Search Immortality Topics:

Page 475«..1020..474475476477..480490..»


Category Archives: Biotechnology

Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw

Background:
Lipids produced from filamentous fungi show great promise for biofuel production, but a major limiting factor is the high production cost attributed to feedstock. Lignocellulosic biomass is a suitable feedstock for biofuel production due to its abundance and low value. However, very limited study has been performed on lipid production by culturing oleaginous fungi with lignocellulosic materials. Thus, identification of filamentous fungal strains capable of utilizing lignocellulosic hydrolysates for lipid accumulation is critical to improve the process and reduce the production cost.
Results:
The growth performances of eleven filamentous fungi were investigated when cultured on glucose and xylose. Their dry cell weights, lipid contents and fatty acid profiles were determined. Six fungal strains with high lipid contents were selected to culture with the hydrolysate from dilute sulfuric acid pretreatment of wheat straw. The results showed that all the selected fungal strains were able to grow on both detoxified liquid hydrolysate (DLH) and non-detoxified liquid hydrolysate (NDLH). The highest lipid content of 39.4% was obtained by Mortierella isabellina on NDLH. In addition, NDLH with some precipitate could help M. isabellina form pellets with an average diameter of 0.11 mm.
Conclusion:
This study demonstrated the possibility of fungal lipid production from lignocellulosic biomass. M. isabellina was the best lipid producer grown on lignocellulosic hydrolysates among the tested filamentous fungi, because it could not only accumulate oils with a high content by directly utilizing NDLH to simplify the fermentation process, but also form proper pellets to benefit the downstream harvesting. Considering the yield and cost, fungal lipids from lignocellulosic biomass are promising alternative sources for biodiesel production.Source:
http://www.biotechnologyforbiofuels.com/rss/

Posted in Biotechnology | Comments Off on Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw

Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis

Cellulose amorphogenesis, described as the non-hydrolytic "opening up" or disruption of a cellulosic substrate, is becoming increasingly recognized as one of the key steps in the enzymatic deconstruction of cellulosic biomass when used as a feedstock for fuels and chemicals production. Although this process is thought to play a major role in facilitating hydrolysis, the lack of quantitative techniques capable of accurately describing the molecular-level changes occurring in the substrate during amorphogenesis has hindered our understanding of this process.
Results:
In this work, techniques for measuring changes in cellulose accessibility are reviewed and a new quantitative assay method is described. Carbohydrate binding modules (CBMs) with specific affinities for crystalline (CBM2a) or amorphous (CBM44) cellulose were used to track specific changes in the surface morphology of cotton fibres during amorphogenesis. The extents of phosphoric acid-induced and Swollenin-induced changes to cellulose accessibility were successfully quantified using this technique.
Conclusions:
The adsorption of substructure-specific CBMs can be used to accurately quantify the extent of changes to cellulose accessibility induced by non-hydrolytic disruptive proteins. The technique provided a quick, accurate and quantitative measure of the accessibility of cellulosic substrates. Expanding the range of CBMs used for adsorption studies to include those specific for such compounds as xylan ormannanshould also allow for the accurate quantitative tracking of the accessibility of these and other polymers within the lignocellulosic biomass matrix.Source:
http://www.biotechnologyforbiofuels.com/rss/

Posted in Biotechnology | Comments Off on Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis

A time course analysis of the extracellular proteome of aspergillus nidulans growing on sorghum stover

Background:
Fungi are important players in the turnover of plant biomass because they produce a broad range of degradative enzymes. Aspergillus nidulans, a well-studied saprophyte and close homologue to industrially important species such as A. niger and A. oryzae, was selected for this study.
Results:
A. nidulans was grown on sorghum stover under solid-state culture conditions for 1, 2, 3, 5, 7 and 14 days. Based on analysis of chitin content, A. nidulans grew to be 4-5% of the total biomass in the culture after 2 days and then maintained a steady state of 4% of the total biomass for the next 12 days. A hyphal mat developed on the surface of the sorghum by day one and as seen by scanning electron microscopy the hyphae enmeshed the sorghum particles by day 5. After 14 days hyphae had penetrated the entire sorghum slurry. Analysis (1-D PAGE LC-MS/MS) of the secretome of A. nidulans, and analysis of the breakdown products from the sorghum stover showed a wide range of enzymes secreted. A total of 294 extracellular proteins were identified with hemicellulases, cellulases, polygalacturonases, chitinases, esterases and lipases predominating the secretome. Time course analysis revealed a total of 196, 166, 172 and 182 proteins on day 1, 3, 7 and 14 respectively. The fungus used 20% of the xylan and cellulose by day 7 and 30% by day 14. Cellobiose dehydrogenase, feruloyl esterases, and CAZy family 61 endoglucanases, all of which are thought to reduce the recalcitrance of biomass to hydrolysis, were found in high abundance.
Conclusions:
Our results show that A. nidulans secretes a wide array of enzymes to degrade the major polysaccharides and lipids (but probably not lignin) by 1 day of growth on sorghum. The data suggests simultaneous breakdown of hemicellulose, cellulose and pectin. Despite secretion of most of the enzymes on day 1, changes in the relative abundances of enzymes over the time course indicates that the set of enzymes secreted is tailored to the specific substrates available. Our findings reveal that A. nidulans is capable of degrading the major polysaccharides in sorghum without any chemical pre-treatment.Source:
http://www.biotechnologyforbiofuels.com/rss/

Posted in Biotechnology | Comments Off on A time course analysis of the extracellular proteome of aspergillus nidulans growing on sorghum stover

PGASO: A synthetic biology tool for engineering a cellulolytic yeast

Background:
To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome.
Results:
A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO), that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei), a beta-glucosidase (from a cow rumen fungus), a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol.
Conclusions:
This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools.Source:
http://www.biotechnologyforbiofuels.com/rss/

Posted in Biotechnology | Comments Off on PGASO: A synthetic biology tool for engineering a cellulolytic yeast

Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions

Background:
Thermophilic fungi have attracted increased interest for their ability to secrete enzymes that deconstruct biomass at high temperatures. However, development of thermophilic fungi as enzyme producers for biomass deconstruction has not been thoroughly investigated. Comparing the enzymatic activities of thermophilic fungal strains that grow on targeted biomass feedstocks has the potential to identify promising candidates for strain development. Thielavia terrestris and Thermoascus aurantiacus were chosen for characterization based on literature precedents.
Results:
Thermoascus aurantiacus and Thielavia terrestris were cultivated on various biomass substrates and culture supernatants assayed for glycoside hydrolase activities. Supernatants from both cultures possessed comparable glycoside hydrolase activities when incubated with artificial biomass substrates. In contrast, saccharifications of crystalline cellulose and ionic liquid-pretreated switchgrass (Panicum virgatum) revealed that T. aurantiacus enzymes released more glucose than T. terrestris enzymes over a range of protein mass loadings and temperatures. Temperature-dependent saccharifications demonstrated that the T. aurantiacus proteins retained higher levels of activity compared to a commercial enzyme mixture sold by Novozymes, Cellic CTec2, at elevated temperatures. Enzymes secreted by T. aurantiacus released glucose at similar protein loadings to CTec2 on dilute acid, ammonia fiber expansion, or ionic liquid pretreated switchgrass. Proteomic analysis of the T. aurantiacus culture supernatant revealed dominant glycoside hydrolases from families 5, 7, 10, and 61, proteins that are key enzymes in commercial cocktails.
Conclusions:
T. aurantiacus produces a complement of secreted proteins capable of higher levels of saccharification of pretreated switchgrass than T. terrestris enzymes. The T. aurantiacus enzymatic cocktail performs at the same level as commercially available enzymatic cocktail for biomass deconstruction, without strain development or genetic modifications. Therefore, T. aurantiacus provides an excellent platform to develop a thermophilic fungal system for enzyme production for the conversion of biomass to biofuels.Source:
http://www.biotechnologyforbiofuels.com/rss/

Posted in Biotechnology | Comments Off on Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions

BIO Opposes A Northern California County's New Drug Disposal Law

WASHINGTON--(BUSINESS WIRE)--

Biotechnology Industry Organization (BIO) Vice President of Alliance Development and State Government Relations Fritz Bittenbender issued the following statement today regarding Alameda County, California's new ordinance requiring drug makers to set up programs to dispose of expired and unused drugs:

"BIO supports effective efforts to protect patients, safeguard water resources, and address potential abuses associated with unused medications. The ordinance passed this week in Northern California's Alameda County, while well intended, will have little impact on any of these concerns.

There is no scientific consensus that drug take-back programs help the environment or reduce instances of prescription drug abuse. In fact, segregating unused prescription drugs from conventional solid waste may serve to increase illegal drug trafficking.

Ultimately, this measure will simply increase costs, and potentially limit patient access to certain life-saving therapies."

About BIO

BIO represents more than 1,100 biotechnology companies, academic institutions, state biotechnology centers and related organizations across the United States and in more than 30 other nations. BIO members are involved in the research and development of innovative healthcare, agricultural, industrial and environmental biotechnology products. BIO also produces the BIO International Convention, the worlds largest gathering of the biotechnology industry, along with industry-leading investor and partnering meetings held around the world. BIO produces BIOtechNOW, an online portal and monthly newsletter chronicling innovations transforming our world. Subscribe to BIOtechNOW.

Upcoming BIO Events

BIO India International Conference September 12 13, 2012 Mumbai, India

Livestock Biotech Summit September 19 21, 2012 Kansas City, MO

Here is the original post:
BIO Opposes A Northern California County's New Drug Disposal Law

Posted in Biotechnology | Comments Off on BIO Opposes A Northern California County's New Drug Disposal Law