Search Results for: stem cells mexico hair

Mexico City Medical Congress to Showcase the Global Stem Cells Group’s Latest Innovations – PRUnderground

The Global Stem Cells Group (GSCG) is set to sponsor the XI Congreso Mundial de Medicina Antienvejecimiento y Longevidad (World Conference of Anti-Aging and Longevity Medicine) to be held in Mexico City, Mexico on February 16-18, 2020.

The medical congress is expected to attract over 450 physicians and researchers from across the world interested in anti-aging and longevity practices and medical innovations. Over 30 speakers are slated to share information with attendees on a wide range of topics on how to lead a long, healthy life and improve longevity.

The GSCG is set to share a number of its latest innovations with congress attendees, including its newly released GCell technology device. This cutting-edge tool utilizes micrograft technology to harness the natural and powerful restorative capabilities of adipose tissues. Because it is FDA compliant, the device allows physicians across the globe to continue practicing adult stem cells-based procedures.

Additional benefits of GCell technology include shorter treatment times, delivering in-office treatments in around 30 minutes with local anesthesia, as well as less fat collection compared to existing treatments (15 mL versus 50 mL). GCell technology holds exciting implications across a range of medical specialties, including orthopedics, dermatology, cosmetic gynecology, aesthetics, and hair loss.

In addition to its GCell technology, the GSCG will also feature its newest line of stem cells products derived from first-tissue exosomes. Cellgenic Flow Exosomes utilizes the latest science and research available in cellular therapies to deliver a non-surgical approach to creating regenerative responses in a broad range of treatments. The product utilizes exosomes, which replicate the signals given out by stem cells, versus actual stem cells. Exosomes play a pivotal role in cell-to-cell communication and are involved in a wide range of physiological processes. These particles transfer critical bioactive molecules such as proteins, mRNA, and miRNA between cells and regulate gene expression in recipient cells.

The XI Congreso Mundial de Medicina Antienvejecimiento y Longevidad is one of the worlds premier events connecting physicians and researchers with todays most innovative treatments and technologies utilizing regenerative medicine, said Benito Novas, CEO of the GSCG. As a worldwide leader in training, education, and innovative products in the field of regenerative medicine, the GSCG is pleased to sponsor this congress and share its exciting new portfolio of products with physicians from across the world.

To learn more about the Global Stem Cells Group and all of the groups latest news and innovations, visit http://www.stemcellsgroup.com/

About Global Stem Cells Group

Global Stem Cells Group (GSCG) is a worldwide network that combines seven major medical corporations, each focused on furthering scientific and technological advancements to lead cutting-edge stem cell development, treatments, and training. The united efforts of GSCGs affiliate companies provide medical practitioners with a one-stop hub for stem cell solutions that adhere to the highest medical standards.

Read this article:
Mexico City Medical Congress to Showcase the Global Stem Cells Group's Latest Innovations - PRUnderground

Posted in Longevity Medicine | Comments Off on Mexico City Medical Congress to Showcase the Global Stem Cells Group’s Latest Innovations – PRUnderground

Stem Cell Conferences | Regenerative Medicine Meetings |Gene …

About Conference STEM REGENERATIVE 2019

12thAnnual Conference on Stem Cell and Regenerative Medicinewhich is going to be held onJune 13-14, 2019inHelsinki, Finland provides a great opportunity to network with the world-class researchers in the fields of Stem Cells, Molecular Biology, Genetics, Medical Research, Biotechnology. This social gathering warmly welcomes Presidents, CEO's, Delegates and present day experts from the field of Gene therapy and Public well-being and other pertinent organization positions to take an interest in these Keynote Talks, Sessions Talks and B2B networking.Stem Regenerative 2019will also have a wide range of showcase of collaborators, exhibitors to explore. This global meeting gives the chance to Molecular Biologist, Gene & Cell Therapists, Young Researchers and students throughout the world to assemble and take in the most recent advances in the field of Stem Cell and Gene Therapy and to trade innovative thoughts and encounters.

With individuals from all around the globe concentrated on findings of Stem Cells and Gene Therapy and its advances; this is the best chance to achieve the largest gathering of members from the Stem Cell and Gene Therapy research groups. Lead introductions, circulate data, meet with present and potential researchers.

Gene Therapy Scientists

Stem Cell Researchers

Emeritus and Academic professors

Cell Biologists

Genetic scientist

Molecular Biologists

Stem Cell research students

Business Entrepreneurs

Drug Manufacturing Companies

Stem cell Developers and Investigators

Stem cells are those which are undifferentiated at the biological level and have an ability to divide to produce many stem cells. They can be found in multicellular living organisms. In mammals, there are two broad types of stem cells: Embryonic and Adult stem cells. Embryonic Stem cells are also known as pluripotent stem cells isolated from the inner cell mass of blastocysts, where Adult stem cells are found in various tissues. The main function of stem cells and progenitor cells is to act as a repair system for the body, replenishing adult tissue. Epigenetics is the study of changes in organisms caused by modification of gene expression rather than alteration of the genetic code itself. Epigenetic modifications are reversible modifications on a cells DNA that affect gene expression without altering the sequence of DNA. Epigenetic modifications play an important role in gene expression and regulation and are involved in numerous cellular processes such as in differentiation or development and tumorigenesis. Epigenetics is a study on a global level and through the adaptation of genomic high-throughput assays.

The anatomical region where stem cells are found in a shallow recess is referred to a stem-cell niche. It refers to a microenvironment with reference to the in vivo or in vitro stem cells; they even interact with stem cells to regulate cell fate. Various niche factors act on embryonic stem cells to induce their proliferation or differentiation for the development of the fetus and in altering the gene expression during the embryonic development. In the human body, stem cells maintain the adult stem cells in a dormancy state, but during the tissue injury, it actively signals to stem cells to promote either self-renewal or differentiation to form a new tissue.

Track 3:BioBanking & Tissue Preservation:

Bioprocessing is a technology used for transferring the current laboratory-based practice of stem cell tissue culture to the clinical research as therapeutics necessitates for the application of engineering principles and practices to achieve control, automation, safety, validation and reproducibility of the process and the product. Biobanks are the type of biorepositories which collects, processes, stores and distributes biospecimens to support the future scientific investigation. This plays an important role in helping the researchers providing the background knowledge of the subject. In order to preserve tissues and cells collected for scientific purposes, a number of important techniques and protocols must be utilized. Moreover, the predominant methods in widespread use, cryopreservation, and hypothermic storage have shortcomings in application and assessment.

Scaffolds are of great importance in clinical medicine. It is an upcoming field and usually associated with conditions involving organ disease or failure. It is used to rebuild organs and return normal function. Stem cells along with regenerative medicine can be used to create Scaffolds in the human body. Tissue regeneration is a branch of Regenerative medicine which deals with the study of regrowth or repair of the damaged or lost tissues in response to the injury. Non-injured tissues by default have expanded cells in the formation over time, but the new cells formed in response to the injury replaces the expanded cells in closing up the wounded site leaving a scar mark on the skin. For example, an injured cell is regenerated in 4-5 weeks, whereas a non-injured cell regenerates in just 3-4 days.

The process of replacing tissues or organs, engineering or regenerating human cells to restore or establish normal function is generally termed as Regenerative medicine. Regenerative medicine is a branch of Translational Research in the areas of tissue engineering and molecular biology. Regenerative medicine stimulates the bodys own repair mechanisms to engineer the damaged tissues and organs.

3D printing is a 3-dimensional printing machine which gives the information of a 2D image in the form of a 3D object. The layer of materials to form a 3D object is controlled by the computer by providing geometry of the object. 3D Bioprinting aids Tissue Engineering by providing an in-depth information of the image and structure analysis of the image, which helps in solving the critical problems. Bio-fabrication is referred to the production of artificial tissues or organs to address health challenges in medicine. It often uses the principle of 3D Bioprinting to form cells, gels, and fibers into an organ.

Stem cell therapy is the use of stem cells to treat/prevent a disease.The bone-marrow transplant is the most widely used stem-cell therapy, but some therapies derived from umbilical cord blood are also in use. Research is underway to develop various sources for stem cells, as well as to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes and heart disease. The most well-established and widely used stem cell treatment is the transplantation of blood stem cells to treat diseases and conditions of the blood and immune system or to restore the blood system after treatments for specific cancers.

Track 8:Stem Cell Transplantation and Biomaterials:

Stem cell transplantation also referred to as bone marrow transplant, in which unhealthy blood-forming cells replace with healthy cells. A procedure in which a patient receives healthy stem cells to replace their own cells destroyed by disease or high doses of anticancer drugs or by the radiation that are given as part of the procedure. The healthy stem cells may come from the bone marrow of the patient, blood, from a donor or from the umbilical cord blood. A stem cell transplant may be autologous, allogeneic or syngeneic. Many researchers are working to improve stem cell transplantation procedures to make it an option for patients.

Self-reestablishment and multiplication of foundational microorganism populaces are controlled, to some degree, by the affectation of apoptosis. Apoptosis of stem cells is a dynamic process which changes accordingly to the response to environmental conditions. The number of stem cells is always balanced between the lost through differentiation and to the gained through proliferation. Self-renewal and multiplication are controlled to some degree by the affectation of apoptosis. Because of natural conditions apoptosis of immature microorganisms is accepted to be dynamic.

It has been stated that stem cells have an ability to produce a large number of cells which in turn helps in forming the destroyed tissue or an organ. In contrast, stem cells can also be aided in repairing the damaged organs, in which the mechanism carries out in two different options: support mechanism and replace option. The support mechanism of the stem cell is regeneration or the regrowth of the tissue or organ cells avoiding detrimental fibrosis. The replace option of the stem cell is to transplant the stem cell.

Injury or sickness of individuals makes their cells to die or dysfunctional. Aging is the demonstration of the internal depletion of stem cells. It shows that human beings could not without stem cells. For a diverse group of treatment purpose, adult stem cells can be used. Adult Stem cell resides in-vivo in the form of self- renewing pools & helps in repairing/replacement of damaged tissues over the survival of the organism.

Nanotechnology is the branch of technology that deals with small things that are less 100 nm in size. Here, to tackle the position of stem cells for some biotherapeutic applications we need to work at the size scales of molecules & processes that govern stem cells fate. Nanotechnology and Nanoscience offer immense benefits to humans with an effective amalgamation of nanotechnology & stem cells.

Gene Therapy is used to treat inherited Muscular disorder, cardiovascular disorder, HIV, cancer etc. In stem cell transplants, stem cells replace cells damaged by chemotherapy or disease or as a way for the donor's immune system to provoke immunity against some types of cancer and blood-related diseases, such as leukemia. Cellular Therapy is internationally recognized for its novel approaches in treating blood-related disorders like leukemia, lymphoma, myeloma, and other life-threatening diseases. The stem cell transplantation of hematopoietic stem cells (HSCT) in which the allogeneic hematopoietic stem cells are harvested from healthy donors of same species and autologous stem cell from the patient itself. Both therapies use high dosage cytotoxic medication in order to induce higher remission rates against malignant diseases. Autologous HSCT preferably used in relapsed malignant high-grade lymphoma and Allogeneic HSCT preferred for therapeutic effect against acute leukemia with unfavorable prognosis in a high percentage of patients. The Recent developments based on the expansion of the donor pool for allogeneic stem cells in order to reduce dosage as well as the chemotherapeutic toxicity of allogeneic transplantation with sustainable anti-leukemia efficacy.

Classical methods of gene therapy include transfection. It became inefficient and limited mainly due to the delivery of the gene into actively proliferating cell s in-vitro. Gene therapy utilizes the delivery of DNA into cells by means of vectors such as biological in-vitro or viral vectors and non-viral methods. Several kinds of viruses vectors used in gene therapy are the retrovirus, adeno-associated virus, and herpes simplex virus. While other recombinant viral vector systems have been developed, retroviral vectors remain the most popular vector system for gene therapy protocols and widest application due to their historical significance as the first vectors developed for efficient gene therapy application and the infancy of the field of gene therapy.

Track 15: Genome Editing Technology:

Genome editing technology deals with engineered nucleases and it is the emerging type of genetic engineering. it is the technology in which the DNA is inserted, deleted or replaced in the genome. The emergence of highly versatile genome-editing technologies has provided investigators with the ability to rapidly and economically introduce sequence-specific modifications into the genomes of a broad spectrum of cell types and organisms. It also promotes various changes in subcellular level genome editing itself also holds tremendous potential for treating the underlying various idiopathic genetic causes of certain diseases. The core technologies now most commonly used techniques to facilitate genome editing are clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and homing endonucleases or mega-nucleases.

Tissue engineering is the combinational usage of cells, engineering, materials methods, suitable biochemical and physicochemical factors in order to improve or replace the infected biological tissues. The field includes the development of materials, devices, techniques to detect and differentiate disease states, the treatment response, aid tissue healing, precisely deliver treatments to tissues or cells, signal early changes in health status, and provide implantable bioartificial replacement organs for recover or establish of healthy tissue. Techniques developed here identify and detect biomarkers of disease sub-types, progression, and treatment response, from tissue imaging, gene testing and gene analysis, that aid the more rapid development of new treatments and guide their clinical applications in treating the disorder. It includes the usage of computational modeling, bioinformatics, and quantitative pharmacology to integrate data from diverse experimental and clinical sources to discover new drugs and specific drug targets, as well as to design more efficient and informative preclinical, clinical safety and efficacy studies.

Therapeutics is the branch of science dealing with the application of remedies of diseases. Moving on to the gene therapeutics it is the medicine which we develop a remedy for a disease through the genetic material. Advanced gene therapeutics is a medicine we use the drugs to treat a disease by developing dosage forms to optimize drug action, underpin new formulations that target molecules spatially within the body, enhance the bioequivalence of poorly soluble drugs and biologics, and improve patient experience and compliance

Infectious diseases remain a leading cause of deaths globally. Scientific models are utilized to comprehend the transmission of infections. The applications incorporate deciding ideal control approaches against new or treating infections, such as swine flu, Ebola, HIV, Zika, malaria, and tuberculosis. It can be used to predict the impact of vaccination strategies against common infections such as rubella and measles. The process of research or discovery of a medicine for a disease is generally called as drug discovery. In contrast, patient-specific drug discovery is a process of inventing a drug by considering the pros and cons and the anatomical conditions of the patient. The general medicine is discovered on the basis of the active ingredient from traditional remedies or serendipitous discovery. It can also be referred to as personalized medicine, which separates patients into different categories.

The world trade market for cell and gene-based therapies is expected to greater than the $20 billion USD mark by 2025, with an annual growth rate of 21%. The main targets for cell-based therapies are high impact disease areas with significant incurable needs, including cancer, heart disease, neurodegenerative diseases, musculoskeletal disorders, and autoimmune diseases gene therapies should then not be rushed to market but companies should gather the required data about the impact of therapy in human community with the appropriate duration of follow-up to allow proper evaluation by payers.

Clinical trials on gene therapy products are often varying from the clinical trials design for other types of pharmaceutical products. The differences in trial design are necessitated by the distinctive features of these products. The clinical trials also reflect previous clinical experience and evidence of medicine. Early experiences with products indicate that some Gene Therapy products may pose substantial risks to subjects due to the effect at the cellular and genetic level. The design of early-phase clinical trials of Gene therapy products often involves the following consideration of clinical safety issues, preclinical issues, and chemistry, manufacturing and controls (CMC) issues that are encountered.

Stem Regenerative 2018

Stem Regenerative 2018,hosted byConference Serieswere successfully held during October 15-16, 2018 in Helsinki, Finland. The conference highlighted the theme Cell in Progress: Exploring Regenerative medicine through Stem Cells.

The conference was a congregation of eminent speakers from various reputed organizations with their paramount talks enlightening the gathering.

Conference Serieshosted a diverse panel of key members of the Stem Cells community from Academia, Research lab, Eminent Scientist, Scholar Students to discuss the theme of the conference, approaches to predict, control and relieve. This event was aimed to exchange ideas and experience across a variety of topics that cover the latest insights in important aspects of Regenerative Medicine, Diseases and Stem Cell Treatment, Cell and Organ Regeneration and Viral Gene Therapies, other approaches such as Bioengineering Therapeutics and Advanced Gene Therapeutics and updates on Stem Cells field.

The conference witnessed an amalgamation of peerless speakers, who enlightened the crowd with their enviable research knowledge and on various alluring workshops related to the field of physiotherapy, carried out through various scientific-sessions and plenary lectures.

The highlights of the meeting were the Keynote lectures by:

Dr.Richard G Pestell, Pennsylvania Cancer and Regenerative Medicine Center, USA

Title:Cancer stem cells (CSC), genetic drivers and therapeutic targeting via CCR5

Dr.Frederic Michon, University of Helsinki, Finland

Title:Nature and origin of the signals supporting corneal wound healing

Dr.Joel I Osorio, Westhill University School of Medicine, Mexico

Title:RegenerAge system: Therapeutic effects of combinatorial biologics (mRNA and allogenic MSCs) with a spinal cord stimulation system on a patient with spinal cord section

We sincerely thank our moderator Dr.Suvodip Chakrabarty, India. We would also like to thank all the session chairs and co-chairs for helping us in smooth functioning of the sessions.

We extend our grateful thanks to all the momentous speakers like

Richard G Pestell, Pennsylvania Cancer and Regenerative Medicine Center, USA

Joel I Osorio, Westhill University School of Medicine, Mexico

Azel Zine, Montpellier University, France

Our sincere appreciation to Bio-Lamina. Louise Hagbard, for their tireless efforts at the conference.

11thAnnual Conference on Stem Cell and Regenerative Medicine during October 15-16, 2018 Helsinki, Finland was a great success with the support of International Multi-professional Steering Committee and coordinated by Journal of Stem Cell Research & Therapy,Journal of Transplantation Technologies & ResearchandJournal of Genetic Syndromes & Gene Therapy

.

We are obliged to various delegate experts, institutes and other eminent personalities who actively took part in the discussion and meetings. We sincerely thank the Organizing Committee Members for their gracious presence and continuous support towards the success of Stem Regenerative 2018 Conference.

With the unique feedbacks from the conference,Conference Serieswould like to announce the commencement of the 12thAnnual Conference on Stem Cell and Gene Therapy March 11-12, 2019 in Bali, Indonesia.

Go here to read the rest:
Stem Cell Conferences | Regenerative Medicine Meetings |Gene ...

Comments Off on Stem Cell Conferences | Regenerative Medicine Meetings |Gene …

Stem Cell Therapy and Stem Cell Injection Provider Finder …

Stem cell therapy can be described as a means or process by which stem cells are used for the prevention, treatment or the cure of diseases. Stem cells are a special kind of cells that have features other types of cells dont have. As an illustration, stem cells are capable of proliferation. This implies that they can develop into any type of cell, and grow to start performing the functions of the tissue. In addition, they can regenerate. This means they can multiply themselves. This is most important when a new tissue has to be formed. Also, they modulate immune reactions. This has made them useful for the treatment of autoimmune diseases, especially those that affect the musculoskeletal system such as rheumatoid arthritis, systemic lupus erythematosus and so on. Stem cells can be derrived from different sources. They can be extracted from the body, and in some specific parts of the body. This includes the blood, bone marrow, umbilical cord in newborns, adipose tissue, and from embryos. There are 2 main types of stem cell transplant. These are autologous stem cell transplant, and allogeneic stem cell transplant. The autologous stem cell transplant means that stem cells are extracted from the patient, processed, and then transplanted back to the patient, for therapeutic purposes. On the other hand, allogeneic stem cell transplant means the transplant of stem cells or from another individual, known as the donor, to another person, or recipient. Some treatments must be given to the receiver to prevent any cases of rejections, and other complications. The autologous is usually the most preferred type of transplant because of its almost zero side effects. Below are some of the stem cell treatments. Our goal is to provide education, research and an opportunity to connect with Stem Cell Doctors, as well as provide stem cell reviews

Adipose Stem Cell TreatmentsAdipose stem cell treatment is one of the most commonly used. This is because large quantities of stem cells can be derrived from them. According to statistics, the number of stem cells in adipose tissue are usually hundreds of times higher than what can be obtained from other sources, such as the bone marrow stem cells. Adipose stem cells have taken the center stage in the world of stem cell therapy. Apart from the ease that comes with the harvesting of these cells from the adipose tissue, they also have some special features, that separates them from other types of cells. Adipose stem cells are capable of regulating and modulating the immune system. This includes immune suppression, which is important for the treatment of autoimmune diseases. In addition, adipose stem cells can differentiate to form other types of cells. Some of them include the bone forming cells, cardiomyocytes, and cells of the nervous system.

This process can be divided into four parts. These are

Stem cell joint injection is fast becoming the new treatment of joint diseases. Stem cells derived from bone marrow, adipose and mesenchymal stem cells are the most commonly used. The stem cells are injected into the joints, and they proceed to repair and replace the damaged tissues. The cells also modulate the inflammatory process going on. Overall, stem cell joint injections significantly reduce the recovery time of patients and also eliminates pain and risks associated with surgery. Examples of diseases where this treatment is used include osteoarthritis, rheumatoid arthritis, and so on. Researchers and physicians have rated this procedure to be the future of joint therapy.

Losing a tooth as a kid isnt news because youd eventually grow them back, but losing one as an adult isnt a pleasant experience. Youd have to go through the pains of getting a replacement from your dentist. Apart from the cost of these procedures, the pain and number of days youd have to stay at home nursing the pain is also a problem. Nevertheless, there are great teeth replacement therapies available for all kinds of dental problems. Although there are already good dental treatment methods, stem cell therapy might soon become the future of dental procedures. Currently, a lot of research is being done on how stem cells can be used to develop teeth naturally, especially in patients with dental problems. The aim of the project is to develop a method whereby peoples stem cells are used in regenerating their own teeth and within the shortest time possible. Some of the benefits of the stem cell tooth would be:

The quality of life of those that underwent serious procedures, especially those that had an allogeneic hematopoietic stem cell transplantation done was studied. It was discovered that this set of people had to cope with some psychological problems, even years after the procedure. In addition, allogeneic stem cell transplantation often comes with some side effects. However, this a small price to pay, considering that the adverse effects are not usually life-threatening. Also theses types of procedures are used for severe disorders or even terminal diseases. On the other hand, autologous stem cell transplantation bears the minimum to no side effects. Patients do have a great quality of life, both in the short term and in the long term.

This is one of the many uses of stem cells. The stem cell gun is a device that is used in treating people with wounds or burns. This is done by simply triggering it, and it sprays stem cells on the affected part. This kind of treatment is crucial for victims of a severe burn. Usually, people affected by severe burns would have to endure excruciating pain. The process of recovery is usually long, which might vary from weeks to months, depending on the severity of the burn. Even after treatment, most patients are left with scars forever. However, the stem cell gun eliminates these problems, the skin can be grown back in just a matter of days. The new skin also grows evenly and blends perfectly with the other part of the body. This process is also without the scars that are usually associated with the traditional burns therapy. The stem cell gun is without any side effects.

There is one company that focuses on the production of stem cell supplements. These stem cells are usually natural ingredients that increase the development of stem cells, and also keeps them healthy. The purpose of the stem cell supplements is to help reduce the aging process and make people look younger. These supplements work by replacing the dead or repairing the damaged tissues of the body. There have been a lot of testimonials to the efficacy of these supplements.

It is the goal of researchers to make stem cell therapy a good alternative for the millions of patients suffering from cardiac-related diseases. According to some experiments carried out in animals, stem cells were injected into the ones affected by heart diseases. A large percentage of them showed great improvement, even within just a few weeks. However, when the trial was carried out in humans, some stem cells went ahead to develop into heart muscles, but overall, the heart function was generally improved. The reason for the improvement has been attributed to the formation of new vessels in the heart. The topic that has generated a lot of arguments have been what type of cells should be used in the treatment of heart disorders. Stem cells extracted from the bone marrow, embryo have been in use, although bone marrow stem cells are the most commonly used. Stem cells extracted from bone marrow can differentiate into cardiac cells, while studies have shown that other stem cells cannot do the same. Even though the stem cell therapy has a lot of potential in the future, more research and studies have to be done to make that a reality.

The use of stem cells for the treatment of hair loss has increased significantly. This can be attributed to the discovery of stem cells in bone marrow, adipose cells, umbilical cord, and so on. Stem cells are extracted from the patient, through any of the sources listed above. Adipose tissue stem cells are usually the most convenient in this scenario, as they do not require any special extraction procedure. Adipose tissue is harvested from the abdominal area. The stem cells are then isolated from the other cells through a process known as centrifugation. The stem cells are then activated and are now ready for use. The isolated stem cells are then introduced into the scalp, under local anesthesia. The entire process takes about three hours. Patients are free to go home, after the procedure. Patients would begin to see improvements in just a few months, however, this depends largely on the patients ability to heal. Every patient has a different outcome.

Human umbilical stem cells are cells extracted from the umbilical cord of a healthy baby, shortly after birth. Umbilical cord tissue is abundant in stem cells, and the stem cells can differentiate into many types of cells such as red blood cells, white blood cells, and platelets. They are also capable of differentiating into non-blood cells such as muscle cells, cartilage cells and so on. These cells are usually preferred because its' extraction is minimally non invasive. It also is nearly painless. It also has zero risks of rejecting, as it does not require any form of matching or typing.Human umbilical stem cell injections are used for the treatment of spinal cord injuries. A trial was done on twenty-five patients that had late-stage spinal cord injuries. They were placed on human umbilical stem cell therapy, while another set of 25 patients were simultaneously placed on the usual rehabilitation therapy. The two groups were studied for the next twelve months. The results of the trial showed that those people placed on stem cell therapy by administering the human umbilical cell tissue injections had a significant recovery, as compared to the other group that underwent the traditional rehabilitation therapy. It was concluded that human umbilical tissue injections applied close to the injured part gives the best outcomes.

Stem cell therapy has been used for the treatment of many types diseases. This ranges from terminal illnesses such as cancer, joint diseases such as arthritis, and also autoimmune diseases. Stem cell therapy is often a better alternative to most traditional therapy today. This is because stem cell procedure is minimally invasive when compared to chemotherapy and so on. It harnesses the bodys own ability to heal. The stem cells are extracted from other parts of the body and then transplanted to other parts of the body, where they would repair and maintain the tissues. They also perform the function of modulating the immune system, which makes them important for the treatment of autoimmune diseases. Below are some of the diseases that stem cell therapies have been used successfully:

A stem cell bank can be described as a facility where stem cells are stored for future purposes. These are mostly amniotic stem cells, which are derived from the amnion fluid. Umbilical cord stem cells are also equally important as it is rich in stem cells and can be used for the treatment of many diseases. Examples of these diseases include cancer, blood disorders, autoimmune diseases, musculoskeletal diseases and so on. According to statistics, umbilical stem cells can be used for the treatment of over eighty diseases. Storing your stem cells should be seen as an investment in your health for future sake. Parents do have the option of either throwing away their babys umbilical cord or donating it to stem cell banks.

The adipose tissue contains a lot of stem cells, that has the ability to transform into other cells such as muscle, cartilage, neural cells. They are also important for the treatment of some cardiovascular diseases. This is what makes it important for people to want to store their stem cells. The future health benefit is huge. The only way adults can store their stem cells in sufficient amounts is to extract the stem cells from their fat tissues. This process is usually painless and fast. Although, the extraction might have to be done between 3 to 5 times before the needed quantity is gotten. People that missed the opportunity to store their stem cells, using their cord cells, can now store it using their own adipose tissues. This can be used at any point in time.

Side effects often accompany every kind of treatment. However, this depends largely on the individual. While patients might present with side effects, some other people wouldnt. Whether a patient will present with adverse effects, depends on the following factors;

Some of the common side effects of stem cell transplant are;

Stem cell treatment has been largely successful so far, however, more studies and research needs to be done. Stem cell therapy could be the future.

Stem cells are unique cells that have some special features such as self-regeneration, tissue repair, and modulation of the immune system. These are the features that are employed in the treatment of diseases.

Our doctors are certified by iSTEMCELL but operate as part of a medical group or as independent business owners and as such are free to charge what the feel to be the right fit for their practice and clients. We have seen Stem Cell Treatment costs range from $3500 upwards of $30,000 depending on the condition and protocol required for intended results. Find the Best Stem Cell Doctor Near me If you are interested in saving money, try our STEM CELL COUPON!

Travel Medcations are becoming very popular around the globe for several reasons but not for what one might think. It is not about traveling to Mexico to save money, but to get procedures or protocols that are not yet available in your home country. Many procedures are started in your home country, then the tissue is set to the tissue lab where it is then grown in a process to maximize live cells, then sent to a hospital in Mexico designed to treat or provide different therapies for different conditions. If you're ready to take a medical vacation call 972-800-6670 for our"WHITE GLOVE" service.

Chen, C. and Hou, J. (2016). Mesenchymal stem cell-based therapy in kidney transplantation. Stem Cell Research & Therapy, 7(1).

Donnelly, A., Johar, S., OBrien, T. and Tuan, R. (2010). Welcome to Stem Cell Research & Therapy. Stem Cell Research & Therapy, 1(1), p.1.

Groothuis, S. (2015). Changes in Stem Cell Research. Stem Cell Research, 14(1), p.130.

Rao, M. (2012). Stem cells and regenerative medicine. Stem Cell Research & Therapy, 3(4), p.27.

Vunjak-Novakovic, G. (2013). Physical influences on stem cells. Stem Cell Research & Therapy, 4(6), p.153.

See original here:
Stem Cell Therapy and Stem Cell Injection Provider Finder ...

Posted in Stem Cell Therapy | Comments Off on Stem Cell Therapy and Stem Cell Injection Provider Finder …

Anger as Scots patients miss out on ‘breakthrough’ stem cell therapy … – Herald Scotland

LUCY Clarke was facing a downhill spiral when she flew to Russia to undergo a cutting edge stem cell transplant.

Two years on she says the procedure not only halted her illness in its tracks, but reversed much of the damage inflicted by multiple sclerosis.

The 41-year-old from Inverness is now backing crowdfunding efforts so that her friend and neighbour, Rona Tynan, can receive the same life-changing operation in Mexico before she becomes too ill to qualify.

Mrs Tynan, 50, has until the end of August to raise the 60,000 needed.

However, both are angry at a cross-border divide which means that a small number of MS patients in England can undergo the treatment for free on the NHS, while in Scotland despite having some of the highest rates of MS in the world the health service has refused patients' funding and no clinical trials are planned.

Mrs Clarke, a chemistry graduate and acupuncturist, began investigating AHSCT (autologous haematopoietic stem cell transplantation) in 2014 after her condition progressed from relapsing-remitting to secondary progressive MS. At the time her son was three and she feared ending up in a wheelchair.

Although the treatment has been available overseas for decades, it has never been routinely available on the NHS and is considered unproven by many neurologists.

It is also a highly aggressive therapy, using intensive chemotherapy to strip out sufferers faulty immune systems before replenishing it with stem cells harvested from their own bone marrow or donor tissue. Despite the risks, many patients including Mrs Clarke credit it with transforming their lives.

She underwent the procedure in Moscow over a period of four weeks in April and May 2015. She said: From when my son was three to when I had the transplant, my walking had deteriorated, I needed to use a walking stick all the time, I had very poor balance, debilitating fatigue, I had brain fog, I used to slur my words.

"Im left-handed and my left hand was really weak so my writing was bad. Other things would come and go numbness in my legs, tingling, cramps in my calves, sore and painful legs. The majority of them have gone since the transplant.

I noticed quite quick improvements in things like balance. The biggest thing is not really having fatigue, and the brain fog completely went. I stopped slurring my words quite quickly after treatment. I was more alert. I had more concentration, more focus. Within six months the shaking in my left arm had gone. Ive still got drop foot in my right leg and I still use a walking stick, but once youve got to the stage of secondary progressive it all gets a bit scary. Things are going downhill and youre told theres nothing that can be done, so really my goal from treatment was just to halt the progression to know I wasnt getting any worse. Thankfully, and luckily, I have seen lots of benefits.

Eighteen months on, MRI brain scans show no signs of disease progression and while Mrs Clarke stresses that the treatment is neither a magic bullet nor a walk in the park, she is supporting Rona Tynans bid to undergo the same surgery in October.

Mrs Tynan, a retired Metropolitan police sergeant and mother-of-two from Inverness, also has secondary progressive MS. She is already in a wheelchair and fears that unless she undergoes the treatment soon she will become too ill. She said: Im a 7.5 out of 10 on the disease progression scale, where 10 is death. Most clinics stop taking you at seven, but Mexico just raised it to 8.5. Thats brilliant for people like myself, but I cant afford to get any more ill.

So far, Mrs Tynans fundraising page on JustGiving has raised nearly 4000, but she is frustrated that more is not being done to help Scottish patients. In England, clinical trials are ongoing in London and Sheffield but a small number of patients with relapsing-remitting MS can be referred for the treatment off-trial, for free, on the NHS. In Scotland, however, eligible patients have been turned down for NHS funding.

Mrs Tynan said: It seems crazy to me that Brits are going to Chicago and Mexico and Russia for a treatment that in the long-run could save the NHS loads of money. Scotland is one of the worst places in the world for MS yet in England you can get this treatment for free. Why arent we fighting in Scotland to get this?

Mrs Clarke added: Its very unfair. It just seems a no brainer to me why they wouldnt make it available not for all patients but for some. The Scottish Government said referral decisions were "for clinicians".

A spokesman said: "Whilst the vast majority of healthcare provided by NHS Scotland is delivered in Scotland, NHS boards can commission treatment in other countries on an ad hoc basis, particularly where highly specialised treatment is involved. Decisions to refer patients are for clinicians, based on agreed guidelines, which ensure best practice, equity of access and consistency of treatment for all patients.

"HSCT is not currently widely available anywhere on the NHS, but people from Scotland can participate in trials held in other centres across the UK, where clinically determined appropriate and beneficial."

Go here to see the original:
Anger as Scots patients miss out on 'breakthrough' stem cell therapy ... - Herald Scotland

Posted in Stem Cell Therapy | Comments Off on Anger as Scots patients miss out on ‘breakthrough’ stem cell therapy … – Herald Scotland

Stem-cell therapy – Wikipedia

This article is about the medical therapy. For the cell type, see Stem cell.

Stem-cell therapy is the use of stem cells to treat or prevent a disease or condition.

Bone marrow transplant is the most widely used stem-cell therapy, but some therapies derived from umbilical cord blood are also in use. Research is underway to develop various sources for stem cells, and to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes, heart disease, and other conditions.

Stem-cell therapy has become controversial following developments such as the ability of scientists to isolate and culture embryonic stem cells, to create stem cells using somatic cell nuclear transfer and their use of techniques to create induced pluripotent stem cells. This controversy is often related to abortion politics and to human cloning. Additionally, efforts to market treatments based on transplant of stored umbilical cord blood have been controversial.

For over 30 years, bone marrow has been used to treat cancer patients with conditions such as leukaemia and lymphoma; this is the only form of stem-cell therapy that is widely practiced.[1][2][3] During chemotherapy, most growing cells are killed by the cytotoxic agents. These agents, however, cannot discriminate between the leukaemia or neoplastic cells, and the hematopoietic stem cells within the bone marrow. It is this side effect of conventional chemotherapy strategies that the stem-cell transplant attempts to reverse; a donor's healthy bone marrow reintroduces functional stem cells to replace the cells lost in the host's body during treatment. The transplanted cells also generate an immune response that helps to kill off the cancer cells; this process can go too far, however, leading to graft vs host disease, the most serious side effect of this treatment.[4]

Another stem-cell therapy called Prochymal, was conditionally approved in Canada in 2012 for the management of acute graft-vs-host disease in children who are unresponsive to steroids.[5] It is an allogenic stem therapy based on mesenchymal stem cells (MSCs) derived from the bone marrow of adult donors. MSCs are purified from the marrow, cultured and packaged, with up to 10,000 doses derived from a single donor. The doses are stored frozen until needed.[6]

The FDA has approved five hematopoietic stem-cell products derived from umbilical cord blood, for the treatment of blood and immunological diseases.[7]

In 2014, the European Medicines Agency recommended approval of Holoclar, a treatment involving stem cells, for use in the European Union. Holoclar is used for people with severe limbal stem cell deficiency due to burns in the eye.[8]

In March 2016 GlaxoSmithKline's Strimvelis (GSK2696273) therapy for the treatment ADA-SCID was recommended for EU approval.[9]

Stem cells are being studied for a number of reasons. The molecules and exosomes released from stem cells are also being studied in an effort to make medications.[10]

Research has been conducted on the effects of stem cells on animal models of brain degeneration, such as in Parkinson's, Amyotrophic lateral sclerosis, and Alzheimer's disease.[11][12][13] There have been preliminary studies related to multiple sclerosis.[14][15]

Healthy adult brains contain neural stem cells which divide to maintain general stem-cell numbers, or become progenitor cells. In healthy adult laboratory animals, progenitor cells migrate within the brain and function primarily to maintain neuron populations for olfaction (the sense of smell). Pharmacological activation of endogenous neural stem cells has been reported to induce neuroprotection and behavioral recovery in adult rat models of neurological disorder.[16][17][18]

Stroke and traumatic brain injury lead to cell death, characterized by a loss of neurons and oligodendrocytes within the brain. A small clinical trial was underway in Scotland in 2013, in which stem cells were injected into the brains of stroke patients.[19]

Clinical and animal studies have been conducted into the use of stem cells in cases of spinal cord injury.[20][21][22]

The pioneering work[23] by Bodo-Eckehard Strauer has now been discredited by the identification of hundreds of factual contradictions.[24] Among several clinical trials that have reported that adult stem-cell therapy is safe and effective, powerful effects have been reported from only a few laboratories, but this has covered old[25] and recent[26] infarcts as well as heart failure not arising from myocardial infarction.[27] While initial animal studies demonstrated remarkable therapeutic effects,[28][29] later clinical trials achieved only modest, though statistically significant, improvements.[30][31] Possible reasons for this discrepancy are patient age,[32] timing of treatment[33] and the recent occurrence of a myocardial infarction.[34] It appears that these obstacles may be overcome by additional treatments which increase the effectiveness of the treatment[35] or by optimizing the methodology although these too can be controversial. Current studies vary greatly in cell-procuring techniques, cell types, cell-administration timing and procedures, and studied parameters, making it very difficult to make comparisons. Comparative studies are therefore currently needed.

Stem-cell therapy for treatment of myocardial infarction usually makes use of autologous bone-marrow stem cells (a specific type or all), however other types of adult stem cells may be used, such as adipose-derived stem cells.[36] Adult stem cell therapy for treating heart disease was commercially available in at least five continents as of 2007.[citation needed]

Possible mechanisms of recovery include:[11]

It may be possible to have adult bone-marrow cells differentiate into heart muscle cells.[11]

The first successful integration of human embryonic stem cell derived cardiomyocytes in guinea pigs (mouse hearts beat too fast) was reported in August 2012. The contraction strength was measured four weeks after the guinea pigs underwent simulated heart attacks and cell treatment. The cells contracted synchronously with the existing cells, but it is unknown if the positive results were produced mainly from paracrine as opposed to direct electromechanical effects from the human cells. Future work will focus on how to get the cells to engraft more strongly around the scar tissue. Whether treatments from embryonic or adult bone marrow stem cells will prove more effective remains to be seen.[37]

In 2013 the pioneering reports of powerful beneficial effects of autologous bone marrow stem cells on ventricular function were found to contain "hundreds" of discrepancies.[38] Critics report that of 48 reports there seemed to be just five underlying trials, and that in many cases whether they were randomized or merely observational accepter-versus-rejecter, was contradictory between reports of the same trial. One pair of reports of identical baseline characteristics and final results, was presented in two publications as, respectively, a 578 patient randomized trial and as a 391 patient observational study. Other reports required (impossible) negative standard deviations in subsets of patients, or contained fractional patients, negative NYHA classes. Overall there were many more patients published as having receiving stem cells in trials, than the number of stem cells processed in the hospital's laboratory during that time. A university investigation, closed in 2012 without reporting, was reopened in July 2013.[39]

One of the most promising benefits of stem cell therapy is the potential for cardiac tissue regeneration to reverse the tissue loss underlying the development of heart failure after cardiac injury.[40]

Initially, the observed improvements were attributed to a transdifferentiation of BM-MSCs into cardiomyocyte-like cells.[28] Given the apparent inadequacy of unmodified stem cells for heart tissue regeneration, a more promising modern technique involves treating these cells to create cardiac progenitor cells before implantation to the injured area.[41]

The specificity of the human immune-cell repertoire is what allows the human body to defend itself from rapidly adapting antigens. However, the immune system is vulnerable to degradation upon the pathogenesis of disease, and because of the critical role that it plays in overall defense, its degradation is often fatal to the organism as a whole. Diseases of hematopoietic cells are diagnosed and classified via a subspecialty of pathology known as hematopathology. The specificity of the immune cells is what allows recognition of foreign antigens, causing further challenges in the treatment of immune disease. Identical matches between donor and recipient must be made for successful transplantation treatments, but matches are uncommon, even between first-degree relatives. Research using both hematopoietic adult stem cells and embryonic stem cells has provided insight into the possible mechanisms and methods of treatment for many of these ailments.[citation needed]

Fully mature human red blood cells may be generated ex vivo by hematopoietic stem cells (HSCs), which are precursors of red blood cells. In this process, HSCs are grown together with stromal cells, creating an environment that mimics the conditions of bone marrow, the natural site of red-blood-cell growth. Erythropoietin, a growth factor, is added, coaxing the stem cells to complete terminal differentiation into red blood cells.[42] Further research into this technique should have potential benefits to gene therapy, blood transfusion, and topical medicine.

In 2004, scientists at King's College London discovered a way to cultivate a complete tooth in mice[43] and were able to grow bioengineered teeth stand-alone in the laboratory. Researchers are confident that the tooth regeneration technology can be used to grow live teeth in human patients.

In theory, stem cells taken from the patient could be coaxed in the lab turning into a tooth bud which, when implanted in the gums, will give rise to a new tooth, and would be expected to be grown in a time over three weeks.[44] It will fuse with the jawbone and release chemicals that encourage nerves and blood vessels to connect with it. The process is similar to what happens when humans grow their original adult teeth. Many challenges remain, however, before stem cells could be a choice for the replacement of missing teeth in the future.[45][46]

Research is ongoing in different fields, alligators which are polyphyodonts grow up to 50 times a successional tooth (a small replacement tooth) under each mature functional tooth for replacement once a year.[47]

Heller has reported success in re-growing cochlea hair cells with the use of embryonic stem cells.[48]

Since 2003, researchers have successfully transplanted corneal stem cells into damaged eyes to restore vision. "Sheets of retinal cells used by the team are harvested from aborted fetuses, which some people find objectionable." When these sheets are transplanted over the damaged cornea, the stem cells stimulate renewed repair, eventually restore vision.[49] The latest such development was in June 2005, when researchers at the Queen Victoria Hospital of Sussex, England were able to restore the sight of forty patients using the same technique. The group, led by Sheraz Daya, was able to successfully use adult stem cells obtained from the patient, a relative, or even a cadaver. Further rounds of trials are ongoing.[50]

In April 2005, doctors in the UK transplanted corneal stem cells from an organ donor to the cornea of Deborah Catlyn, a woman who was blinded in one eye when acid was thrown in her eye at a nightclub. The cornea, which is the transparent window of the eye, is a particularly suitable site for transplants. In fact, the first successful human transplant was a cornea transplant. The absence of blood vessels within the cornea makes this area a relatively easy target for transplantation. The majority of corneal transplants carried out today are due to a degenerative disease called keratoconus.

The University Hospital of New Jersey reports that the success rate for growth of new cells from transplanted stem cells varies from 25 percent to 70 percent.[51]

In 2014, researchers demonstrated that stem cells collected as biopsies from donor human corneas can prevent scar formation without provoking a rejection response in mice with corneal damage.[52]

In January 2012, The Lancet published a paper by Steven Schwartz, at UCLA's Jules Stein Eye Institute, reporting two women who had gone legally blind from macular degeneration had dramatic improvements in their vision after retinal injections of human embryonic stem cells.[53]

In June 2015, the Stem Cell Ophthalmology Treatment Study (SCOTS), the largest adult stem cell study in ophthalmology ( http://www.clinicaltrials.gov NCT # 01920867) published initial results on a patient with optic nerve disease who improved from 20/2000 to 20/40 following treatment with bone marrow derived stem cells.[54]

Diabetes patients lose the function of insulin-producing beta cells within the pancreas.[55] In recent experiments, scientists have been able to coax embryonic stem cell to turn into beta cells in the lab. In theory if the beta cell is transplanted successfully, they will be able to replace malfunctioning ones in a diabetic patient.[56]

Human embryonic stem cells may be grown in cell culture and stimulated to form insulin-producing cells that can be transplanted into the patient.

However, clinical success is highly dependent on the development of the following procedures:[11]

Clinical case reports in the treatment orthopaedic conditions have been reported. To date, the focus in the literature for musculoskeletal care appears to be on mesenchymal stem cells. Centeno et al. have published MRI evidence of increased cartilage and meniscus volume in individual human subjects.[57][58] The results of trials that include a large number of subjects, are yet to be published. However, a published safety study conducted in a group of 227 patients over a 3-4-year period shows adequate safety and minimal complications associated with mesenchymal cell transplantation.[59]

Wakitani has also published a small case series of nine defects in five knees involving surgical transplantation of mesenchymal stem cells with coverage of the treated chondral defects.[60]

Stem cells can also be used to stimulate the growth of human tissues. In an adult, wounded tissue is most often replaced by scar tissue, which is characterized in the skin by disorganized collagen structure, loss of hair follicles and irregular vascular structure. In the case of wounded fetal tissue, however, wounded tissue is replaced with normal tissue through the activity of stem cells.[61] A possible method for tissue regeneration in adults is to place adult stem cell "seeds" inside a tissue bed "soil" in a wound bed and allow the stem cells to stimulate differentiation in the tissue bed cells. This method elicits a regenerative response more similar to fetal wound-healing than adult scar tissue formation.[61] Researchers are still investigating different aspects of the "soil" tissue that are conducive to regeneration.[61]

Culture of human embryonic stem cells in mitotically inactivated porcine ovarian fibroblasts (POF) causes differentiation into germ cells (precursor cells of oocytes and spermatozoa), as evidenced by gene expression analysis.[62]

Human embryonic stem cells have been stimulated to form Spermatozoon-like cells, yet still slightly damaged or malformed.[63] It could potentially treat azoospermia.

In 2012, oogonial stem cells were isolated from adult mouse and human ovaries and demonstrated to be capable of forming mature oocytes.[64] These cells have the potential to treat infertility.

Destruction of the immune system by the HIV is driven by the loss of CD4+ T cells in the peripheral blood and lymphoid tissues. Viral entry into CD4+ cells is mediated by the interaction with a cellular chemokine receptor, the most common of which are CCR5 and CXCR4. Because subsequent viral replication requires cellular gene expression processes, activated CD4+ cells are the primary targets of productive HIV infection.[65] Recently scientists have been investigating an alternative approach to treating HIV-1/AIDS, based on the creation of a disease-resistant immune system through transplantation of autologous, gene-modified (HIV-1-resistant) hematopoietic stem and progenitor cells (GM-HSPC).[66]

On 23 January 2009, the US Food and Drug Administration gave clearance to Geron Corporation for the initiation of the first clinical trial of an embryonic stem-cell-based therapy on humans. The trial aimed evaluate the drug GRNOPC1, embryonic stem cell-derived oligodendrocyte progenitor cells, on patients with acute spinal cord injury. The trial was discontinued in November 2011 so that the company could focus on therapies in the "current environment of capital scarcity and uncertain economic conditions".[67] In 2013 biotechnology and regenerative medicine company BioTime (NYSEMKT:BTX) acquired Geron's stem cell assets in a stock transaction, with the aim of restarting the clinical trial.[68]

Scientists have reported that MSCs when transfused immediately within few hours post thawing may show reduced function or show decreased efficacy in treating diseases as compared to those MSCs which are in log phase of cell growth(fresh), so cryopreserved MSCs should be brought back into log phase of cell growth in invitro culture before these are administered for clinical trials or experimental therapies, re-culturing of MSCs will help in recovering from the shock the cells get during freezing and thawing. Various clinical trials on MSCs have failed which used cryopreserved product immediately post thaw as compared to those clinical trials which used fresh MSCs.[69]

There is widespread controversy over the use of human embryonic stem cells. This controversy primarily targets the techniques used to derive new embryonic stem cell lines, which often requires the destruction of the blastocyst. Opposition to the use of human embryonic stem cells in research is often based on philosophical, moral, or religious objections.[110] There is other stem cell research that does not involve the destruction of a human embryo, and such research involves adult stem cells, amniotic stem cells, and induced pluripotent stem cells.

Stem-cell research and treatment was practiced in the People's Republic of China. The Ministry of Health of the People's Republic of China has permitted the use of stem-cell therapy for conditions beyond those approved of in Western countries. The Western World has scrutinized China for its failed attempts to meet international documentation standards of these trials and procedures.[111]

State-funded companies based in the Shenzhen Hi-Tech Industrial Zone treat the symptoms of numerous disorders with adult stem-cell therapy. Development companies are currently focused on the treatment of neurodegenerative and cardiovascular disorders. The most radical successes of Chinese adult stem cell therapy have been in treating the brain. These therapies administer stem cells directly to the brain of patients with cerebral palsy, Alzheimer's, and brain injuries.[citation needed]

Since 2008 many universities, centers and doctors tried a diversity of methods; in Lebanon proliferation for stem cell therapy, in-vivo and in-vitro techniques were used, Thus this country is considered the launching place of the Regentime[112] procedure. http://www.researchgate.net/publication/281712114_Treatment_of_Long_Standing_Multiple_Sclerosis_with_Regentime_Stem_Cell_Technique The regenerative medicine also took place in Jordan and Egypt.[citation needed]

Stem-cell treatment is currently being practiced at a clinical level in Mexico. An International Health Department Permit (COFEPRIS) is required. Authorized centers are found in Tijuana, Guadalajara and Cancun. Currently undergoing the approval process is Los Cabos. This permit allows the use of stem cell.[citation needed]

In 2005, South Korean scientists claimed to have generated stem cells that were tailored to match the recipient. Each of the 11 new stem cell lines was developed using somatic cell nuclear transfer (SCNT) technology. The resultant cells were thought to match the genetic material of the recipient, thus suggesting minimal to no cell rejection.[113]

As of 2013, Thailand still considers Hematopoietic stem cell transplants as experimental. Kampon Sriwatanakul began with a clinical trial in October 2013 with 20 patients. 10 are going to receive stem-cell therapy for Type-2 diabetes and the other 10 will receive stem-cell therapy for emphysema. Chotinantakul's research is on Hematopoietic cells and their role for the hematopoietic system function in homeostasis and immune response.[114]

Today, Ukraine is permitted to perform clinical trials of stem-cell treatments (Order of the MH of Ukraine 630 "About carrying out clinical trials of stem cells", 2008) for the treatment of these pathologies: pancreatic necrosis, cirrhosis, hepatitis, burn disease, diabetes, multiple sclerosis, critical lower limb ischemia. The first medical institution granted the right to conduct clinical trials became the "Institute of Cell Therapy"(Kiev).

Other countries where doctors did stem cells research, trials, manipulation, storage, therapy: Brazil, Cyprus, Germany, Italy, Israel, Japan, Pakistan, Philippines, Russia, Switzerland, Turkey, United Kingdom, India, and many others.

Read the original post:
Stem-cell therapy - Wikipedia

Posted in Stem Cell Therapy | Comments Off on Stem-cell therapy – Wikipedia

Stem-cell therapy – Wikipedia, the free encyclopedia

This article is about the medical therapy. For the cell type, see Stem cell.

Stem-cell therapy is the use of stem cells to treat or prevent a disease or condition.

Bone marrow transplant is the most widely used stem-cell therapy, but some therapies derived from umbilical cord blood are also in use. Research is underway to develop various sources for stem cells, and to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes, heart disease, and other conditions.

Stem-cell therapy has become controversial following developments such as the ability of scientists to isolate and culture embryonic stem cells, to create stem cells using somatic cell nuclear transfer and their use of techniques to create induced pluripotent stem cells. This controversy is often related to abortion politics and to human cloning. Additionally, efforts to market treatments based on transplant of stored umbilical cord blood have been controversial.

For over 30 years, bone marrow has been used to treat cancer patients with conditions such as leukaemia and lymphoma; this is the only form of stem-cell therapy that is widely practiced.[1][2][3] During chemotherapy, most growing cells are killed by the cytotoxic agents. These agents, however, cannot discriminate between the leukaemia or neoplastic cells, and the hematopoietic stem cells within the bone marrow. It is this side effect of conventional chemotherapy strategies that the stem-cell transplant attempts to reverse; a donor's healthy bone marrow reintroduces functional stem cells to replace the cells lost in the host's body during treatment. The transplanted cells also generate an immune response that helps to kill off the cancer cells; this process can go too far, however, leading to graft vs host disease, the most serious side effect of this treatment.[4]

Another stem-cell therapy called Prochymal, was conditionally approved in Canada in 2012 for the management of acute graft-vs-host disease in children who are unresponsive to steroids.[5] It is an allogenic stem therapy based on mesenchymal stem cells (MSCs) derived from the bone marrow of adult donors. MSCs are purified from the marrow, cultured and packaged, with up to 10,000 doses derived from a single donor. The doses are stored frozen until needed.[6]

The FDA has approved five hematopoietic stem-cell products derived from umbilical cord blood, for the treatment of blood and immunological diseases.[7]

In 2014, the European Medicines Agency recommended approval of Holoclar, a treatment involving stem cells, for use in the European Union. Holoclar is used for people with severe limbal stem cell deficiency due to burns in the eye.[8]

In March 2016 GlaxoSmithKline's Strimvelis (GSK2696273) therapy for the treatment ADA-SCID was recommended for EU approval.[9]

Stem cells are being studied for a number of reasons. The molecules and exosomes released from stem cells are also being studied in an effort to make medications.[10]

Research has been conducted on the effects of stem cells on animal models of brain degeneration, such as in Parkinson's, Amyotrophic lateral sclerosis, and Alzheimer's disease.[11][12][13] There have been preliminary studies related to multiple sclerosis.[14][15]

Healthy adult brains contain neural stem cells which divide to maintain general stem-cell numbers, or become progenitor cells. In healthy adult laboratory animals, progenitor cells migrate within the brain and function primarily to maintain neuron populations for olfaction (the sense of smell). Pharmacological activation of endogenous neural stem cells has been reported to induce neuroprotection and behavioral recovery in adult rat models of neurological disorder.[16][17][18]

Stroke and traumatic brain injury lead to cell death, characterized by a loss of neurons and oligodendrocytes within the brain. A small clinical trial was underway in Scotland in 2013, in which stem cells were injected into the brains of stroke patients.[19]

Clinical and animal studies have been conducted into the use of stem cells in cases of spinal cord injury.[20][21][22]

The pioneering work[23] by Bodo-Eckehard Strauer has now been discredited by the identification of hundreds of factual contradictions.[24] Among several clinical trials that have reported that adult stem-cell therapy is safe and effective, powerful effects have been reported from only a few laboratories, but this has covered old[25] and recent[26] infarcts as well as heart failure not arising from myocardial infarction.[27] While initial animal studies demonstrated remarkable therapeutic effects,[28][29] later clinical trials achieved only modest, though statistically significant, improvements.[30][31] Possible reasons for this discrepancy are patient age,[32] timing of treatment[33] and the recent occurrence of a myocardial infarction.[34] It appears that these obstacles may be overcome by additional treatments which increase the effectiveness of the treatment[35] or by optimizing the methodology although these too can be controversial. Current studies vary greatly in cell-procuring techniques, cell types, cell-administration timing and procedures, and studied parameters, making it very difficult to make comparisons. Comparative studies are therefore currently needed.

Stem-cell therapy for treatment of myocardial infarction usually makes use of autologous bone-marrow stem cells (a specific type or all), however other types of adult stem cells may be used, such as adipose-derived stem cells.[36] Adult stem cell therapy for treating heart disease was commercially available in at least five continents as of 2007.[citation needed]

Possible mechanisms of recovery include:[11]

It may be possible to have adult bone-marrow cells differentiate into heart muscle cells.[11]

The first successful integration of human embryonic stem cell derived cardiomyocytes in guinea pigs (mouse hearts beat too fast) was reported in August 2012. The contraction strength was measured four weeks after the guinea pigs underwent simulated heart attacks and cell treatment. The cells contracted synchronously with the existing cells, but it is unknown if the positive results were produced mainly from paracrine as opposed to direct electromechanical effects from the human cells. Future work will focus on how to get the cells to engraft more strongly around the scar tissue. Whether treatments from embryonic or adult bone marrow stem cells will prove more effective remains to be seen.[37]

In 2013 the pioneering reports of powerful beneficial effects of autologous bone marrow stem cells on ventricular function were found to contain "hundreds" of discrepancies.[38] Critics report that of 48 reports there seemed to be just five underlying trials, and that in many cases whether they were randomized or merely observational accepter-versus-rejecter, was contradictory between reports of the same trial. One pair of reports of identical baseline characteristics and final results, was presented in two publications as, respectively, a 578 patient randomized trial and as a 391 patient observational study. Other reports required (impossible) negative standard deviations in subsets of patients, or contained fractional patients, negative NYHA classes. Overall there were many more patients published as having receiving stem cells in trials, than the number of stem cells processed in the hospital's laboratory during that time. A university investigation, closed in 2012 without reporting, was reopened in July 2013.[39]

One of the most promising benefits of stem cell therapy is the potential for cardiac tissue regeneration to reverse the tissue loss underlying the development of heart failure after cardiac injury.[40]

Initially, the observed improvements were attributed to a transdifferentiation of BM-MSCs into cardiomyocyte-like cells.[28] Given the apparent inadequacy of unmodified stem cells for heart tissue regeneration, a more promising modern technique involves treating these cells to create cardiac progenitor cells before implantation to the injured area.[41]

The specificity of the human immune-cell repertoire is what allows the human body to defend itself from rapidly adapting antigens. However, the immune system is vulnerable to degradation upon the pathogenesis of disease, and because of the critical role that it plays in overall defense, its degradation is often fatal to the organism as a whole. Diseases of hematopoietic cells are diagnosed and classified via a subspecialty of pathology known as hematopathology. The specificity of the immune cells is what allows recognition of foreign antigens, causing further challenges in the treatment of immune disease. Identical matches between donor and recipient must be made for successful transplantation treatments, but matches are uncommon, even between first-degree relatives. Research using both hematopoietic adult stem cells and embryonic stem cells has provided insight into the possible mechanisms and methods of treatment for many of these ailments.[citation needed]

Fully mature human red blood cells may be generated ex vivo by hematopoietic stem cells (HSCs), which are precursors of red blood cells. In this process, HSCs are grown together with stromal cells, creating an environment that mimics the conditions of bone marrow, the natural site of red-blood-cell growth. Erythropoietin, a growth factor, is added, coaxing the stem cells to complete terminal differentiation into red blood cells.[42] Further research into this technique should have potential benefits to gene therapy, blood transfusion, and topical medicine.

In 2004, scientists at King's College London discovered a way to cultivate a complete tooth in mice[43] and were able to grow bioengineered teeth stand-alone in the laboratory. Researchers are confident that the tooth regeneration technology can be used to grow live teeth in human patients.

In theory, stem cells taken from the patient could be coaxed in the lab turning into a tooth bud which, when implanted in the gums, will give rise to a new tooth, and would be expected to be grown in a time over three weeks.[44] It will fuse with the jawbone and release chemicals that encourage nerves and blood vessels to connect with it. The process is similar to what happens when humans grow their original adult teeth. Many challenges remain, however, before stem cells could be a choice for the replacement of missing teeth in the future.[45][46]

Research is ongoing in different fields, alligators which are polyphyodonts grow up to 50 times a successional tooth (a small replacement tooth) under each mature functional tooth for replacement once a year.[47]

Heller has reported success in re-growing cochlea hair cells with the use of embryonic stem cells.[48]

Since 2003, researchers have successfully transplanted corneal stem cells into damaged eyes to restore vision. "Sheets of retinal cells used by the team are harvested from aborted fetuses, which some people find objectionable." When these sheets are transplanted over the damaged cornea, the stem cells stimulate renewed repair, eventually restore vision.[49] The latest such development was in June 2005, when researchers at the Queen Victoria Hospital of Sussex, England were able to restore the sight of forty patients using the same technique. The group, led by Sheraz Daya, was able to successfully use adult stem cells obtained from the patient, a relative, or even a cadaver. Further rounds of trials are ongoing.[50]

In April 2005, doctors in the UK transplanted corneal stem cells from an organ donor to the cornea of Deborah Catlyn, a woman who was blinded in one eye when acid was thrown in her eye at a nightclub. The cornea, which is the transparent window of the eye, is a particularly suitable site for transplants. In fact, the first successful human transplant was a cornea transplant. The absence of blood vessels within the cornea makes this area a relatively easy target for transplantation. The majority of corneal transplants carried out today are due to a degenerative disease called keratoconus.

The University Hospital of New Jersey reports that the success rate for growth of new cells from transplanted stem cells varies from 25 percent to 70 percent.[51]

In 2014, researchers demonstrated that stem cells collected as biopsies from donor human corneas can prevent scar formation without provoking a rejection response in mice with corneal damage.[52]

In January 2012, The Lancet published a paper by Steven Schwartz, at UCLA's Jules Stein Eye Institute, reporting two women who had gone legally blind from macular degeneration had dramatic improvements in their vision after retinal injections of human embryonic stem cells.[53]

In June 2015, the Stem Cell Ophthalmology Treatment Study (SCOTS), the largest adult stem cell study in ophthalmology ( http://www.clinicaltrials.gov NCT # 01920867) published initial results on a patient with optic nerve disease who improved from 20/2000 to 20/40 following treatment with bone marrow derived stem cells.[54]

Diabetes patients lose the function of insulin-producing beta cells within the pancreas.[55] In recent experiments, scientists have been able to coax embryonic stem cell to turn into beta cells in the lab. In theory if the beta cell is transplanted successfully, they will be able to replace malfunctioning ones in a diabetic patient.[56]

Human embryonic stem cells may be grown in cell culture and stimulated to form insulin-producing cells that can be transplanted into the patient.

However, clinical success is highly dependent on the development of the following procedures:[11]

Clinical case reports in the treatment orthopaedic conditions have been reported. To date, the focus in the literature for musculoskeletal care appears to be on mesenchymal stem cells. Centeno et al. have published MRI evidence of increased cartilage and meniscus volume in individual human subjects.[57][58] The results of trials that include a large number of subjects, are yet to be published. However, a published safety study conducted in a group of 227 patients over a 3-4-year period shows adequate safety and minimal complications associated with mesenchymal cell transplantation.[59]

Wakitani has also published a small case series of nine defects in five knees involving surgical transplantation of mesenchymal stem cells with coverage of the treated chondral defects.[60]

Stem cells can also be used to stimulate the growth of human tissues. In an adult, wounded tissue is most often replaced by scar tissue, which is characterized in the skin by disorganized collagen structure, loss of hair follicles and irregular vascular structure. In the case of wounded fetal tissue, however, wounded tissue is replaced with normal tissue through the activity of stem cells.[61] A possible method for tissue regeneration in adults is to place adult stem cell "seeds" inside a tissue bed "soil" in a wound bed and allow the stem cells to stimulate differentiation in the tissue bed cells. This method elicits a regenerative response more similar to fetal wound-healing than adult scar tissue formation.[61] Researchers are still investigating different aspects of the "soil" tissue that are conducive to regeneration.[61]

Culture of human embryonic stem cells in mitotically inactivated porcine ovarian fibroblasts (POF) causes differentiation into germ cells (precursor cells of oocytes and spermatozoa), as evidenced by gene expression analysis.[62]

Human embryonic stem cells have been stimulated to form Spermatozoon-like cells, yet still slightly damaged or malformed.[63] It could potentially treat azoospermia.

In 2012, oogonial stem cells were isolated from adult mouse and human ovaries and demonstrated to be capable of forming mature oocytes.[64] These cells have the potential to treat infertility.

Destruction of the immune system by the HIV is driven by the loss of CD4+ T cells in the peripheral blood and lymphoid tissues. Viral entry into CD4+ cells is mediated by the interaction with a cellular chemokine receptor, the most common of which are CCR5 and CXCR4. Because subsequent viral replication requires cellular gene expression processes, activated CD4+ cells are the primary targets of productive HIV infection.[65] Recently scientists have been investigating an alternative approach to treating HIV-1/AIDS, based on the creation of a disease-resistant immune system through transplantation of autologous, gene-modified (HIV-1-resistant) hematopoietic stem and progenitor cells (GM-HSPC).[66]

On 23 January 2009, the US Food and Drug Administration gave clearance to Geron Corporation for the initiation of the first clinical trial of an embryonic stem-cell-based therapy on humans. The trial aimed evaluate the drug GRNOPC1, embryonic stem cell-derived oligodendrocyte progenitor cells, on patients with acute spinal cord injury. The trial was discontinued in November 2011 so that the company could focus on therapies in the "current environment of capital scarcity and uncertain economic conditions".[67] In 2013 biotechnology and regenerative medicine company BioTime (NYSEMKT:BTX) acquired Geron's stem cell assets in a stock transaction, with the aim of restarting the clinical trial.[68]

Scientists have reported that MSCs when transfused immediately within few hours post thawing may show reduced function or show decreased efficacy in treating diseases as compared to those MSCs which are in log phase of cell growth(fresh), so cryopreserved MSCs should be brought back into log phase of cell growth in invitro culture before these are administered for clinical trials or experimental therapies, re-culturing of MSCs will help in recovering from the shock the cells get during freezing and thawing. Various clinical trials on MSCs have failed which used cryopreserved product immediately post thaw as compared to those clinical trials which used fresh MSCs.[69]

There is widespread controversy over the use of human embryonic stem cells. This controversy primarily targets the techniques used to derive new embryonic stem cell lines, which often requires the destruction of the blastocyst. Opposition to the use of human embryonic stem cells in research is often based on philosophical, moral, or religious objections.[110] There is other stem cell research that does not involve the destruction of a human embryo, and such research involves adult stem cells, amniotic stem cells, and induced pluripotent stem cells.

Stem-cell research and treatment was practiced in the People's Republic of China. The Ministry of Health of the People's Republic of China has permitted the use of stem-cell therapy for conditions beyond those approved of in Western countries. The Western World has scrutinized China for its failed attempts to meet international documentation standards of these trials and procedures.[111]

State-funded companies based in the Shenzhen Hi-Tech Industrial Zone treat the symptoms of numerous disorders with adult stem-cell therapy. Development companies are currently focused on the treatment of neurodegenerative and cardiovascular disorders. The most radical successes of Chinese adult stem cell therapy have been in treating the brain. These therapies administer stem cells directly to the brain of patients with cerebral palsy, Alzheimer's, and brain injuries.[citation needed]

Since 2008 many universities, centers and doctors tried a diversity of methods; in Lebanon proliferation for stem cell therapy, in-vivo and in-vitro techniques were used, Thus this country is considered the launching place of the Regentime[112] procedure. http://www.researchgate.net/publication/281712114_Treatment_of_Long_Standing_Multiple_Sclerosis_with_Regentime_Stem_Cell_Technique The regenerative medicine also took place in Jordan and Egypt.[citation needed]

Stem-cell treatment is currently being practiced at a clinical level in Mexico. An International Health Department Permit (COFEPRIS) is required. Authorized centers are found in Tijuana, Guadalajara and Cancun. Currently undergoing the approval process is Los Cabos. This permit allows the use of stem cell.[citation needed]

In 2005, South Korean scientists claimed to have generated stem cells that were tailored to match the recipient. Each of the 11 new stem cell lines was developed using somatic cell nuclear transfer (SCNT) technology. The resultant cells were thought to match the genetic material of the recipient, thus suggesting minimal to no cell rejection.[113]

As of 2013, Thailand still considers Hematopoietic stem cell transplants as experimental. Kampon Sriwatanakul began with a clinical trial in October 2013 with 20 patients. 10 are going to receive stem-cell therapy for Type-2 diabetes and the other 10 will receive stem-cell therapy for emphysema. Chotinantakul's research is on Hematopoietic cells and their role for the hematopoietic system function in homeostasis and immune response.[114]

Today, Ukraine is permitted to perform clinical trials of stem-cell treatments (Order of the MH of Ukraine 630 "About carrying out clinical trials of stem cells", 2008) for the treatment of these pathologies: pancreatic necrosis, cirrhosis, hepatitis, burn disease, diabetes, multiple sclerosis, critical lower limb ischemia. The first medical institution granted the right to conduct clinical trials became the "Institute of Cell Therapy"(Kiev).

Other countries where doctors did stem cells research, trials, manipulation, storage, therapy: Brazil, Cyprus, Germany, Italy, Israel, Japan, Pakistan, Philippines, Russia, Switzerland, Turkey, United Kingdom, India, and many others.

See the original post here:
Stem-cell therapy - Wikipedia, the free encyclopedia

Posted in Stem Cell Therapy | Comments Off on Stem-cell therapy – Wikipedia, the free encyclopedia