid helps support.

In addition, when used with stem cells harvested from the patients own tissue, PRP messages the stem cells to multiply quickly. This inflammatory response is a major driver of appropriate healing response.

An important consideration is that PRP needs to be prepared in a way to ensure a maximal amount of platelets along with a high concentration of growth factors. Obviously, the more growth factors that can be delivered to the site of injury, the more likely tissue healing takes place. We have found that creating a matrix of Hyaluronic acid (a base connective tissue material) with the PRP and the addition of other growth factors can tremendously expedite the healing process. We are the only clinic in the world to integrate stem cell transplantation with PRP.

Neither Statements, nor products on this site, have been evaluated nor approved by the FDA. Total Wellness offers autologous stem cell treatments. These are not approved treatments, drugs, new drugs, or investigational drugs. We do not manufacture products. If you have concern with a treatment or product that we perform or produce, and think we may be violating any USA law, please contact us immediately, so that our legal team can investigate the matter or concern. All statements, opinions, and advice provided by this website, via wire, or by educational seminars, is provided for educational information only. We do not diagnose nor treat via this website or phone. We offer the above therapies via a doctor/patient established relationship which requires direct contact with the physician. Again, visitors should be aware that we are not claiming that any applications, or potential applications using these autologous treatments, are approved by the FDA, or are even effective. We do not claim that these treatments work for any listed nor unlisted condition, intended or implied.

View original post here:
Stem Cells Therapy

Posted in Diseases | Comments Off on Stem Cells Therapy